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ABSTRACT 
 
This paper provides a simple shrinkage representation that describes the operational 
characteristics of various forecasting methods designed for a large number of orthogonal 
predictors (such as principal components).  These methods include pretest methods, 
Bayesian model averaging, empirical Bayes, and bagging.  We compare empirically 
forecasts from these methods to dynamic factor model (DFM) forecasts using a U.S. 
macroeconomic data set with 143 quarterly variables spanning 1960-2008.  For many 
series, including measures of real economic activity, the shrinkage forecasts are inferior 
to the DFM forecasts.  For other series, however, the shrinkage methods improve upon 
the DFM forecasts, suggesting that for those series the DFM is overly restrictive. 
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1. Introduction 

 

Over the past ten years, the dynamic factor model (DFM) (Geweke (1977)) has 

been the predominant framework for research on macroeconomic forecasting using many 

predictors.  The conceptual appeal of the DFM is twofold: methods for estimation of 

factors in a DFM can overcome the curse of dimensionality (Forni, Hallin, Lippi, and 

Reichlin (2000, 2004), Bai and Ng (2002, 2006), and Stock and Watson (1999, 2002a, 

b)), and the DFM arises naturally from log-linearized structural macroeconomic models 

including dynamic stochastic general equilibrium models (Sargent (1989), Bovin and 

Giannoni (2006)).1  But the forecasting implications of the DFM – that the many 

predictors can be replaced by a small number of estimated factors – might not be justified 

in practice.  Indeed, Eichmeier and Ziegler’s (2008) meta-study finds mixed performance 

of DFM forecasts, providing a reason to consider other ways to handle many predictors.  

Accordingly, some recent papers have considered whether DFM macro forecasts can be 

improved upon using other many-predictor methods, including high-dimensional 

Bayesian Vector Autogression (e.g. De Mol, Giannone, and Reichlin (2008), Carriero, 

Kapetanios, and Marcellino (2009)), Bayesian model averaging (Koop and Potter (2004), 

Wright (2004)), bagging (Inoue and Kilian (2008)), LASSO (De Mol, Giannone, and 

Reichlin (2008), Bai and Ng (2007)), boosting (Bai and Ng (2007)), and forecast 

combination (multiple authors). 

One difficulty in comparing these high-dimensional methods theoretically is that 

their derivations generally rely on specific modeling assumptions (for example, i.i.d. data 

and strictly exogenous predictors), and it is not clear from these derivations what the 

algorithms are actually doing when applied in settings in which the modeling 

assumptions do not hold.  Moreover, although there have been empirical studies of the 

performance of many of these methods for macroeconomic forecasting, it is difficult to 

draw conclusions across methods because of differences in data sets and implementation 

across studies. 

This paper therefore has two goals.  The first is characterize the properties of 

some forecasting methods applied to many orthogonal predictors in a time series setting 

                                                 
1 For a survey of econometric DFM research, see Bai and Ng (2008). 
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in which the predictors are predetermined but not strictly exogenous.  The results cover 

pretest and information-criterion methods, Bayesian model averaging (BMA), empirical 

Bayes (EB) methods, and bagging.  It is shown that asymptotically all these methods 

have the same “shrinkage” representation, in which the weight on a predictor is the OLS 

estimator times a shrinkage factor that depends on the t-statistic of that coefficient.  These 

representations are a consequence of the algorithms and they hold under weak stationarity 

and moment assumptions about the actual statistical properties of the predictors; thus 

these methods can be compared directly using these shrinkage representations. 

The second goal is to undertake an empirical comparison of these shrinkage 

methods DFM methods using a U.S. data set that includes 143 quarterly economic time 

series spanning 49 years.  The DFM imposes a strong restriction – that only the first few 

principle components (ordered according to the eigenvalues of the original predictor 

matrix) are needed for efficient forecasting – and the shrinkage methods provide a way to 

assess the empirical validity of this restriction. 

We find that, for many macroeconomic time series, among linear estimators the 

DFM forecasts make efficient use of the information in the many predictors by using only 

a small number of estimated factors.  These series include measures of real economic 

activity and some other central macroeconomic series, including some interest rates.  For 

these series, the shrinkage methods with estimated parameters fail to provide mean 

squared error improvements over the DFM. 

For other macroeconomic series, however, the shrinkage methods can provide 

noteworthy improvements over DFMs.  Series in this category include real wages and 

measures of regional residential construction activity.  For these series, the DFM appears 

not to be an adequate approximation, at least for forecasting purposes, and the use of 

principle components beyond the first few, combined with shrinkage, reduces mean 

squared errors.  Finally, none of the methods considered here help much for series that 

are notoriously difficult to forecast, such as exchange rates or price inflation. 

The shrinkage representations for forecasts using orthogonal predictors are 

described in Section 2.  Section 3 describes the data and the forecasting experiment.  

Section 4 presents the empirical results, and Section 5 offers some concluding remarks. 
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2.  Shrinkage Representations of Forecasting Methods  

 

We consider the multiple regression model with orthonormal regressors, 

 

Yt = δ′Pt–1 + εt,   t = 1,…, T, P′P/T = In   (1) 

 

where Pt is a n-dimensional predictor known at time t with ith element Pit, Yt is the 

variable to be forecast, and the error εt has variance σ2.  It is assumed that Yt and Pt have 

sample mean zero.  (Extensions to multi-step forecasting and including lagged values of 

Y are discussed below.)  For the theoretical development it does not matter how the 

regressors are constructed; in our applications and in the recent empirical econometric 

literature they are constructed as the first n principal components, dynamic principal 

components, or a variant of these methods, using an original, potentially larger set of 

regressors, {Xt}. 

With so many regressors, OLS will work poorly so we consider forecasting 

methods that impose and exploit additional structure on the coefficients in (1).  We will 

show that all these methods have a shrinkage representation, that is, the forecasts from 

these methods can all be written as, 

 

1|T TY +  = 
1

ˆ( )
n

i i iT
i

t Pψ κ δ
=
∑  + op(1),    (2) 

where 1|T TY +  is the forecast of YT+1 made using data through time T, îδ  = 1
11

T
it tt

T P Y−
−=∑  is 

the OLS estimator of δi (the ith element of δ), ti = îTδ /se , where 2
es  = 

2
11

ˆ( ) /( )T
t tt

Y P T nδ −=
′− −∑ , and ψ is a function specific to the forecasting method.  We 

consider four classes of forecasting procedures: pretest and information criterion 

methods, Bayesian methods (including Bayesian model averaging), empirical Bayes, and 

bagging.  The factor κ depends on the method.  For pretest methods and bagging, κ = 1.  

For the Bayes methods, κ = ( ˆ/es σ ), where 1/σ̂ 2 is the Bayes method’s posterior mean of 

1/σ2.  This factor arises because the posterior for σ may not concentrate around 2
es . 
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Under general conditions, for Bayes, empirical Bayes, bagging and pre-test 

estimators, 0 ≤ ψ (x) ≤ 1, so the operational effect of these methods is to produce linear 

combinations in which the weights are the OLS estimator, shrunk towards zero by the 

factor ψ.   This is the reason for referring to (2) as the shrinkage representation of these 

forecasting methods. 

  A key feature of these results is that the proof that the remainder term in (2) is 

op(1) for the different methods relies on much weaker assumptions on the true 

distribution of (Y, P) than the modeling assumptions used to derive the methods.  As a 

result, the performance of these methods can be understood and analyzed even if they are 

applied in circumstances in which the original modeling assumptions clearly do not hold, 

for example when they are applied to multistep-ahead forecasting. 

 

2.1  Pretest and Information Criterion Methods   

Because the regressors are orthogonal, a hard threshold pretest for model selection 

in (2) corresponds to including those regressors with t-statistics exceeding some threshold 

c.  For the pretest (PT) method, the estimator of the ith coefficient, PT
iδ , is the OLS 

estimator if |ti| > c, and is zero otherwise, that is, 

 
PT

iδ  = 1(|ti| > c) îδ .      (3) 

 

Expressed in terms of (2), the pretest ψ function is, 

 

ψPT(u) = 1(|u| > c).      (4) 

 

Under some additional conditions, the pretest methods correspond to information 

criteria methods, at least asymptotically.  For example, consider AIC applied sequentially 

to the increasing sequence of models constructed by sorting the regressors by the 

decreasing magnitude of their t-statistics.  If n is fixed and if some of the δ coefficients 

are fixed while others are in a n–1/2 neighborhood of zero, then asymptotically the same 

regressors will be selected by AIC as by applying the pretest (4) with c = 2 .  
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2.2 Bayes Methods 

For tractability, Bayes methods in the linear model have focused almost 

exclusively on the case of strictly exogenous regressors and independently distributed 

homoskedastic (typically normal) errors.  For our purposes, the leading case in which 

these assumptions are used is the Bayesian model averaging (BMA) methods discussed in 

the next subsection.  This modeling assumption is, 

 

(M1)  {εt} ⊥{Pt} and εt is i.i.d. N(0,σ2).   

 

We also adopt the usual modeling assumption of squared error loss.  Bayes procedures 

constructed under assumption (M1) with squared error loss will be called “Normal 

Bayes” (NB) procedures.  Note that we treat (M1) as a modeling tool, where the model is 

in general misspecified, that is, the true probability law for the data, or data generating 

process (DGP), is not assumed to satisfy (M1). 

Suppose that the prior distribution specifies that the coefficients {δi} are i.i.d., that 

the prior distribution on δi given σ2 can written in terms of τi = /iTδ σ , and that {τi} 

and σ2 have independent prior distributions: 

 

(M2)  {τi = /iTδ σ } ~ i.i.d Gτ, σ2 ~ 2G
σ

, and {τi}, σ2 are independent  

 

If T is fixed, the only two restrictions in (M2) are that δi is i.i.d. and that σ2 enters the 

conditional distribution of δi given σ2 only as a scale factor. 

Under squared error loss, the normal Bayes estimator NB
iδ  is the posterior mean,  

 
NB

iδ  = 2,
( | , )iE Y P

δ σ
δ ,     (5) 
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where the subscript 2,
E
δ σ

 indicates that the expectation is taken with respect to δ (which 

reduces to δi by independence under (M2)) and σ2.  Under (M1), ( δ̂ , 2
es ) are sufficient 

for ( δ̂ , σ2).  Moreover îδ  and ˆ
jδ  are independently distributed for all i ≠ j conditional on 

(δ, σ2), and îδ |δ, σ2 is distributed N(δi, σ2/T).  Thus (M1) and (M2) imply that, 

conditional on σ2, the posterior mean has the so-called simple Bayes form (Maritz and 

Lwin (1989)), 

 

NB
iδ |σ 2 = îδ  + 

2

T
σ ˆ( )iδ δ ,     (6) 

 

where ( )xδ  = dln(mδ(x))/dx, where mδ(x) = 2
2

/ |
( ) ( | )

T
x dG

σ δ σ
φ δ δ σ−∫  is the marginal 

distribution of an element of δ̂ , 2|
G

δ σ
 is the conditional prior of an element of δ given σ2, 

and φω is the pdf of a N(0,ω2) random variable. 

The shrinkage representation of the NB estimator follows from (6) by performing 

the change of variables τi = T δi/σ.  For priors satisfying (M2) and under conditions 

made precise below, the shrinkage function for the NB estimator is, 

 

ψNB(u) = 1 + ( )u /u,          (7) 

 

where ( )u  = dlnm(u)/du, m(u) = ( ) ( )u dGτφ τ τ−∫ , and φ is the standard normal density.  

Integrating over the posterior distribution of σ2 results in the posterior mean approaching 

its probability limit, which leads to ψNB being evaluated at u = ti×plim( ˆ/σ σ ). 

It is shown in the Appendix that, if the prior density gτ = dGτ(u)/du is symmetric 

around zero and is unimodal, then for all u, 

 

ψNB(u) = ψNB(–u) and 0 ≤ ψNB(u) ≤ 1.    (8) 

 

2.3 Bayesian Model Averaging. 
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Our treatment of BMA with orthogonal regressors follows Clyde, Desimone, and 

Parmigiani (1996), Clyde(1999a,b), and Koop and Potter (2004).  The Clyde, Desimone, 

and Parmigiani (1996) BMA setup adopts (M1) and a Bernoulli prior model for variable 

inclusion with a g-prior for δ conditional on inclusion.  Specifically, with probability p let 

δi|σ ~ N(0, σ2/(gT)) (so τi ~ N(0, 1/g)), and with probability 1 – p let δi = 0 (so τi = 0).  

Note that this prior model satisfies (M2).  Direct calculations show that, under these 

priors, the shrinkage representation (7) specializes to 

 

ψBMA(u) = ( ) ( ( ) )
(1 )[ ( ) ( ( ) ) (1 ) ( )]

pb g b g u
g pb g b g u p u

φ
φ φ+ + −

                       (9) 

 

where b(g) = /(1 )g g+  and φ is the standard normal density, and where ψBMA is 

evaluated at u = κti, just as in the general case (7). 

 

2.4 Empirical Bayes 

Empirical Bayes (EB) estimation treats the prior G as an unknown distribution to 

be estimated.  Under the stated assumptions, { îδ } constitute n i.i.d. draws from the 

marginal distribution m, which in turn depends on the prior G.  Because the conditional 

distribution of δ̂ |δ  is known under (M1), this permits inference about G.  In turn, the 

estimator of G can be used in (6) to compute the empirical Bayes estimator.  The 

estimation of the prior can be done either parametrically or nonparametrically.  We refer 

to the resulting empirical Bayes estimator generically as EB
iδ .  The shrinkage function for 

the EB estimator is, 

 

ψEB(u) = 1 + ˆ ( )u /u,          (10) 

 

where ˆ ( )u  is the estimate of the score of the marginal distribution of {ti}.  This score 

can be estimated directly or alternatively can be computed using an estimated prior Ĝτ , 

in which case ˆ ( )t  = ˆd ln ( ) /dm t t , where ˆ ( )m t  = ˆ( ) ( )t dGτφ τ τ−∫ . 
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2.5 Bagging 

Bootstrap aggregation or “bagging” (Breiman (1996)) (BG) smoothes the hard 

threshold in pretest estimators by averaging over a bootstrap sample of pre-test 

estimators.  Inoue and Kilian (2008) apply bagging to a forecasting situation like that 

considered in this paper and report some promising results; also see Lee and Yang 

(2006).  Bühlmann and Yu (2002) considered bagging with a fixed number of strictly 

exogenous regressors and i.i.d. errors, and showed that asymptotically the bagging 

estimator can be represented in the form (2), where (for u ≠ 0), 

 

ψBG(u)  = 1 – Φ(u + c) + Φ(u – c) + t–1[φ(u – c) – φ(u + c)],           (11) 

 

where c is the pre-test critical value, φ is the standard normal density, and Φ the standard 

normal CDF.  We consider a variant of bagging in which the bootstrap step is conducted 

using a parametric bootstrap under the exogeneity-normality assumption (M1).  This 

algorithm delivers the Bühlmann-Yu expression (11), however the expression obtains 

under weaker assumptions on the number and properties of the regressors. 

 

2.6  Theoretical results 

We now turn to a formal statement of the validity of the shrinkage representations 

of the foregoing forecasting methods.   

Let PT denote a vector of predictors used to construct the forecast and let { iδ } 

denote the estimator of the coefficients for the method at hand.  Then each method 

produces forecasts of the form 1|T TY +  = 
1

p
i iTi
Pδ

=∑ , with shrinkage approximation 

1| 1
ˆˆ ( )p

T T i i iTi
Y t Pψ κ δ+ =

=∑  for appropriately chosen ψ(.).  This section shows that 1|T TY + − 

1|T̂ TY +

. .m s
→  0 for the NB and BG forecasts.  (It follows immediately from the definition of 

the pretest estimator that its shrinkage representation is 1|
PT

T TY +  = 
1

ˆ( )n PT
i i iTi

t Pψ δ
=∑ , where 

ψPT(u) = 1(|u| > c), is exact). 
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First consider the NB forecast described in section (2.2).  If σ2 was assumed 

known, then equation (7) implies that the shrinkage representation would hold exactly 

with κ = se/σ.  The difference 
1|T T

NBY
+
− 1/

ˆ NB
T TY +  is therefore associated with estimation of σ2. 

The properties of the sampling error associated with estimation of σ2 depend on the DGP 

and the modeling assumptions (likelihood and prior) underlying the construction of the 

Bayes forecast.  Assumptions associated with the DGP and Bayes procedures are 

provided below.  Several of these assumptions use the variable ζ = 2σ̂ /σ2, where, as 

described above, 1/ 2σ̂  is the posterior mean of 1/σ2.  The assumptions use the 

expectation operator E, which denotes expectation with respect to the true distribution of 

Y and P, and EM, which denotes expectation with respect to the Bayes posterior 

distribution under the modeling assumptions (M1) and (M2).  

The assumptions for the NB forecasts are: 

 

(A1)   maxi |PiT| ≤ Pmax, a finite constant. 

(A2)   ( )21 2
tt

E T Y− ∑ ~ O(1) . 

(A3)   n/T → υ, where 0 ≤ υ < 1. 

(A4)   E{EM[(ζ – 1)4|Y,P] }4~ O( 4T δ− − ) for some δ > 0. 

(A5)  E{EM[ζ–4|Y,P] }4~ O(1). 

(A6)  supu|umdmψNB(u)/dum)| ≤ M for m = 1, 2. 

 

Assumptions (A1)-(A2) are restriction on the DGP, while (A3) is the asymptotic 

nesting. Assumptions (A4)-(A5) involve both the DGP and the assumed model for the 

Bayes forecast, and these assumptions concern the rate at which the posterior for σ  

concentrates around σ̂ .  To interpret these assumptions, consider the usual Normal-

Gamma conjugate prior  (i.e., τi  ~ N(0,g–1) and 1/σ2 ~ Gamma). A straightforward 

calculation shows that EM[(ζ – 1)4|Y,P] = 12(ν+2)/ν3 and EM[ζ–4|Y,P] = (ν/2)4/[(ν/2–

1)(ν/2–2)(ν/2–3)(ν/2–4)] where ν denotes the posterior degrees of freedom. Because ν = 

O(T) under (A3), E{EM[(ζ – 1)4|Y,P] }4 ~ O(T–8), and E[EM[ζ–4|Y,P] ]4 ~ O(1),  so that 

assumptions (A4) and (A5) are satisfied in this case regardless of the DGP.  Assumption 
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(A6) rules out priors that induce mass points in ψNB or for which ψNB(u) approaches 1 

very slowly as u → ∞. 

With these assumptions, the behavior of 
1|T T

NBY
+
− 1/

ˆ NB
T TY +  is characterized in the 

following theorem: 

 

Theorem 1: Under (A1)-(A6),  
1|T T

NBY
+
− 1/

ˆ NB
T TY +  

. .m s
→  0. 

 

Proofs are given in the appendix. 

An analogous result holds for the bagging forecast.  To prove this result, we make 

two additional assumptions: 

 

(A7) n/B → 0. 

(A8) 12max ( )i iE t < ∞. 

 

In (A7), B denotes the number of bootstrap replications, and the finite twelfth moment 

assumption in (A8) simplifies the proof of the following theorem:  

 

Theorem 2: Under (A1)-(A3) and (A7)-(A8), 
1|T T

BGY
+
− 1/

ˆ BG
T TY +  

. .m s
→  0. 

 
Remarks 

1. The theorems show that shrinkage factor representations hold under weaker 

assumptions than those upon which the estimators are derived:  the shrinkage 

factor representations are consequences of the algorithm, not properties of the 

DGP. 

2. Consider the (frequentist) MSE risk of an estimator δ , R(δ ,δ) = E(δ  – δ)′(δ  – 

δ), which is motivated by interest in the prediction problem with orthonormal 

regressors.  Setting δ  =  ˆ( )i it Tψ κ δ , this risk is E(δ  – δ)′(δ  – δ) =  

( )2
1

1
ˆ( )n

i i ii
n E t T Tυ ψ κ δ δ−

=
−∑ .  Suppose that ( ˆ( ) /i iT εδ δ σ− , 2 2ˆ /σ σ ) are 
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identically distributed, i = 1,…, n, and let rψ(τi)  = ( )2ˆ( ) /i i iE t Tψ κ δ σ τ− , 

where τi = T δi/σε,.  Then R(δ ,δ) = 2 ( ) ( )nr dGψυσ τ τ∫ , where nG  is the 

empirical cdf of {τt}.  Thus the risk depends only on ψ, nG  and the sampling 

distribution of ( ˆ( ) /i iT εδ δ σ− , 2 2ˆ /ε εσ σ ).  Holding constant this sampling 

distribution, risk rankings of various estimators depend only on nG .  If 

ˆ( ) /i iT εδ δ σ−  is asymptotically normally distributed, then the optimal choice of 

ψ is ψNB, with prior distribution equal to (the limit of) Gn (for details see Knox, 

Stock, and Watson (2004)).  These considerations provide a justification for 

thinking that parametric empirical Bayes estimators will perform well even 

though the model assumption (M1) used to derive the parametric Bayes estimator 

does not hold in the time series context of interest here.  

3. For empirical Bayes estimators, the shrinkage function depends on the estimated 

prior.  Under suitable regularity conditions, if the empirical Bayes estimation step 

is consistent then the asymptotic empirical Bayes shrinkage representation ψEB is 

ψNB with the probability limit of the estimated prior replacing Gτ. 

4. These representations permit the extension of these methods to direct multistep 

forecasting.  In a multistep setting, the errors have a moving average structure.  

However the forecasting methods can be implemented by substituting HAC t-

statistics into the shrinkage representations. 

5. The shrinkage factor representation of bagging allows us to ascertain whether 

bagging is asymptotically admissible, a result that appears to be currently 

unavailable. Setting ψBG equal to ψNB yields the integral-differential equation, 

 

dln ( ) ( )

d
z u

z s dG s

z
τφ

=

−∫  = u[Φ(u – c) – Φ(u + c)] + φ(u – c) – φ(u + c). (12) 

 

If there is a proper prior Gτ that satisfies (12), then this is the prior for which 

bagging is asymptotically Bayes, in which case bagging would be asymptotically 
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admissible.  Let Gτ have density g and characteristic function h(s) = ( )iste g t dt∫ .  

Then g satisfies (12) if h satisfies the Fredholm equation of the second kind, h(s) 

= ( , ) ( )K s t h t dt∫ , where  

 

K(s,t) = 
2

2

sin( ( )) cos( ( ))2
( )

t ste c s t c s tc
s s t s t

− + ⎡ ⎤− −
−⎢ ⎥− −⎣ ⎦

.  (13) 

 

 

3. Empirical Analysis:  Data and Methods 

 

The overall aim of the empirical analysis is to compare forecasts based on the 

dynamic factor model forecasts based on the shrinkage methods.  This section first 

describes the data set, then describes the specifics of the methods used to conduct the 

analysis. 

 

3.1 The Data 

The data set consists of quarterly observations on 143 U.S. macroeconomic time 

series from 1960:I through 2008:IV, for a total of 196 quarterly observations, with earlier 

observations used for lagged values of regressors as necessary.  We have grouped the 

series into thirteen categories, which are listed in Table 1.  The series are transformed by 

taking logarithms and/or differencing.  In general, first differences of logarithms (growth 

rates) are used for real quantity variables, first differences are used for nominal interest 

rates, and second differences of logarithms (changes in growth rates) for price series.  

The series and their transformations are listed in Appendix Table B.1.  Table B.2 

specifies the transformation used for the h-step ahead forecasted variable, h
t hY + , which 

depends on the transformation applied to the series.  Generally speaking, for real activity 

variables, h
t hY +  is the h-period growth at an annual rate; for interest rates, h

t hY +  is the h-

period change; and for nominal price and wage series, h
t hY +  is h-period inflation at an 

annual rate, minus current 1-period inflation. 
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Of the 143 series in the data set, 34 are higher-level aggregates, which are related 

by an identity to subaggregates.  Because including the higher-level aggregates does not 

add information, only the 109 disaggregated series were used to compute principle 

components; these 109 series are indicated in column “E” in Table B.1.  However, all 143 

series were used, one at a time, as the dependent variable to be forecasted. 

 

3.2 Methods 

This section describes the estimation of the model parameters and mean squared 

error (MSE).  The standard procedure in the macro forecast comparison literature is to 

use pseudo out-of-sample forecasting methods, for example by estimating MSEs using 

recursive forecasts.  Doing so here would introduce the undesirable complication that 

either the number of principal components would need to increase over the recursive 

sample, or the ratio n/T would change over the recursive sample, or fewer principle 

components could be considered if rolling methods were used.  As described below, we 

therefore adopt a nonstandard approach and estimate the model parameters and MSE by 

cross-validation, moving through the sample with a “leave out” window and using 

observations on both sides for the OLS estimation of δ and 2
εσ . 

Forecasting methods.  We examine six forecasting methods. 

1. DFM-5.  The DFM-5 forecast uses the first five principle components as 

predictors, with coefficients estimated by OLS and no shrinkage, and omitting the 

remaining principle components. 

2. Pretest.  The pretest shrinkage function is given by (4) and has one parameter, c. 

3. Bagging.  The bagging shrinkage function is given by (11) and has one parameter, 

c. 

4. BMA.  The BMA shrinkage function is given by (9) and has two parameters, p 

and g.  Because the parameters are estimated, the BMA method as implemented 

here is in fact a parametric Empirical Bayes procedure. 

5. Logit.  In addition to the methods studied in Section 2, we considered a logit 

shrinkage function, chosen because it is a conveniently estimated flexible 

functional form with two parameters, β0 and β1: 
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ψlogit (u) = 0 1

0 1

exp( )
1 exp( )

u
u

β β
β β
+

+ +
.      (14) 

 

6. OLS.  For comparison purposes we also report the OLS forecast based on all 

principle components (so ψOLS = 1). 

We do not investigate nonparametric empirical Bayes methods because of the limited 

amount of data available.  

Estimation.   Consider the h-step ahead series to be predicted, h
t hY + , let Xt denote the 

vector of 109 time series (transformed as in Appendix B) and let ψ(τ;θ) denote a 

candidate shrinkage function with parameter vector θ.  Estimation of the parameters θ 

and δ and of the MSE for that forecasting method for that series proceeds in three steps. 

1. Autoregressive dynamics are partialed out by initially regressing h
t hY +  and Xt on 1, 

1
tY , 1

1tY − , 1
2tY − , and 1

3tY − ; let h
t hY +  and tX  denote the residuals from this regression, 

standardized to have unit variance in the full sample.  The principle components 

Pt of tX  are computed using all observations (1960:I – 2008:IV) on the 109 series 

in the data set that are not higher-level aggregates.  The principle components are 

ordered according to the magnitude of the eigenvalues with which they are 

associated, and the first 100 standardized principle components are retained as Pt.  

2. Let tℑ  = {1,…, t–2h–3, t+2h+3,…, T}, that is, the full data set dropping the tth 

observation and 2h+2 observations on either side.  At each date t = 1,…, T–h, the 

OLS estimators of δ are computed by regressing h
t hY +  on Pt using observations t ∈ 

tℑ ; denote these OLS estimators as ,
ˆh

j tδ , j = 1,.., n.  Let ,ˆh
j tτ  denote the 

conventional OLS t-statistic corresponding to ,
ˆh

j tδ  (not adjusting for 

heteroskedasticity or serial correlation). 

3. The parameter θ is then estimated by minimizing the sum of squared cross-

validation prediction errors: 

ˆhθ  = argminθ MSE(θ), where MSE(θ) = 
2100

, , ,
1 1

1 ˆˆ( ; )
T h

t h h
t h i t i t i t

t i

Y P
T h

ψ τ θ δ
−

+
= =

⎛ ⎞−⎜ ⎟− ⎝ ⎠
∑ ∑  (15) 
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Because these are direct forecasts, the estimated value of θ differs by forecast 

horizon.  The estimated shrinkage function for this dependent variable and 

horizon is ψ(., ˆhθ ), and the corresponding empirical MSE is MSE( ˆhθ ). 

Because four lags of 1
tY  were partialed out in step 1 using full-sample regressions and the 

residuals were rescaled to have full-sample variance of 1, the MSE in (15) has the 

interpretation as being relative to a full-sample direct AR(4).  To emphasize this, we will 

refer to MSE( ˆhθ ) as a relative MSEs, and to its square root as the relative root mean 

squared error (RMSE). 

 

4. Empirical Results 

 

We begin with results for one-step ahead forecasts, then turn to multi-step ahead 

forecasts and results for categories of series. 

 

4.1 Results for one-step ahead forecasts 

Table 2 presents percentiles of the distribution of one-step ahead RMSEs over the 

143 series for the seven forecasting methods.  Table 3 presents two measures of similarity 

of the one-step ahead forecasts, specifically the correlation among the forecasting 

methods, and the mean absolute difference of the RMSEs.  Tables 4 and 5 report two 

summary measures of the shrinkage functions across series by method.  Table 4 reports 

the distribution across series of the root mean square shrinkage function, 
1/2

100 2
,1

1 ˆˆ( ; )
100

h
i t ji

ψ τ θ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , where ˆ
jθ  is the cross-validated estimated parameter for series j 

for the row method; because ψ = 1 for all principle components for OLS, for OLS this 

measure is 1.00 for all series.  For DFM-5, ψ = 1 for the first five principle components 

and zero otherwise, so this measure is 5 /100  = .224 for all series.  Table 5 gives the 

distribution across series of the average fraction of the mean squared variation in the 

shrinkage attributable to the first five principle components, 
5 1002 2

, ,1 1
ˆ ˆˆ ˆ( ; ) ( ; )h h

i t j i t ji i
ψ τ θ ψ τ θ

= =∑ ∑ , among those series for which the root mean square 
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shrinkage function considered in Table 4 is at least 0.052.  The final column of Table 5 

reports the fraction of these series for which at least 90% of the mean-square weight, for 

the row model, is placed on the first five principle components. 

Tables 2-5 suggests three conclusions for one-step ahead forecasts.  First, for 

approximately one-quarter of the series, the DFM-5 and shrinkage methods provide 

substantial improvements over the AR(4), with all these methods having 25th percentiles 

of relative RMSEs less than 0.90.  On the other hand, the forecasting improvements of 

any of these methods over the AR(4) forecast are quite small for at least a quarter of the 

143 series: the smallest relative RMSE at the 75th percentile is 0.98.   

Second, the DFM-5 and shrinkage methods provide improvements across the 

entire distribution of series, relative to OLS.   The logit model has the smallest relative 

RMSE at each percentile and in this sense the logit dominates both DFM-5 and the other 

shrinkage methods.  The bagging, BMA, pretest, and DFM-5 methods have similar 

performances, with different methods performing better at different quantiles, so that 

there is no clear ranking among these other methods.  As indicated in Table 3, the 

shrinkage methods tend to produce very similar RMSEs, with correlations of RMSEs  

among the shrinkage methods all exceeding 0.98. The correlation of the RMSEs of the 

shrinkage methods with the DFM-5 method is considerably lower, ranging from 0.90 to 

0.92.  The correlation of the DFM-5 and shrinkage RMSEs with the OLS RMSE is lower 

yet. 

Third, Table 5 shows that the fraction of mean-square weight that the shrinkage 

methods puts on the first five principle components varies considerably across series.  For 

approximately one-fifth of the series (21%), the logit model places at least 90% of its 

mean-square weight on the first five principle components.  For many other series, 

however, the shrinkage methods put considerable weight on principle components other 

than the first five: for one-quarter of the series the logit model places only 5.7% of its 

mean-square weight on the first five principle components. 

 

4.2 Results for multi-step ahead forecasts  

                                                 
2 A model with shrinkage functions equal to 0.5 for one principle component and equal to zero for the 
remaining 99 principle components has a root mean square ψ of .05. 
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Table 6 summarizes the distribution of RMSEs across series of the different 

forecasting methods at forecast horizons of 2 and 4 quarters (the results for 3-quarters 

ahead fall between those for 2- and 4-quarters ahead).  In general, the conclusions drawn 

from Table 2 for h = 1 apply here.  All methods improve upon OLS.  Of the shrinkage 

methods, the logit direct forecasts have the lowest RMSEs at each percentile (as they do 

at the 1-quarter ahead horizon), and in this sense the logit forecasts dominate the other 

shrinkage method forecasts.  When the shrinkage and DFM-5 methods offer gains over 

the AR(4) benchmark, those gains tend to be greater at forecast horizons of half a year or 

a year than at the one-quarter horizons. 

As seen in Table 5, for some series the shrinkage methods place nearly all the 

mean-square weight on the first five principle components, while for other series the 

shrinkage methods place the same fraction (or less) of mean-square weight on the first 

five principle components as does OLS.  This raises two related questions.  First, for 

those series for which the shrinkage methods place most of the mean-square weight on 

the first five principle components, would one be better off simply using DFM-5 and not 

bothering with the empirical shrinkage function?  Second, for series for which the 

shrinkae method places much weight on principle components other than the first five, 

does doing so in fact improve the RMSE relative to DFM-5?  The answer to both 

questions is “yes,” at least at the 1- and 2-quarter forecast horizons.  Specifically, Table 7 

shows the median RMSE by method among the series in the lower and upper quartiles of 

the distribution of fractions of mean-squared weight (for the logit model) on the first five 

principle components, among those series with root mean square ψ’s of at least 0.05; for 

h = 1, these are the series in the lower and upper quartiles for the logit model in Table 5.  

For example, for h = 1 and for series in the upper quartile of mean-squared weights on the 

first five principle components, the median RMSE is smallest (.886) for the DFM-5 

model.  For series in the lower quartile of this distribution for h = 1, the median RMSE is 

smallest for the logit model (.977) and slightly exceeds 1 for DFM-5.  Interestingly, the 

logit RMSEs are lower in both quartiles than the DFM-5 RMSEs for 4-quarter ahead 

forecasts.  It is noteworthy that the logit RMSE is typically quite large for the series in the 

lower quartile, indicating that placing most of the weight on principle components 
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beyond the first five provides a RMSE improvement, but only a very slight one relative to 

the AR(4). 

 

4.3 Results by category of series 

Because the foregoing results are for all series taken together, they place most 

weight on the categories of series that are most heavily populated in this data set, in 

particular prices (37 of 143 series), employment and hours (20 series), GDP components 

(16 series), and industrial production (14 series).  Here, we turn to an analysis of the 

relative performance of the different procedures, broken down by category of series. 

Tables 8 and 9 summarize results by category of series (the full category 

descriptions are given in Table 1).  Table 8 presents the median relative RMSE by 

forecasting method, broken out by the category of series (NIPA aggregate, industrial 

production, etc.), at the 1-, 2-, and 4-quarter ahead forecast horizon; that is, Table 8 

breaks down Table 2 by category.  Table 9 presents the median fraction of the mean-

squared variation in the ψ’s associated with the first five principle components, among 

those series with root mean squared ψ’s at least .05, broken down by category and 

method; that is, Table 9 breaks down Table 5 by category. 

Generally speaking, the series fall into three groups.  For the major measures of 

real economic activity, the DFM-5 method has the lowest, or nearly the lowest, relative 

RMSE among the various methods.  For these series, RMSE improvements using the 

DFM-5 model are substantial relative to the AR(4) model, especially at longer horizons.  

Series in this group, for which DFM-5 typically has median RMSEs less than the 

shrinkage methods, include GDP components at all horizons, IP components at all 

horizons, employment series at all horizons.  Other series in this group include some 

interest rates, money (at least at the 4-quarter horizon), inventories (at the 2- and 4-

quarter horizons), and arguably unemployment rates, for which the shrinkage methods 

provide only very small improvements relative to DFM-5 forecasts at all horizons.  

Moreover, for series in this group, typically the fraction of the mean-square weight 

placed by the shrinkage methods on the first five principle components is large.  Thus, for 

these series, the shrinkage methods are essentially approximating the DFM-5 model and 

the DFM-5 works as well or better than the shrinkage approximations to it. 
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Figure 1 presents estimated shrinkage functions for a series in this first group, 

total employment (results are shown for the 2-quarter horizon).  The upper panel presents 

the estimated shrinkage functions, and the lower panel presents the weight placed by the 

various shrinkage functions on each of the 100 ordered principle components.  At h = 2, 

the DFM-5 RMSE is .846, slightly less than the Logit RMSE of .860, and both RMSEs 

indicate a substantial improvement over the AR(4).  The estimated shrinkage functions 

are broadly similar, in all cases placing substantial weight only for t-statistics in excess of 

approximately 3.5, and the logit and bagging shrinkage functions are quite close.  The 

estimated shrinkage functions end up placing nearly all their weight on the first few 

principle components, and only a few higher principle components receive weight 

exceeding 0.1. For total employment, the shrinkage methods support the DFM-5 

restrictions, and relaxing those restrictions results in higher RMSEs. 

The second group consists of series for which the shrinkage methods, in particular 

the logit model, has RMSEs that are both less than the DFM-5 RMSE and substantially 

less than one.  For these series, the shrinkage methods place most of the mean-square 

weight on principle components beyond the first five, and doing so reduces the relative 

RMSE.  Series in this group include real wages, housing, and interest rate spreads.  For 

example, for wages, the median relative RMSE for the logit model is .919 at the 2-quarter 

horizon, while for the DFM-5 it is .999, and at h = 2 the logit model places only 5% of its 

mean-square weight on the first five principle components.  For these series, the principle 

components can be used to produce lower RMSEs, but shrinkage methods are more 

effective at doing so than the DFM-5 model. 

Figure 2 presents estimated shrinkage functions and weights for a series in this 

second group, the spread between the 10-year and 90-day Treasury rates.  In contrast to 

Figure 1, the estimated shrinkage functions place weight on principle components with 

small, even zero, t-statistics.  The effect is that many principle components enter the 

forecast function, with most having substantial shrinkage, in the range of .1 - .3.  

Including all these principle components with substantial shrinkage reduces the RMSE 

from 0.947 for DFM-5 to 0.900 for the logit model. 

The final group consists of series for which the principle components do not 

provide meaningful reductions in RMSE, using either the DFM-5 or shrinkage models.  
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Series in this group include exchange rates, stock returns, and consumer expectations.  

Figure 3 presents estimated shrinkage functions and weights for a series in this third 

group, the percentage change in the S&P 500 Index.  The shrinkage function and 

estimated weights look broadly similar to those in Figure 2, with most principle 

component entering the forecast with a large amount of shrinkage (0.1-0.2).  This 

shrinkage improves upon unweighted OLS estimates, reducing the RMSE from 1.071 to 

0.984 for the logit, but (as one would expect for this series) does not substantially 

improve over the AR(4).  It should be noted that for series in this group, the cross-

validated objective functions are often very flat so the shrinkage parameters are 

imprecisely estimated and in some cases the estimated shrinkage functions are quite 

different from each other. 

 

4.4 Additional results and sensitivity analysis  

In addition to the four shrinkage models listed in Section 4, we estimated by 

cross-validation a logit model with a quadratic term to obtain a more flexible (but low 

dimensional) parametric specification.  The shrinkage function is for the quadratic logit 

model is, 

ψlogit-q(u) = 
2

0 1 2
2

0 1 2

exp( )
1 exp( )

u u
u u

β β β
β β β
+ +

+ + +
  .     (16) 

 

This model fits marginally better than the linear logit model (14), which is to be expected 

since it has one more parameter, however the RMSE improvement obtained using this 

model was slight. 

As another sensitivity check, we repeated the analysis using Newey-West 

standard errors (with a window width of h+1), instead of the homoskedasticity-only OLS 

standard errors used above, to compute the cross-validated t-statistics that appear as 

arguments of the shrinkage functions, including reestimating the shrinkage parameters 

using the Newey-West t-statistics.  In principle this could change the results for multiple 

step ahead forecasts, for which the errors will have (at least) a MA(h–1) autocorrelation 

structure.  However, using Newey-West standard errors yielded no substantial changes in 

the findings discussed above. 
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5. Discussion  

 

Three points should be borne in mind when interpreting these results.  First, we 

have focused on whether the DFM provides a good framework for macro forecasting.  

This focus is related to, but different than, asking whether the DFM with a small number 

of factors provides a good contemporaneous or retrospective fit to many macro time 

series; for a discussion of this latter issue, see Giannone, Reichlin, and Sala (2004) and 

Watson (2004).  Second, the DFM forecasting method used here was chosen so that it is 

nested within the shrinkage function framework (2).  To the extent that other DFM 

forecasting methods, such as iterated forecasts based on a high-dimensional state space 

representation of the DFM (e.g. Doz, Giannone, and Reichlin (2006)), improve upon the 

first-five principle components forecasts used here, the results here understate the general 

forecasting applicability of the DFM.  Third, these results are full-sample in the sense that 

the cross-validated RMSEs are estimated using all data outside the range of the 

observation left out at each cross-validation step.  Thus this analysis focuses on average 

predictive content over the full 1960-2008 sample and abstracts from known time 

variation in the predictive regressions; see for example Stock and Watson (2002c, 2009) 

and D’Agostino, Giannone, and Surico (2006) for documentation of decreasing 

predictability over this period. 

The facts that some of these shrinkage methods have an interpretation as an 

empirical Bayes method and that we have considered some relatively flexible functional 

forms gives us some confidence that it will be difficult to improve systematically upon 

these forecasts using forecasts that are time-invariant linear functions of the principle 

components of large macro data sets like the one considered here.  This suggests that 

further forecast improvements over those presented here will need to come from models 

with nonlinearities and/or time variation.  An important next step in this research program 

is incorporating those extensions into high-dimensional forecasting systems. 
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Appendix A 

Proofs of Results in Section 2 

 

Proof of (8).  First use (7) to write  

ψNB(u) = 1 + { }1 ln ( ) ( )
x u

d x dG
u dx τφ τ τ

=

−∫   

= 1 – 
( ) ( ) ( )
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∫

  (17) 

The symmetry of ψNB(u) follows from the final expression, the symmetry of the normal 

distribution, and the assumed symmetry of the prior density gτ.. 

To show that 0 ≤ ψNB(u) ≤ 1 is bounded, first note that, because of the symmetry 

of ψNB(u), it suffices to consider u ≥ 0.  Also note that, for functions h and f where h(x) > 

h(–x) for all x ≥ 0, f(x) is odd, and f(x) ≥ 0 for x ≥ 0, then ( ) ( )f x h x dx
∞

−∞∫  ≥ 0.  The result 

ψNB(u) ≥ 0 follows from the final expression in (17) and this inequality by setting f(x) = 

xgτ(x) and h(x) = φ(u – x) (note that, for u ≥ 0, φ(u – x) ≥ φ(u + x)).  The result ψNB(u) ≤  1 

follows by using the inequality with f(x) = xφ(x) and h(x) = g(u–x) (noting that φ(u – x) ≥ 

φ(u + x) for u ≥ 0 because g is symmetric and unimodal)  to show that 

( ) ( ) ( )u u g dττ φ τ τ τ− −∫ ≥ 0. 

 

Proof of Theorem 1: Let ψ = ψNB, and recall the notation τi = /iTδ σ , ˆˆ /i iTτ δ σ= , 

ˆ /i i et T sδ= , κ = se/σ̂ , and ζ = 2σ̂ /σ2. Let î it tκ= , so that 1/ 2ˆ
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where the third equality follows from a second order mean value expansion of ψNB(tζ1/2) 

around ζ = 1, where ψNB′ and ψNB′′ are the first and second derivatives of ψNB (which 

exists by (A7)), ζ ∈ [1, ζ], it  = ît
1/ 2ζ , and the first term in the mean value expansion 

vanishes because EM(ζ −1) = 0. The theorem follows by showing that ii iT
Pρ∑  

converges to zero in mean square. 

 To show this, note that  
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repeated application of the Cauchy-Schwarz inequality yields 
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1
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T
M M

t
t

P M n E T Y E E E E oζ ζ− −

=
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≤ + −⎜ ⎟

⎝ ⎠
∑  (19) 

 

Where the final inequality follows from EM( 4ζ − ) ≤ EM [max(1,ζ–4)] ≤ 1 + EM(ζ–4), and 

the rate follows from (A2), (A4) and (A5) . 

 

Proof of Theorem 2: The proof of Theorem 2 is facilitated by the following lemma: 

 

Lemma: Let y ~ N(μ,1) and let D be a random variable distributed independently of y.  

Then [ ]var 1(| | )y y D× >  ≤ 1 + μ2. 

 

Proof:  [ ]var 1(| | )y y D× >  ≤ [ ]21(| | )E y y D× >  = 2 1(| | )E y y D⎡ ⎤× >⎣ ⎦  = 

{ }2 1(| | )E E y y D D⎡ ⎤× >⎣ ⎦  ≤ { }2E E y D⎡ ⎤⎣ ⎦  = Ey2 = 1 + μ2. 

 

As discussed in Section 2.5, bagging is implemented using the parametric bootstrap based 

on the exogeneity-normality assumption (M1).  Let the superscript * denote bootstrap 

realizations and let E* denote expectations taken with respect to the bootstrap distribution 

conditional on the observed data (Y, P).  Each parametric bootstrap realization draws T 

observations such that P*′P*/T = I and Y*|P* ~ N(P* δ̂ , 2
es I).  Let *

îjδ  denote the jth 

bootstrap draw of the OLS estimator of δi and let 2*
,e js  denote the jth bootstrap draw of the 

OLS estimator of σ2, let ξ* = 2*
,e js / 2

es , and let *
ijt  = T *

îjδ / *
,e js .  The jth bootstrap 

realization of the pretest estimator is 1(| *
ijt |>c) *

îjδ .  The bagging estimator is 

 

BG
iδ  = * *

1

1 ˆ1(| | )
B

ij ij
j

t c
B

δ
=

>∑ ,      (20) 
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where B is the number of bootstrap draws. 

By construction, under the * distribution, *
îjδ  ~ i.i.d. N( îδ , 2

es /T) so *ˆ /ij eT sδ  ~ 

i.i.d. N(ti, 1), ξ* ~ i.i.d. 2 /T n T nχ − − , and *
îjδ  and ξ* are independently distributed.  It is 

useful to define *
ijz  = *ˆ /ij eT sδ  –  ti , where *

ijz  ~ i.i.d. N(0,1). 

With this notation, 1/ 1/
1

ˆ
n

BG BG
T T T T i it

i

Y Y Pρ+ +
=

− =∑ , where ρi = BG
iδ  – ψBG(tt) îδ . Thus 

2 2 2 2 2 2 2
1/ 1/ max max

1 1

ˆ( ) ( ) [ ( )] max ( )
n n

BG BG
T T T T i iT i i i

i i

E Y Y E P P n E P n Eρ ρ ρ+ +
= =

− = ≤ ≤∑ ∑ .  The rest of the 

proof entails showing that maxi E( 2
iρ ) ~ o(n–2).  Write ρi  = ρ1i + ρ2i, where ρ1i = BG

iδ  – 

E* BG
iδ  and ρ2i = E* BG

iδ  – ψBG(tt) îδ , and note from Minkowski’s theorem that 2( )iE ρ  ≤ 

( )2
2 2
1 2 )( ) (i iE Eρ ρ+ . The proof follows from showing maxiE( 2

1iρ ) ~ o(n–2) and 

maxiE( 2
2iρ ) ~ o(n–2).                             

 
2

1( )iE ρ  :  

E( 2
1iρ ) = E[E* 2

1iρ ] = E[var*(ρ1i)] since the * distribution is conditional on (Y,P) 

and E*(ρ1i) = 0.  Now 

var*(ρ1i) = var*( BG
iδ  – E* BG

iδ ) 

= * * * * * *

1

1 ˆ ˆvar 1(| | ) 1(| | )
B

ij ij ij ij
j

t c E t c
B

δ δ
=

⎧ ⎫⎡ ⎤> − >⎨ ⎬⎣ ⎦⎩ ⎭
∑  

= * * *1 ˆvar 1(| | )ij ijt c
B

δ⎡ ⎤>⎣ ⎦  

= 
*2

* *
ˆ1 var 1(| | ) ije

ij
e

Ts t c
T B s

δ⎡ ⎤
>⎢ ⎥

⎢ ⎥⎣ ⎦
 

= ( )( )
2

* * * *1 var 1 | |e
i ij j i ij

s t z c t z
T B

ξ⎡ ⎤+ > +⎢ ⎥⎣ ⎦
 

≤ ( )( )1 2 21 1 1t iT Y t
T n B

− +
− ∑  , 
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where the second equality follows by substituting (20), the third equality follows because 

the bootstrap draws are i.i.d., the fourth equality follows from multiplying and dividing 

by 2
es /T, the fifth equality uses the notation introduces above, and the inequality follows 

from 2 2
1

( ) T
e tt

T n s Y
=

≤− ∑ and the lemma.  Thus  

        2
1max ( )i iE ρ  ≤ ( ) ( )

1/2 1/22 21 2 21 max 1
( ) t i iE T Y E t
T n B

−⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− ∑  ~ o(n–2), 

where the rate follows from (A2), (A3), (A7), (A8), and the lemma. 

 
2
2( )iE ρ  :  

       ρ2i = E* BG
iδ  – ψBG(tt) îδ  

= * * *ˆ[1(| | ) ]ij ijE t c δ>  – ψBG(tt) îδ  

= 
*

* *
ˆ ˆ

1(| | ) ( )ij BGe i
ij i

e e

Ts TE t c t
s sT
δ δψ

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥> −⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

 

= ( )( ){ }* * * *1 | | ( )BGe
i ij j i ij i i

s E t z c t z t t
T

ξ ψ⎡ ⎤+ > + −⎢ ⎥⎣ ⎦
. 

 

Now ( ) ( )* * *1 | |ij ijE t z d t z⎡ ⎤+ > +⎣ ⎦  = 
*

* * *

| |

( ) ( )
t z d

t z z dzφ
+ >

+∫ = ψBG(t,d)t, where ψBG(t,d) ≡ 1 – 

Φ(t + d) + Φ(t – d) + t–1[φ(t – d) – φ(t + d)] (cf. Bühlmann and Yu (2002)).  Thus 

 

ρ2i = * *( , ) ( , )BG BGe
i i j i

s t E t c t c
T

ψ ξ ψ⎡ ⎤−⎣ ⎦ . 

 

Let ψBG′ and ψBG′′ denote the first two derivatives of ψBG with respect to its second 

argument (direct calculation show that tψBG′(t,c) and tψBG′′(t,c) exist).  By the extended 

mean value theorem, the second order expansion of ψBG(ti,c *
jξ ) around *

jξ  = 1 yields, 
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ρ2i = * 2 2 * 21 ( , ) ( , ) ( 1)
8

BG BGe
i i i i j

s E t t c c t t c c
T

ψ ψ ξ ξ−⎧ ⎫⎡ ⎤′′ ′− −⎨ ⎬⎣ ⎦⎩ ⎭
 (21) 

  

where c  = c ξ , ξ  ∈ [1, *
jξ ], and the first  term in the mean value expansion vanishes 

because * *( )jE ξ = 1.  Thus 

|ρ2i| = * 2 2 * 21 ( , ) ( , ) ( 1)
8

BG BGe
i i i i j

s E t t c c t t c c
T

ψ ψ ξ ξ−⎧ ⎫⎡ ⎤′′ ′− −⎨ ⎬⎣ ⎦⎩ ⎭
 

      ≤ 2 * 2 * 21 sup ( , ) ( , ) ( 1)
8

BG BGe
u i i i i j

s t t u u t t u u E
T

ψ ψ ξ ξ−′′ ′ ⎡ ⎤− −⎣ ⎦  

≤ 2 * * 4 * 41 sup ( , ) ( , ) ( 1)
8

BG BGe
u i i i i j

s t t u u t t u u E E
T

ψ ψ ξ ξ −′′ ′− − .  (22) 

 

Note, * * 4( 1)jE ξ −  is the fourth central moment of a 2 /T n T nχ − −  random variable, so  

 
* * 4( 1)jE ξ −  = 12(T – n)(T – n + 4)/(T – n)4 = aT–n   (23) 

 

where the final equality defines aT–n.  Next, because ξ  ∈ [1, *
jξ ] and because the fourth 

moment of the reciprocal of a 2
rχ  random variable exists for r > 8 and is [(r – 2)(r – 4)(r 

– 6)(r – 8)]–1, for T – n ≥ 8 we have that  

 

   * * 4
jE ξ −  ≤ 1+ * * 4

jE ξ − = 1 + 
4( )

( 2)( 4)( 6)( 8)
T n

T n T n T n T n
−

− − − − − − − −
 = bT–n   (24)         

 

where the final equality defines bT–n 

Now turn to the sup term in (22).  Direct evaluation of the derivatives using the 

definition of ψBG show that tψBG′(t,u)u = u2[φ(t + u) – φ(t – u)] and tψBG′′(t,u)u2 = u2[φ(t 

+ u) – φ(t – u)] – u3[(t + u)φ(t + u) + (t – u)φ(t – u)].  Thus  

 

        |tψBG′(t,u)u| ≤ 2supuu2φ(t + u) 
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    ≤ 2supv(v – t)2φ(v) 

     ≤ 2[(supvv2φ(v)) + 2t supv|vφ(v)| + t2supvφ(v)] 

= 2(h2 + 2h1t + h2t2)      (25) 

 

where hm = / 2 / 2 / 2m mm e π− .  Similar calculations provide a bound on |tψBG′′(t,u)u2| 

which, combined with the bound in (25), yields 

 

2sup ( , ) ( , )BG BG
u i i i it t u u t t u uψ ψ′′ ′−   

≤ 2[(2h2 + h4) + (4h1 + 3h3)|ti| + (2h0 + 3h2) 2
it  + h1|ti|3] 

≤ 
3

4
0

14 | |mi
m

h t
=
∑ , 

 

where the final equality uses hi < hm for i < m and m > 1.  Substituting this bound, (23), 

and (24) into (22), squaring, taking expectations, and collecting terms yields 
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⎡ ⎤⎛ ⎞≤ ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞≤ ⎢ ⎥⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞≤ ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

∑

∑ ∑

∑ ∑

   

           

where the second inequality uses (T–n) 2 2
e ts Y≤∑ , the third uses Cauchy-Schwarz, and 

the rate uses aT–n ~o[(T–n)–2], bT–n ~ O(1), (A2)-(A3),  and (A8). 
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Appendix B 

Data Sources and Transformations 

 
Table B.1 lists all the series in the data set, the series mnemonic (label) in the 

source database, the transformation applied to the series (T, described in Table B.2), 
whether the series is used to compute the principle components (E; 1 = used), the 
category grouping of the series (C), and a brief data description. All series are from the 
Global Insight (formerly DRI) Basic Economics Database, except those that include TCB 
(which are from the Conference Board’s Indicators Database) or AC (author’s 
calculation).   

Before using the series as predictors they were screened for outliers.  
Observations of the transformed series with absolute median deviations larger than 6 
times the inter quartile range were replaced with the median value of the preceding 5 
observations. 
 

Table B.1 
Series Descriptions 

 
Name Label T E C Description 
RGDP GDP251 5 0 1 Real gross domestic product, quantity index (2000=100) , saar 
Cons GDP252 5 0 1 Real personal consumption expenditures, quantity index (2000=100) , saar 
Cons-Dur GDP253 5 1 1 Real personal consumption expenditures - durable goods , quantity index (2000= 
Cons-NonDur GDP254 5 1 1 Real personal consumption expenditures - nondurable goods, quantity index (200 
Cons-Serv GDP255 5 1 1 Real personal consumption expenditures - services, quantity index (2000=100) , 
GPDInv GDP256 5 0 1 Real gross private domestic investment, quantity index (2000=100) , saar 
FixedInv GDP257 5 0 1 Real gross private domestic investment - fixed investment, quantity index (200 
NonResInv GDP258 5 0 1 Real gross private domestic investment - nonresidential , quantity index (2000 
NonResInv-struct GDP259 5 1 1 Real gross private domestic investment - nonresidential - structures, quantity 
NonResInv-Bequip GDP260 5 1 1 Real gross private domestic investment - nonresidential - equipment & software 
Res.Inv GDP261 5 1 1 Real gross private domestic investment - residential, quantity index (2000=100 
Exports GDP263 5 1 1 Real exports, quantity index (2000=100) , saar 
Imports GDP264 5 1 1 Real imports, quantity index (2000=100) , saar 
Gov GDP265 5 0 1 Real government consumption expenditures & gross investment, quantity index (2 
Gov Fed GDP266 5 1 1 Real government consumption expenditures & gross investment - federal, quantit 
Gov State/Loc GDP267 5 1 1 Real government consumption expenditures & gross investment - state & local, Q 
IP: total IPS10 5 0 2 Industrial production index -  total index 
IP: products IPS11 5 0 2 Industrial production index -  products, total 
IP: final prod IPS299 5 0 2 Industrial production  index -  final products 
IP: cons gds IPS12 5 0 2 Industrial production index -  consumer goods 
IP: cons dble IPS13 5 1 2 Industrial production index -  durable consumer goods 
iIP:cons nondble IPS18 5 1 2 Industrial production index -  nondurable consumer goods 
IP:bus eqpt IPS25 5 1 2 Industrial production index -  business equipment 
IP: matls IPS32 5 0 2 Industrial production index -  materials 
IP: dble mats IPS34 5 1 2 Industrial production index -  durable goods materials 
IP:nondble mats IPS38 5 1 2 Industrial production index -  nondurable goods materials 
IP: mfg IPS43 5 1 2 Industrial production index -  manufacturing (sic) 
IP: fuels IPS306 5 1 2 Industrial production  index -  fuels 
NAPM prodn PMP 1 1 2 NAPM production index (percent) 
Capacity Util UTL11 1 1 2 Capacity utilization - manufacturing (sic) 
Emp: total CES002 5 0 3 Employees, nonfarm - total private 
Emp: gds prod CES003 5 0 3 Employees, nonfarm - goods-producing 
Emp: mining CES006 5 1 3 Employees, nonfarm – mining 
Emp: const CES011 5 1 3 Employees, nonfarm – construction 
Emp: mfg CES015 5 0 3 Employees, nonfarm – mfg 
Emp: dble gds CES017 5 1 3 Employees, nonfarm - durable goods 
Emp: nondbles CES033 5 1 3 Employees, nonfarm - nondurable goods 
Emp: services CES046 5 1 3 Employees, nonfarm - service-providing 
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Emp: TTU CES048 5 1 3 Employees, nonfarm - trade, transport, utilities 
Emp: wholesale CES049 5 1 3 Employees, nonfarm - wholesale trade 
Emp: retail CES053 5 1 3 Employees, nonfarm - retail trade 
Emp: FIRE CES088 5 1 3 Employees, nonfarm - financial activities 
Emp: Govt CES140 5 1 3 Employees, nonfarm – government 
Help wanted indx LHEL 2 1 3 Index of help-wanted advertising in newspapers (1967=100;sa) 
Help wanted/emp LHELX 2 1 3 Employment: ratio; help-wanted ads:no. Unemployed clf 
Emp CPS total LHEM 5 0 3 Civilian labor force: employed, total (thous.,sa) 
Emp CPS nonag LHNAG 5 1 3 Civilian labor force: employed, nonagric.industries (thous.,sa) 
Emp. Hours LBMNU 5 1 3 Hours of all persons: nonfarm business sec (1982=100,sa) 
Avg hrs CES151 1 1 3 Avg wkly hours, prod wrkrs, nonfarm - goods-producing 
Overtime: mfg CES155 2 1 3 Avg wkly overtime hours, prod wrkrs, nonfarm - mfg 
U: all LHUR 2 1 4 Unemployment rate: all workers, 16 years & over (%,sa) 
U: mean duration LHU680 2 1 4 Unemploy.by duration: average(mean)duration in weeks (sa) 
U < 5 wks LHU5 5 1 4 Unemploy.by duration: persons unempl.less than 5 wks (thous.,sa) 
U 5-14 wks LHU14 5 1 4 Unemploy.by duration: persons unempl.5 to 14 wks (thous.,sa) 
U 15+ wks LHU15 5 1 4 Unemploy.by duration: persons unempl.15 wks + (thous.,sa) 
U 15-26 wks LHU26 5 1 4 Unemploy.by duration: persons unempl.15 to 26 wks (thous.,sa) 
U 27+ wks LHU27 5 1 4 Unemploy.by duration: persons unempl.27 wks + (thous,sa) 
HStarts: Total HSFR 4 0 5 Housing starts:nonfarm(1947-58);total farm&nonfarm(1959-)(thous.,sa 
HStarts: authorizations HSBR 4 0 5 Housing authorized: total new priv housing units (thous.,saar) 
HStarts: ne HSNE 4 1 5 Housing starts:northeast (thous.u.)s.a. 
HStarts: MW HSMW 4 1 5 Housing starts:midwest(thous.u.)s.a. 
HStarts: South HSSOU 4 1 5 Housing starts:south (thous.u.)s.a. 
HStarts: West HSWST 4 1 5 Housing starts:west (thous.u.)s.a. 
PMI PMI 1 1 6 Purchasing managers' index (sa) 
NAPM new ordrs PMNO 1 1 6 NAPM new orders index (percent) 
NAPM vendor del PMDEL 1 1 6 Napm vendor deliveries index (percent) 
NAPM Invent PMNV 1 1 6 Napm inventories index (percent) 
Orders (ConsGoods) MOCMQ 5 1 6 New orders (net) - consumer goods & materials, 1996 dollars (bci) 
Orders (NDCapGoods) MSONDQ 5 1 6 New orders, nondefense capital goods, in 1996 dollars (bci) 
PGDP GDP272A 6 0 7     Gross domestic product Price Index 
PCED GDP273A 6 0 7 Personal consumption expenditures Price Index 
CPI-ALL CPIAUCSL 6 0 7 Cpi all items (sa) fred 
PCED-Core PCEPILFE 6 0 7 PCE Price Index Less Food and Energy (SA) Fred 
CPI-Core CPILFESL 6 0 7 CPI Less Food and Energy (SA) Fred 
PCED-DUR GDP274A 6 0 7   Durable goods Price Index 
PCED-DUR-MOTORVEH GDP274_1 6 1 7     Motor vehicles and parts Price Index 
PCED-DUR-HHEQUIP GDP274_2 6 1 7     Furniture and household equipment Price Index 
PCED-DUR-OTH GDP274_3 6 1 7     Other price index 
PCED-NDUR GDP275A 6 0 7   Nondurable goods Price Index 
PCED-NDUR-FOOD GDP275_1 6 1 7     Food price index 
PCED-NDUR-CLTH GDP275_2 6 1 7     Clothing and shoes Price Index 
PCED-NDUR-ENERGY GDP275_3 6 1 7     Gasoline, fuel oil, and other energy goods Price Index 
PCED-NDUR-OTH GDP275_4 6 1 7     Other price index 
PCED-SERV GDP276A 6 0 7   Services price index 
PCED-SERV-HOUS GDP276_1 6 1 7     Housing price index 
PCED-SERV-HOUSOP GDP276_2 6 0 7     Household operation Price Index 
PCED-SERV-H0-ELGAS GDP276_3 6 1 7       Electricity and gas Price Index 
PCED-SERV-HO-OTH GDP276_4 6 1 7       Other household operation Price Index 
PCED-SERV-TRAN GDP276_5 6 1 7     Transportation price index 
PCED-SERV-MED GDP276_6 6 1 7     Medical care Price Index 
PCED-SERV-REC GDP276_7 6 1 7     Recreation price index 
PCED-SERV-OTH GDP276_8 6 1 7     Other price index 
PGPDI GDP277A 6 0 7 Gross private domestic investment Price Index 
PFI GDP278A 6 0 7   Fixed investment Price Index 
PFI-NRES GDP279A 6 0 7     Nonresidential price index 
PFI-NRES-STR Price Index GDP280A 6 1 7       Structures 
PFI-NRES-EQP GDP281A 6 1 7       Equipment and software Price Index 
PFI-RES GDP282A 6 1 7     Residential price index 
PEXP GDP284A 6 1 7   Exports price index 
PIMP GDP285A 6 1 7   Imports price index 
PGOV GDP286A 6 0 7 Government consumption expenditures and gross investment Price Index 
PGOV-FED GDP287A 6 1 7   Federal price index 
PGOV-SL GDP288A 6 1 7   State and local Price Index 
Com: spot price (real) PSCCOMR 5 1 7 Real spot market price index:bls & crb: all commodities(1967=100) (psccom/pcepilfe) 
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OilPrice (Real) PW561R 5 1 7 PPI crude (relative to core PCE) (pw561/pcepilfe) 
NAPM com price PMCP 1 1 7 Napm commodity prices index (percent) 
Real AHE: goods CES275R 5 0 8 Real avg hrly earnings, prod wrkrs, nonfarm - goods-producing (ces275/pi071) 
Real AHE: const CES277R 5 1 8 Real avg hrly earnings, prod wrkrs, nonfarm - construction (ces277/pi071) 
Real AHE: mfg CES278 R 5 1 8 Real avg hrly earnings, prod wrkrs, nonfarm - mfg (ces278/pi071) 
Labor Prod LBOUT 5 1 8 Output per hour all persons: business sec(1982=100,sa) 
Real Comp/Hour LBPUR7 5 1 8 Real compensation per hour,employees:nonfarm business(82=100,sa) 
Unit Labor Cost LBLCPU 5 1 8 Unit labor cost: nonfarm business sec (1982=100,sa) 
FedFunds FYFF 2 1 9 Interest rate: federal funds (effective) (% per annum,nsa) 
3 mo T-bill FYGM3 2 1 9 Interest rate: u.s.treasury bills,sec mkt,3-mo.(% per ann,nsa) 
6 mo T-bill FYGM6 2 0 9 Interest rate: u.s.treasury bills,sec mkt,6-mo.(% per ann,nsa) 
1 yr T-bond FYGT1 2 1 9 Interest rate: u.s.treasury const maturities,1-yr.(% per ann,nsa) 
5 yr T-bond FYGT5 2 0 9 Interest rate: u.s.treasury const maturities,5-yr.(% per ann,nsa) 
10 yr T-bond FYGT10 2 1 9 Interest rate: u.s.treasury const maturities,10-yr.(% per ann,nsa) 
Aaabond FYAAAC 2 0 9 Bond yield: moody's aaa corporate (% per annum) 
Baa bond FYBAAC 2 0 9 Bond yield: moody's baa corporate (% per annum) 
fygm6-fygm3 SFYGM6 1 1 9 Fygm6-fygm3 
fygt1-fygm3 SFYGT1 1 1 9 Fygt1-fygm3 
fygt10-fygm3 SFYGT10 1 1 9 Fygt10-fygm3 
FYAAAC-Fygt10 SFYAAAC 1 1 9 Fyaaac-fygt10 
FYBAAC-Fygt10 SFYBAAC 1 1 9 Fybaac-fygt10 
M1 FM1 6 1 10 Money stock: m1 (curr,trav.cks,dem dep,other ck'able dep)(bil$,sa) 
MZM MZMSL 6 1 10 Mzm (sa) frb st. Louis 
M2 FM2 6 1 10 Money stock:m2(m1+o'nite rps,euro$,g/p&b/d mmmfs&sav&sm time dep(bil$, 
MB FMFBA 6 1 10 Monetary base, adj for reserve requirement changes(mil$,sa) 
Reserves tot FMRRA 6 1 10 Depository inst reserves:total,adj for reserve req chgs(mil$,sa) 
BUSLOANS BUSLOANS 6 1 10 Commercial and industrial loans at all commercial Banks (FRED) Billions $ (SA) 
Cons credit CCINRV 6 1 10 Consumer credit outstanding - nonrevolving(g19) 
Ex rate: avg EXRUS 5 1 11 United states;effective exchange rate(merm)(index no.) 
Ex rate: Switz EXRSW 5 1 11 Foreign exchange rate: switzerland (swiss franc per u.s.$) 
Ex rate: Japan EXRJAN 5 1 11 Foreign exchange rate: japan (yen per u.s.$) 
Ex rate: UK EXRUK 5 1 11 Foreign exchange rate: united kingdom (cents per pound) 
EX rate: Canada EXRCAN 5 1 11 Foreign exchange rate: canada (canadian $ per u.s.$) 
S&P 500 FSPCOM 5 1 12 S&p's common stock price index: composite (1941-43=10) 
S&P: indust FSPIN 5 1 12 S&p's common stock price index: industrials (1941-43=10) 
S&P div yield FSDXP 2 1 12 S&p's composite common stock: dividend yield (% per annum) 
S&P PE ratio FSPXE 2 1 12 S&p's composite common stock: price-earnings ratio (%,nsa) 
DJIA FSDJ 5 1 12 Common stock prices: dow jones industrial average 
Consumer expect HHSNTN 2 1 13 U. Of mich. Index of consumer expectations(bcd-83) 

 
 

Table B.2 
Transformations  

Transformation Code Xt h
t hY +  

1 Zt Zt+h 
2 Zt – Zt–1 Zt+h – Zt 
3 (Zt – Zt–1) – (Zt–1 – Zt–2) h–1(Zt+h – Zt) – (Zt – Zt–1) 
4 ln(Zt) ln(Zt+h) 
5 ln(Zt /Zt–1) ln(Zt+h/Zt) 
6 ln(Zt/Zt–1) –ln(Zt–1/Zt–2) h–1{ln(Zt/Zt–1)}– ln(Zt/Zt–1) 

 
Notes: This table defines the transformation codes (T) used in Table B.1. Zt denotes the 
raw series, Xt denotes the transformed series used to compute the principal components, 
and h

t hY +  denotes the series to be predicted.   
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Table 1 

Categories of series in the data set 
 
Group Brief description Examples of series Number 

of series 
1 GDP components GDP, consumption, investment 16 
2 IP IP, capacity utilization 14 
3 Employment Sectoral & total employment and hours 20 
4 Unempl. rate unemployment rate, total and by duration 7 
5 Housing Housing starts, total and by region 6 
6 Inventories NAPM inventories, new orders 6 
7 Prices Price indexes, aggregate & disaggregate; commodity 

prices 
37 

8 Wages Average hourly earnings, unit labor cost 6 
9 Interest rates Treasuries, corporate, term spreads, public-private 

spreads 
13 

10 Money M1, M2, business loans, consumer credit 7 
11 Exchange rates average & selected trading partners 5 
12 Stock prices various stock price indexes 5 
13 Cons. exp. Michigan consumer expectations 1 

 
 
 

Table 2 
Distributions of Relative Root Mean Squared Errors (RMSE)  

by Forecasting Method, h = 1 
 

Method No. est’d  
shrinkage 

parameters 

Percentiles 
0.050 0.250 0.500 0.750 0.950 

       
OLS 0 0.896 0.952 0.989 1.049 1.108 

DFM-5 0 0.837 0.887 0.955 0.987 1.017 
Pretest 1 0.827 0.885 0.935 0.993 1.000 
Bagging 1 0.843 0.890 0.943 0.993 1.000 

BMA 2 0.841 0.891 0.942 0.984 0.999 
Logit 2 0.827 0.878 0.929 0.977 0.995 

 
Notes: Entries in a given row are percentiles of the distribution of RMSEs, over the 143 series in 
the data set, of the forecasting method given in the first column.  The RMSEs are relative to an 
AR(4).  The forecasting methods, and the cross-validation method for computing the RMSE, are 
described in Section 3.2.  The method with the lowest RMSE at each percentile appears in bold. 
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Table 3 
Two measures of average similarity of forecast method, h = 1: 

correlation (lower left) and mean absolute difference of forecasts (upper right) 
 

 OLS DFM-5 Pretest Bagging BMA Logit 
OLS  0.069 0.070 0.064 0.068 0.076 

DFM-5 0.705  0.020 0.018 0.019 0.023 
Pretest 0.803 0.906  0.008 0.009 0.006 
Bagging 0.825 0.922 0.985  0.005 0.012 

BMA 0.842 0.921 0.982 0.996  0.008 
Logit 0.831 0.897 0.986 0.983 0.988  

 
Notes: Entries below the diagonal are the correlation between the RMSEs for the row/column 
forecasting methods, compute over the 143 series being forecasted.  Entries above the diagonal 
are the mean absolute difference between the row/column method RMSEs, averaged across 
series. 

 
Table 4 

Distribution of Root Mean Square values of shrinkage function ψ  , h = 1 
 
Method Percentiles 
 0.050 0.250 0.500 0.750 0.950 
      

OLS 1.000 1.000 1.000 1.000 1.000 
DFM-5 0.224 0.224 0.224 0.224 0.224 
Pretest 0.000 0.100 0.141 0.300 0.812 
Bagging 0.000 0.100 0.151 0.299 0.697 

BMA 0.077 0.118 0.183 0.354 0.639 
Logit 0.100 0.141 0.222 0.482 0.769 

 
 

Table 5 
Distribution of fraction of variance of ψ  placed on the 

first five principle components,  
among series with root mean square shrinkage functions  > 0.05, h = 1 

 
Method Number Percentiles Frac > 0.90 

0.050 0.250 0.500 0.750 0.950
        

OLS 143 0.050 0.050 0.050 0.050 0.050 0.00 
DFM-5 143 1.000 1.000 1.000 1.000 1.000 1.00 
Pretest 112 0.000 0.121 0.429 1.000 1.000 0.38 
Bagging 119 0.030 0.147 0.359 0.737 1.000 0.13 

BMA 136 0.050 0.051 0.215 0.921 1.000 0.26 
Logit 138 0.022 0.057 0.233 0.667 1.000 0.21 
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Table 6 
Distributions of Forecast RMSE by Forecasting Method, h = 2, 4 

 
(a) h = 2 

Method Percentiles 
 0.050 0.250 0.500 0.750 0.950 
      

OLS 0.881 0.926 0.976 1.032 1.088 
DFM-5 0.804 0.871 0.949 0.983 1.029 
Pretest 0.775 0.869 0.924 0.968 1.000 
Bagging 0.796 0.869 0.932 0.979 1.000 

BMA 0.790 0.869 0.929 0.967 0.994 
Logit 0.776 0.861 0.924 0.957 0.991 

 
 

(b) h = 4 
Method Percentiles 

 0.050 0.250 0.500 0.750 0.950 
      

OLS 0.892 0.934 0.965 1.013 1.068 
DFM-5 0.781 0.854 0.936 0.982 1.046 
Pretest 0.778 0.861 0.924 0.962 0.999 
Bagging 0.781 0.855 0.926 0.966 1.000 

BMA 0.780 0.858 0.922 0.961 0.989 
Logit 0.778 0.854 0.915 0.955 0.988 

 
Notes:  Entries are percentiles of distributions of relative RMSEs over the 143 variables being 
forecasted, by series, at the 2- and 4-quarter ahead forecast horizon.  All forecasts are direct.  
The method with the lowest RMSE at each percentile appears in bold. See the notes to Table 2. 
 

 
Table 7 

Median RMSE among series in the lower and upper quartiles of mean-square 
fraction of weight on the first five principle components in the logit model, h = 1, 2, 

and 4 
 

Method h = 1 h = 2 h = 4 
lower 

quartile 
upper 

quartile 
lower 

quartile 
upper 

quartile 
lower 

quartile 
upper 

quartile 
OLS 1.045 0.977 1.004 0.977 1.009 0.959 

DFM-5 1.001 0.886 1.003 0.886 1.013 0.877 
Pretest 0.999 0.891 0.982 0.904 0.982 0.849 
Bagging 0.999 0.896 0.985 0.913 0.982 0.863 

BMA 0.986 0.893 0.967 0.908 0.972 0.858 
Logit 0.977 0.891 0.955 0.904 0.965 0.849 

 
 
 



 39

Table 8 
Median RMSE by Forecasting Method and by Category of Series 

 
(a) h = 1 

Category Brief description OLS DFM-5 Pretest Bagging BMA Logit 
1 GDP components 0.987 0.905 0.911 0.913 0.914 0.906 
2 IP 0.954 0.882 0.890 0.888 0.887 0.884 
3 Employment 0.968 0.861 0.871 0.878 0.878 0.871 
4 Unempl. rate 0.929 0.800 0.799 0.799 0.799 0.799 
5 Housing 0.940 0.936 0.897 0.911 0.912 0.897 
6 Inventories 0.964 0.900 0.886 0.906 0.900 0.886 
7 Prices 1.034 0.980 0.993 0.995 0.978 0.970 
8 Wages 0.996 0.993 0.959 0.968 0.954 0.938 
9 Interest rates 1.026 0.980 0.961 0.967 0.963 0.946 
10 Money 0.987 0.953 0.926 0.948 0.944 0.926 
11 Exchange rates 1.087 1.015 0.997 0.996 0.993 0.981 
12 Stock prices 1.048 0.983 0.988 0.992 0.989 0.988 
13 Cons. exp. 1.108 0.977 0.996 1.000 1.000 0.996 

 
 

(b) h = 2 
Category Brief description OLS DFM-5 Pretest Bagging BMA Logit 

1 GDP components 0.945 0.907 0.882 0.892 0.889 0.870 
2 IP 0.910 0.861 0.853 0.857 0.861 0.852 
3 Employment 0.941 0.861 0.862 0.862 0.863 0.859 
4 Unempl. rate 0.902 0.750 0.723 0.733 0.729 0.723 
5 Housing 0.937 0.940 0.902 0.912 0.911 0.904 
6 Inventories 0.944 0.867 0.879 0.879 0.878 0.876 
7 Prices 1.042 0.977 0.968 0.979 0.973 0.961 
8 Wages 0.942 0.999 0.937 0.942 0.933 0.919 
9 Interest rates 0.945 0.952 0.934 0.943 0.938 0.928 

10 Money 0.987 0.933 0.924 0.926 0.927 0.921 
11 Exchange rates 1.036 1.015 1.000 1.000 0.986 0.980 
12 Stock prices 1.013 0.977 0.968 0.975 0.971 0.955 
13 Cons. exp. 1.149 0.963 0.960 0.987 0.977 0.960 
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Table 8, continued 
 

(c) h = 4 
Category Brief description OLS DFM-5 Pretest Bagging BMA Logit 

1 GDP components 0.938 0.906 0.917 0.913 0.913 0.908 
2 IP 0.944 0.827 0.837 0.847 0.845 0.836 
3 Employment 0.940 0.844 0.846 0.846 0.847 0.842 
4 Unempl. rate 0.903 0.762 0.743 0.750 0.747 0.743 
5 Housing 0.916 0.926 0.889 0.887 0.888 0.882 
6 Inventories 0.917 0.856 0.870 0.875 0.873 0.864 
7 Prices 1.013 0.963 0.954 0.957 0.953 0.948 
8 Wages 0.950 1.019 0.946 0.946 0.939 0.931 
9 Interest rates 1.027 0.956 0.950 0.959 0.958 0.949 

10 Money 0.998 0.909 0.939 0.937 0.940 0.937 
11 Exchange rates 1.009 1.036 0.965 0.983 0.973 0.965 
12 Stock prices 0.997 0.974 0.967 0.968 0.964 0.961 
13 Cons. exp. 1.075 0.966 0.955 0.970 0.961 0.955 

 
Notes: entries are the median relative RMSE among the relative RMSEs for the series among the row 
category, using the column forecasting method.  For each series category, the smallest relative RMSE (i.e. 
the row minimum) appears in bold.  



 41

Table 9 
Median fraction of variance of ψ  placed on the first five principle components, among 

series with root mean square shrinkage functions  > 0.05,  by category of series 
(a) h = 1 

Category Brief description Pretest Bagging BMA Logit 
1 GDP components 0.750 0.549 0.611 0.378 
2 IP 0.667 0.613 0.711 0.667 
3 Employment 1.000 0.789 0.792 0.576 
4 Unempl. rate 1.000 0.637 0.658 0.532 
5 Housing 0.089 0.119 0.091 0.110 
6 Inventories 1.000 0.771 0.993 0.788 
7 Prices 0.222 0.180 0.056 0.057 
8 Wages 0.052 0.057 0.050 0.043 
9 Interest rates 1.000 0.199 0.130 0.199 
10 Money 0.333 0.323 0.304 0.333 
11 Exchange rates 0.000 0.010 0.037 0.019 
12 Stock prices 0.250 0.235 0.117 0.114 
13 Cons. exp. . . . . 

 

(b) h = 2 
Category Brief description Pretest Bagging BMA Logit 

1 GDP components 1.000 0.660 0.537 0.218 
2 IP 0.500 0.315 0.409 0.357 
3 Employment 1.000 0.559 0.799 0.438 
4 Unempl. rate 1.000 0.883 1.000 1.000 
5 Housing 0.218 0.185 0.189 0.198 
6 Inventories 0.525 0.524 0.450 0.383 
7 Prices 0.375 0.264 0.173 0.172 
8 Wages 0.060 0.065 0.052 0.051 
9 Interest rates 0.072 0.066 0.052 0.070 
10 Money 1.000 0.139 0.994 0.396 
11 Exchange rates 0.063 0.055 0.050 0.050 
12 Stock prices 0.200 0.263 0.124 0.205 
13 Cons. exp. 1.000 0.814 0.919 1.000 

 

(c) h = 4 
Category Brief description Pretest Bagging BMA Logit 

1 GDP components 0.233   0.182   0.170  0.143  
2 IP 0.750   0.536   0.670  0.586  
3 Employment 1.000   0.766   0.928  0.538  
4 Unempl. rate 1.000   0.998   1.000  1.000  
5 Housing 0.266   0.134   0.283  0.303  
6 Inventories 0.500   0.348   0.398  0.355  
7 Prices 0.400   0.346   0.247  0.237  
8 Wages 0.093   0.080   0.063  0.047  
9 Interest rates 0.294   0.268   0.092  0.102  
10 Money 1.000   0.309   0.167  0.182  
11 Exchange rates 0.029   0.063   0.053  0.054  
12 Stock prices 0.085   0.103   0.079  0.077  
13 Cons. exp. 1.000   0.385   0.521  1.000 
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Figure 1 
Estimated shrinkage functions (upper panel) and weights ψ(ti,θ̂ ) on ordered principle 

components 1-100:  Total employment growth, h = 2 
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Figure 2 
Estimated shrinkage functions (upper panel) and weights ψ(ti,θ̂ ) on ordered principle 

components 1-100:  Spread between 10-year and 90-day Treasury rates, h = 1 
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Figure 3 
Estimated shrinkage functions (upper panel) and weights ψ(ti,θ̂ ) on ordered principle 

components 1-100:  Growth of S&P500 Index, h = 1 
 


