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APPENDIX A: MAIN RESULTS

A.1. Weak-Instrument Asymptotic Distributions for Plug-in SVAR Estimators

This section presents the weak-instrument distributions for the plug-in estimators of the

target structural shock, the historical decompositions, and the forecast-error variance de-

compositions.

Set-up: The distribution of an SVAR-IV data set of size T , denoted PT , is indexed by

(A, Θ0, F ); where A is the matrix of VAR slope coefficients, Θ0 is the matrix of contempo-

raneous responses, and F is the joint distribution of {εt, zt}∞

t=1.

To allow for models in which the correlation between the external instrument and the

target structural shock can be arbitrarily close to zero, consider a sequence {PT }∞

T =1 such

that Assumption 1 holds. This means that EPT
[ztε1,t] = αT , EPT

[ztεj,t] = 0 for j 6= 1, and

αT → 0.

A.1.1. Weak-instrument distribution of impulse response coefficients

Result 1 Let {PT }∞

T =1 be a sequence along which Assumptions 1 and 2 are satisfied.

Suppose in addition that the covariance between the external instrument and the target shock

is local-to-zero as in Staiger and Stock (1997); i.e.,

αT = a/
√

T .

If AsyVar (e′

1

√
T (Γ̂T − ΓT )) 6= 0. Then:

λk,i(ÂT , Γ̂T )
d→ λk,i(A, Θ0) +

δk,i(A, Θ0)′ξ

e′

1ξ + aΘ0,11

,

where:

δk,i(A, Θ0) ≡ (e′

iCk(A) − λk,i(A, Θ0)e′

1)′ ∈ R
n

and ξ is the limiting distribution of
√

T (Γ̂T − ΓT ).

Proof: Define the auxiliary statistics

∆̂N,T ≡ (e′

iCk(ÂT )Γ̂T − λk,i(A, ΓT )e′

1Γ̂T ), ∆̂D,T ≡ e′

1Γ̂T ,

1This version: April 20, 2020.
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and the difference between the plug-in IRF and the true IRF:

∆̂T ≡ λk.i(ÂT , Γ̂T ) − λk,i(A, ΓT ).

Algebra shows that ∆̂T = ∆̂N,T /∆̂D,T . Moreover, the numerator ∆̂N,T can be written as:

∆̂N,T = e′

i[Ck(ÂT ) − Ck(A)]
√

T (Γ̂T − ΓT )

+ e′

i[Ck(ÂT ) − Ck(A)]aΘ0,1

+ (e′

iCk(A) − λk,i(A, ΓT )e′

1)
√

T (Γ̂T − ΓT )

+
√

T (e′

iCk(A)ΓT − λk,i(A, ΓT )e′

1ΓT ).

Assumption 2 and the continuity of Ck(·) imply that both of the first two terms in the last

equation above, which are given by

e′

i[Ck(ÂT ) − Ck(A)]
√

T (Γ̂T − ΓT ) and e′

i[Ck(ÂT ) − Ck(A)]aΘ0,11,

converge in probability to zero. In addition:

e′

iCk(A)ΓT − λk,i(A, ΓT )e′

1ΓT = 0,

as λk,i(A, ΓT ) ≡ e′

iCk(A)ΓT /e′

1ΓT . Consequently, under our assumptions

∆̂T = (e′

iCk(A) − λk,i(A, ΓT )e′

1)
√

T (Γ̂T − ΓT ) / (e′

1

√
T (Γ̂T − ΓT ) + aΘ0,11) + op(1).

Implying:

λk,i(ÂT , Γ̂T )
d→ λk,i(A, Θ0) +

δk,i(A, Θ0)′ξ

e′

1ξ + aΘ0,11

,

where

δk,i(A, Θ0) ≡ (e′

iCk(A) − λk,i(A, Θ0)e′

1)′ ∈ R
n

and ξ is such that
√

T (Γ̂T − ΓT )
d→ ξ. Q.E.D.

A.1.2. Weak-instrument distributions of the Target Structural Shock, Historical

Decompositions, and Forecast-error Variance Decompositions

Target Structural Shock: Let ε̃1,t ≡ (ε1/σ1). We have shown that

sign(α)ε̃1,t = Γ′Σ−1ηt/
√

Γ′Σ−1Γ.

A plug-in estimator for the target structural shock (valid up to sign) is:

(A.1) ̂̃ε1,t = Γ̂′

T Σ̂−1η̂t

/
(Γ̂′

T Σ̂−1Γ̂T )1/2,
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with Σ̂ a consistent estimator for Σ and η̂t are the estimated VAR reduced-form residuals.

Assumption 2 and αT = a/
√

T imply

√
T Γ̂T =

√
T (Γ̂T − ΓT ) +

√
TΓT

d→ Γ∗ ≡ ξ + aΘ0,1.

The Continuous Mapping Theorem gives:

̂̃ε1,t = [
√

T Γ̂T ]′Σ̂−1η̂t

/
(
√

T Γ̂′

T Σ̂−1
√

T Γ̂T )1/2,

d→ Γ∗′Σ−1ηt

/
(Γ∗′Σ−1Γ∗)1/2

= (ξ + aΘ0,1)′Σ−1ηt

/
((ξ + aΘ0,1)′Σ−1(ξ + aΘ0,1))1/2.

We note that only as a → ∞ the limiting distribution concentrates around the object of

interest: (ε1,t/σ1).

Historical Decompositions: The plug-in estimator for the contribution of ε1,t to ηt

is:

(A.2) Θ̂0,1ε1,t ≡ (Γ̂T )Γ̂′

T Σ̂−1η̂t

/
(Γ̂′

T Σ̂−1Γ̂T ).

Assumption 2 and αT = a/
√

T imply

Θ̂0,1ε1,t
d→ (ξ + aΘ0,1)((ξ + aΘ0,1)′Σ−1ηt) / ((ξ + aΘ0,1)′Σ−1(ξ + aΘ0,1)).

= (Γ∗)(Γ∗′Σ−1ηt) / (Γ∗′Σ−1Γ∗).

The limiting distribution converges to Θ0,1ε1,t only as a → ∞.

Forecast-error Variance Decompositions: Finally, the plug-in estimator for the

forecast-error variance decompositions is:

(A.3) F̂EVDk,i ≡ Γ̂′

T

(
k∑

s=0

Cs(ÂT )′eie
′

iCs(ÂT )

)
Γ̂T

/
(Γ̂′

T Σ−1Γ̂T )
k∑

s=0

e′

iCs(ÂT )Σ̂Cs(ÂT )′ei.

Under the local to zero assumption:

F̂EVDk,i
d→ Γ∗′

(
k∑

s=0

Cs(A)′eie
′

iCs(A)

)
Γ∗

/
(Γ∗′Σ−1Γ∗)

k∑

s=0

e′

iCs(A)ΣCs(A)′ei.
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A.2. Proofs of Proposition 1 and 2

This section presents the proofs of the main propositions in the paper. Proposition 1

states that our proposed Anderson-Rubin confidence set is valid under weak and strong

instruments. Proposition 2 states that the Hausdorff distance between the Anderson-Rubin

confidence set and the standard delta-method confidence interval converges in probability

to zero under strong instruments.

A.2.1. Proposition 1

Proof: Let λk,i denote the true impulse response coefficient and consider the test statistic

XT ≡ [
√

T (e′

iCk(ÂT ) − λk,ie
′

1)Γ̂T ].

By definition of the Anderson-Rubin confidence interval:

PT

(
λk,i ∈ CSAR

T (1 − α)
)

= PT

(
X2

T ≤ z2
1−α/2 σ̂2

T (λk,i)
)

,

where σ̂T (λk,i) is the estimator of the asymptotic variance of XT .

The matrix Ω defined in Proposition 1 is positive definite by assumption and therefore

σ2(λk,i) 6= 0. Consequently,

X2
T /σ̂2

T (λk,i)
d→ χ2

1

follows from Assumption 1 and 2 and the differentiability of Ck(·) with respect to A, re-

gardless of the instrument strength. Therefore

lim
T →∞

PT (λk,i ∈ CSAR
T (1 − α)) = 1 − α.

Q.E.D.

A.2.2. Proposition 2

Proof: The Anderson-Rubin confidence set solves a quadratic inequality:

CSAR
T (1 − α) ≡

{
λ ∈ R : λ2â1−α + λb̂1−α + ĉ1−α ≤ 0

}
,

where the coefficients â1−α, b̂1−α, ĉ1−α depend on the data and the confidence level. The

results in Fieller (1954) and footnote 12 imply

CSAR
T (1 − α, λk,i) =

[−b̂1−α −
√

∆1−α

2â1−α
,

−b̂1−α +
√

∆1−α

2â1−α

]
,

whenever:

â1−α ≡ T (e′

1Γ̂T )2 − z2
1−α/2 ω̂T,22 > 0,
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where ω̂T,22 is the asymptotic variance of
√

T (e′

1Γ̂T − e′

1Γ). Therefore, under strong instru-

ments, P (â1−α > 0) goes to 1 as T → ∞.1 It is thus sufficient to focus on the Hausdorff

distance between the Anderson-Rubin confidence interval

[
−b̂1−α −

√
∆1−α

2â1−α
,

−b̂1−α +
√

∆1−α

2â1−α

]
, ∆1−α ≡ b̂2

1−α − 4â1−αĉ1−α,

and the delta-method/plug-in confidence interval

[
λ̂k,i −

√
z2

1−α/2

T

σ̂T (λ̂k,i)

|e′

iΓ̂1|
, λ̂k,i +

√
z2

1−α/2

T

σ̂T (λ̂k,i)

|e′

1Γ̂1|

]
.

Direct computation shows that the Hausdorff distance between two intervals [a, b] and [c, d]

is given by:

max{|c − a| , |d − b|}.

We complete the proof establishing two results.

Step 1: We show first that:

− b̂1−α

2â1−α
= λ̂k,i + Op(1/T ).

Algebra shows that

b̂1−α = 2z1−α/2ω̂T,12 − 2T (e′

iCk(ÂT )Γ̂T )(e′

1Γ̂T )

Therefore

− b̂1−α

2â1−α
=

2T (e′

iCk(ÂT )Γ̂T )(e′

1Γ̂T ) − 2z1−α/2ω̂T,12

2T (e′

1Γ̂T )2 − 2z2
1−α/2

e′

1ω̂T,22

= λ̂k,i + Op(1/T ),

provided the probability limit of e′

1Γ̂T is different from zero.

Step 2: We now show that under strong instruments:

√
∆1−α

2â1−α
=

(√
z2

1−α/2
σ̂T (λ̂k,i)/(|

√
T e′

1Γ̂T |)
√

1 + op(1)

)
+ Op(1/T ),

1This happens because of two reasons. First ω̂T,22 converges in probability to ω2,2, by
assumption. Second, Assumption 1 implies e′

1Γ = αe′

1Θ0,1 = α 6= 0 and Assumption 2

implies e′

1Γ̂T
p→ e′

1Γ. Consequently, T (e′

1Γ̂T )2 diverges to infinity.
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where

σ̂2
T (λ̂k,i) = ω̂1,T − 2λ̂k,iω̂T,12 + λ̂2

k,iω̂T,22.

Consider the square of the desired expression:

∆1−α

4â2
1−α

=
∆1−α

4T 2(e′

1Γ̂T )4

4T 2(e′

1Γ̂T )4

4â2
1−α

=
(̂b2

1−α − 4â1−αĉ1−α)

4T 2(e′

1Γ̂T )4

4T 2(e′

1Γ̂T )4

4â2
1−α

.

First, we study the term:

b̂2
1−α

4T 2(e′

1Γ̂T )4
=

(
− b̂1−α

2T (e′

1Γ̂)2

)2

,

=

(
2T (e′

iCk(ÂT )Γ̂T )(e′

1Γ̂T ) − 2z1−α/2ω̂T,12

2T (e′

1Γ̂T )2

)2

,

= (λ̂k,i − ((z1−α/2)/T )υ̂0)2, υ̂0 ≡ ω̂T,12/(e1Γ̂T )2,

= λ̂2
k,i − ((z1−α/2)/T )2λ̂k,iυ̂0 + Op(1/T 2).

Second, we look at
4â1−αĉ1−α

4T 2(e′

1Γ̂T )4
=

â1−α

T (e′

1Γ̂T )2

ĉ1−α

T (e′

1Γ̂T )2
.

Algebra shows that

ĉ1−α = T (e′

iCk(ÂT )Γ̂T )2 − z1−α/2ω̂T,11.

Consequently:

4â1−αĉ1−α

4T 2(e′

1Γ̂T )4
=

â1−α

T (e′

1Γ̂T )2

ĉ1−α

T (e′

1Γ̂T )2
,

=
(
1 − (z1−α/2/T )υ̂1

) (
λ̂2

k,i − (z1−α/2/T )υ̂2

)
,

(
υ̂1 ≡ ω̂T,22/(e′

1Γ̂T )2 and υ̂2 ≡ ω̂T,11/
(

e′

1Γ̂T

)2
)

= λ̂2
k,i − (z2

1−α/2/T )υ̂1λ̂2
k,i − (z2

1−α/2/T )υ̂2 − Op(1/T 2).

Therefore
(̂b2

1−α − 4â1−αĉ1−α)

4T 2(e′

1Γ̂T )4
=

(z2
1−α/2

/T )

(e′

1Γ̂T )2
σ̂2

T (λ̂k,i) + Op(1/T 2),

implying

∆1−α

4â2
1−α

=

(
(z2

1−α/2
/T )

(e′

1Γ̂T )2
σ̂2

T (λ̂k,i) + Op(1/T 2)

)(
1 + op(1)

)

= (z2
1−α/T )(σ̂2

T (λ̂k,i)/(e′

1Γ̂T )2) + op(1/T ).
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Combining Step 1 and Step 2 we can conclude that the bounds of our confidence interval

are approximately equal to:

λ̂k,i ±
√

z2
1−α

T

σ̂2
T (λ̂k,i)

(e′

1Γ̂T )2
+ op

(
1

T

)
+ Op

(
1

T

)
,

which can be written as:

λ̂k,i ±

√
z2

1−α√
T

σ̂T (λ̂k,i)

|e′

1Γ̂T |

√
1 + op (1) + Op

(
1

T

)
.

The probability limit of σ̂2
T (λ̂k,i) is not zero by assumption. Therefore, for large enough T

√
TdH


CSAR

T (1 − α, λk,i) ,


λ̂k,i −

√
z2

1−α/2

T

σ̂T (λ̂k,i)

|e′

1Γ̂T |
, λ̂k,i +

√
z2

1−α/2

T

σ̂T (λ̂k,i)

|e′

1Γ̂T |






equals the absolute value of

√
z2

1−α

σ̂T (λ̂k,i)

|e′

1Γ̂T |

(√
1 + op (1) − 1

)
+ Op

(
1√
T

)
,

which is the difference between the bounds of our confidence set and the plug-in confidence

interval. Since under strong instruments the probability limit of e′

1Γ̂T is different from zero,

the desired result follows.

Q.E.D.

A.2.3. Proposition 2 and local power comparison

We now show that Proposition 2 implies that the tests for the null hypothesis λk,i = λ0

corresponding to CSPlug-in (1 − α) and CSAR (1 − α) have the same local power.

The delta-method confidence interval is a set of the form [â, b̂]. Proposition 2 has shown

that for T large enough the 1 − α Anderson-Rubin confidence set is an interval of the form

[ĉ, d̂]. Consequently, for large T the Hausdorff distance between the delta-method confidence

interval and the Anderson-Rubin confidence set is d̂H ≡ max{|ĉ − â|, |d̂ − ĉ|}.

For T large enough the Anderson-Rubin test rejects the null λ0 whenever λ0 /∈ [ĉ, d̂].

This means that the power of the Anderson-Rubin test under an alternative of the form

λT = λ0 + l/
√

T is
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PλT
(λ0 /∈ [ĉ, d̂]) = 1 − PλT

(ĉ ≤ λ0 ≤ d̂)

= 1 − PλT
((ĉ − â) + â ≤ λ0 ≤ (d̂ − b̂) + b̂)

= 1 − PλT
(−

√
T (d̂ − b̂) − z1−α/2ŝ ≤

√
T (λ̂k,i − λ0) ≤ −

√
T (ĉ − â) + z1−α/2ŝ),

where the last line has used the fact that â and b̂ are the endpoints of the delta-method

confidence interval and ŝ = σ̂T (λ̂k,i)/|e′

1Γ̂T |.
Proposition 2 implies that

√
T (d̂ − b̂) and

√
T (ĉ − â) converge in probability to zero.

Therefore

PλT
(λ0 /∈ [ĉ, d̂]) → 1 − P (z1−α/2 ≤ N(l/s, 1) ≤ z1−α/2),

where s is the probability limit of ŝ. The right hand side above is the local power curve of

the delta-method confidence interval.

A.3. Inference for the over-identified case

We discuss the extensions of our main results to models with more than one external in-

strument for a single structural shock. This situation could arise, for example, in a monetary

SVAR where several popular proxy variables for monetary shocks are available: the series

of shocks in Romer and Romer (2004), the shock to the monetary policy reaction function

in Smets and Wouters (2007), and the series of variance shocks in Sims and Zha (2006).

The extension of the Anderson-Rubin confidence set to the ‘over-identified’ case is con-

ceptually straightforward. We note, however, that contrary to the ‘just-identified’ case there

is no guarantee that the Anderson-Rubin confidence set performs as well as that based

on an ‘efficient’ estimator for the parameter λk,i when the external instrument is strong.

This limitation is well-understood in the context of linear IV regression. Examples of weak-

instrument robust procedures with better (local) power properties under strong instruments

are the Lagrange Multiplier of Kleibergen (2002) and the Conditional Likelihood Ratio test

of Moreira (2003).

In this section we also show that appropriate versions of the Lagrange Multiplier and

Conditional Likelihood Ratio test of Moreira (2003) can be constructed for the SVAR-IV

model.

A.3.1. Anderson-Rubin test for over-identified SVAR-IV models

Suppose there are M > 1 external instruments, zm,t, for a target shock ε1,t. Let:

Γ̂m,T ≡ (1/T )

T∑

t=1

zm,tη̂t.
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Note that for each of the estimators Γ̂m,T , one could construct the statistic:

sm,T (λ) ≡
√

T (e′

iCk(ÂT ) − λe′

1)Γ̂m,T .

This means that if the vector:

(√
T (vec(ÂT ) − vec(A))′,

√
T (Γ̂1,T − EPT

[z1,tηt])
′, . . . ,

√
T (Γ̂M,T − EPT

[zM,tηt])
′

)′

is asymptotically multivariate nomal (which extends our Assumption 2), then the vector

sT (λ) ≡ (s1,T (λ), . . . , sM,T (λ))′, will be asymptotically normal as well; provided λ is the

true impulse response coefficient. If ŴT (λ) is a consistent estimator for the covariance of

such vector, then the analogous of our Anderson-Rubin type confidence interval would collect

the values of λ such that:

s′

T (λ)ŴT (λ)−1sT (λ) ≤ χ2
M,1−α.

This extends our Anderson-Rubin procedure to over-identified models.

A.3.2. Quasi-Conditional Likelihood Ratio Test for over-identified models

A natural question to ask is whether there exists a confidence interval that is robust to the

presence of weak external IVs but, at the same time, is as accurate as the best confidence

interval that would be used if instruments were known to be strong. Using a Linear IV

interpretation of external instruments—in which e′

iCk(ÂT )η̂t is the outcome variable, η̂1,t is

the endogenous regressor, and Zt = (z1,t, . . . , zM,t)
′ the vector of instrumental variables—it

is possible to derive Lagrange multiplier and Quasi-Conditional Likelihood Ratio tests as

those discussed in Kleibergen (2007) to conduct inference that is as ‘efficient’ as when the

instruments are known to be strong.

To formalize this argument, we start by defining what we mean by efficient inference when

the external instruments are strong. We use a typical minimum-distance framework. For each

of the M external instruments, let λ̂m
k,i denote the plug-in estimator for λk,i. Consider the

class of minimum-distance estimators—indexed by the weighting matrix S—given by:

λ̂k,i(S) ≡ arg min
λ∈R

(
λ̂1

k,i − λ, . . . , λ̂M
k,i − λ

)
S
(

λ̂1
k,i − λ, . . . , λ̂M

k,i − λ
)′

.

The standard theory of minimum-distance estimation (e.g., Newey and McFadden (1994) or

Hayashi (2000)) implies that the minimum-distance estimator with the smallest asymptotic

variance corresponds to the weighting matrix:

S∗ ≡ AsyVar

(√
T
(

λ̂1
k,i − λ, . . . , λ̂M

k,i − λ
)′
)−1

.
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Thus, one way to define efficiency is to use the local power curve of a test of hypothesis for

λk,i based on the efficient estimator λ̂k,i(S
∗). Direct calculation shows that such power curve

is given by the tail of a non-central chi-squared distribution with one degree of freedom and

centrality parameter (1′

M S∗1M )l, where 1M denotes the vector of ones in RM and l ∈ R is the

local alternative. We show that the Lagrange multiplier and Quasi-Conditional Likelihood

Ratio tests are indeed weak-instrument robust procedures that achieve such local power

curve. Details are provided below.

Overview: As suggested in Müller (2011), Moreira and Moreira (2015), Andrews (2016)

the weak-IV robust procedures for linear IV regression (with a single right-hand endogenous

regressor) can be described using the following statistical model for the OLS reduced-form

estimators:

(A.4)

(
γ̂1

γ̂2

)
∼ N2M

((
β

1

)
⊗ π , Σ/T

)
,

where β ∈ R is the coefficient of the right-hand endogenous regressor, π is the vector of

first-stage coefficients, and Σ is the asymptotic variance of the reduced-form estimators.

Consider the following SVAR-IV statistics:

(A.5)




(1/T )
∑T

t=1(e′

iCk(ÂT )η̂t)Zt

(1/T )
∑T

t=1(e′

1η̂t)Zt


 ,

which correspond to the covariances between the external instruments and linear combina-

tions of the reduced-form residuals. Let λk,i denote the true (k, i)-th IRF coefficient and

let αm denote the covariance between instrument zm,t and ε1,t. If we were to ignore—just

to simplify exposition—the sampling variability in the statistics above coming from the

estimation of ÂT and η̂t, the vector (A.5) would be centered at:




E[e′

iCk(A)ηtz1,t]
...

E[e′

iCk(A)ηtzM,t]

E[e′

1ηtz1,t]
...

E[e′

1ηtzM,t]




=




λk,iα1Θ0,11

...

λk,iαM Θ0,11

α1Θ0,11

...

αM Θ0,11




=

(
λk,i

1

)
⊗




α1Θ0,11

...

αM Θ0,11




This observation, combined with a Central Limit Theorem and the normalization Θ0,11 =
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1 would imply that:

γ̂SVAR-IV ≡




(1/T )−1
∑T

t=1(e′

iCk(ÂT )η̂t)Zt

(1/T )−1
∑T

t=1(e′

1η̂t)Zt


 approx∼ N2M




(
λk,i

1

)
⊗




α1

...

αM


 , Σ/T


 ,

which is the same statistical model as in (A.4). Below we show that tests that are anal-

ogous to the Lagrange Multiplier test and the Quasi-Conditional Likelihood Ratio test of

Kleibergen (2007) based on the statistics (A.4) achieve the same local power curve as the

Wald test based on minimum-variance minimum-distance estimator.
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Lagrange Multiplier and Conditional Likelihood Ratio Test: Consider thus

the model:

γ̂SVAR-IV ≡




(1/T )
∑T

t=1(e′

iCk(ÂT )η̂t)Zt

(1/T )
∑T

t=1(e′

1η̂t)Zt


 ∼ N2M




(
λk,i

1

)
⊗




α1Θ0,11

...

αM Θ0,11


 , Σ/T


 ,

and treat Σ as known. The statistic γ̂SVAR-IV is the SVAR version of the OLS estimators of

the reduced-form coefficients in a linear IV model. Let λ0 denote the hypothesized value of

the (k, i)-th IRF coefficient. Define:

b0 ≡ (1, −λ0)′ a0 ≡ (λ0, 1)′,

and consider the following rotation of the statistic γ̂SVAR-IV:

(
ST

TT

)
≡
(

B
−1/2
0 0M×M

0M×M A
−1/2
0

)(
b′

0 ⊗ IM

(a′

0 ⊗ IM ) Σ−1

)
√

T γ̂SVAR-IV,

where B0 ≡ (b′

0 ⊗ IM ) Σ (b0 ⊗ IM ) and A0 ≡ (a′

0 ⊗ IM ) Σ−1 (a0 ⊗ IM ) . The rotation defining

the statistics Sn and Tn is common in the linear IV literature, and it is often used to

standardize and orthogonalize the OLS estimators of the reduced-form parameters. The

Lagrange Multiplier statistic is usually defined as:

(T ′

T ST )2/T ′

T TT ,

see for example p. 722 in Andrews, Moreira, and Stock (2006). Define the following SVAR-

IV version of the LM statistic:

(A.6) LMSVAR-IV ≡ (T ′

T A
−1/2
0 B

−1/2
0 ST )2/T ′

T A
−1/2
0 B−1

0 A
−1/2
0 TT .

Under weak instrument asymptotics and our regularity assumptions:

(
ST

TT

)
d→
(

S

T

)
,

where (S′, T ′)′ are independent multivariate normal random vectors, and S is mean zero.

This implies that under weak external instruments LMSVAR-IV
d→ χ2

1.

If the external instruments are strong, the SVAR-IV version of the LM test achieves

the same local power as the Wald test based on the minimum-variance minimum-distance
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estimator for λk,i. To see this, let λT = λ0 + l/
√

T and (α1, α2, . . . , αM )′ 6= 0M×1 then:

(
ST

TT /
√

T

)
d→λT

N2M

((
B

−1/2
0 lπ

A
1/2
0 π

)
,

(
IM 0M×M

0M×M 0M×M

))
, where π ≡




α1Θ0,11

...

αM Θ0,11


 .

This implies that under strong instrument asymptotics and local alternatives:

LMSVAR-IV
d→ N ((π′B−1

0 π)1/2l, 1)2.

Consequently, the local power of an α-level test for the hypothesis λk,i = λ0 based on

LMSVAR-IV has a local power curve given by:

P
(
χ2

1(π′B−1
0 πl2) > χ2

1,1−α

)
.

All we need to show to establish the desired equivalence between local power curves is that

π′B−1
0 π equals 1′

MS∗1M . To establish this result, note that B0 is the asymptotic variance

of the vector:

(1/
√

T )

T∑

t=1

[
(e′

iCk(ÂT )η̂t)Zt − λ0(e′

1η̂t)Zt

]
.

Such vector can be expanded as:




(1/
√

T )
∑T

t=1 e′

iCk(ÂT )η̂tz1,t − λ0e′

1η̂1,tz1,t

...

(1/
√

T )
∑T

t=1 e′

iCk(ÂT )η̂tzM,t − λ0e′

1η̂1,tzM,t


 ,

which is equal to: 


e′

1Γ̂1,T

√
T [λ̂1

k,i − λ0]
...

e′

1Γ̂M,T

√
T [λ̂M

k,i − λ0]


 ,

where Γ̂m,T ≡ (1/T )
∑T

t=1 e′

1η̂tzm,t. This simple algebra shows that

B0 =




e′

1Γ1, 0, . . . , 0

0, e′

1Γ2, . . . , 0
...

... . . .
...

0, 0, . . . , e′

1ΓM




(S∗)−1




e′

1Γ1, 0, . . . , 0

0, e′

1Γ2, . . . , 0
...

... . . .
...

0, 0, . . . , e′

1ΓM




,

where Γm is the probability limit of Γ̂m,T . Since Γm equals αmΘ0,1 under the relevance

and exogeneity assumption and the fact that π ≡ (α1Θ0,11, . . . , αM Θ0,11)′, it follows that:
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π′B−1
0 π is the same as 1′

MS∗1M whenever αm 6= 0 for all m = 1, . . . M .

Once we have found an analogous version of the LM statistic for SVAR-IVs we can define

the SVAR-IV version of the Quasi-Conditional Likelihood Ratio as:

S′

T ST − r(TT ) +
(
(S′

T ST − r(TT ))2 + 4r(TT )LMSVAR-IV

)1/2
,

where r(TT ) ≡ T ′

T A
−1/2
0 B−1

0 A
−1/2
0 TT , and the critical values are computed conditional on

TT .
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A.4. Bootstrap Implementation of the Anderson-Rubin Confidence Set

To implement the confidence interval for λk,i, we relied on typical delta-method approx-

imations. It is well understood that the nonlinearity of the impulse-response functions can

compromise the quality of the delta-method approximation; see for example Kilian (1998),

Sims and Zha (1999), and Benkwitz, Neumann, and Lütekpohl (2000). With this observa-

tion in mind, we now discuss a bootstrap-type approach to implement our confidence inter-

val.

Our suggestion is to use draws from the asymptotic distribution of (vec(ÂT )′, Γ̂′

T )′ to

compute the quantile of a test statistic over a grid of values for λk,i. The bootstrap-type

implementation eliminates the need of closed-form formulae for the Anderson-Rubin confi-

dence set, but it is computationally more expensive (because it requires re-sampling from

the reduced-form parameters and constructing quantiles of a test statistic over a grid of

possible values for the impulse response coefficients).

Description: We have explained that the intuition behind our inference approach is that

the square of the statistic: √
T (e′

iCk(ÂT ) − λe′

1)Γ̂T ,

should be small if λ were the true impulse response coefficient. Since we have assumed that

the distribution of (vec(ÂT )′, Γ̂′

T )′ can be approximated by a normal random vector centered

at (vec(A)′, Γ′)′ with covariance matrix W/T , we suggest the following procedure:

1. Let ÂT and Γ̂T denote the estimators of A and Γ.

2. Generate M i.i.d. draws {vec(A)m, Γm}M
m=i from the model:

(vec(A)′

m, Γ′

m)′ ∼ Nn2p+n

(
(vec(ÂT )′, Γ̂′

T )′ , ŴT /T
)

,

where ŴT is a consistent estimator for W .

3. For each value λg in a grid Λ(G) ≡ {λ1, λ2, . . . , λG} and conditioning on the data

compute:

{
(
√

T (e′

iCk(Am) − λge′

1)Γm −
√

T (e′

iCk(ÂT ) − λge′

1)Γ̂T )
}M

m=1
,

and let q̂α/2 and q̂g,1−α/2 denote its α/2 and 1 − α/2 quantiles. Standard arguments

based on the differentiability of the function

gλ(A, Γ) = e′

iCk(A)Γ − λe′

1Γ,
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with respect to (A, Γ) imply that the quantiles of

√
T
(

gλ(Am, Γm) − gλ(ÂT , Γ̂T )
) ∣∣∣ (ÂT , Γ̂T , ŴT ),

approximate the quantiles of

√
T
(

gλ(ÂT , Γ̂T ) − gλ(A, Γ)
)

=
√

T (e′

iCk(ÂT ) − λge′

i)Γ̂T .

4. The bootstrap-type confidence interval is then given by:

{
λg ∈ Λ(G) | q̂g,α/2 ≤ (

√
T (e′

iCk(ÂT ) − λge′

i)Γ̂T ) ≤ q̂g,1−α/2

}
.

Figure 1 reports 68% and 95% bootstrap Anderson-Rubin confidence intervals for IRFs

and compares them with the delta-method implementation.

Two comments:

i) Step 2 above, which re-samples the values of the SVAR-IV reduced-form parameters,

could be replaced by any other bootstrap procedure, such as the block bootstrap

for proxy SVARs recently suggested by Jentsch and Lunsford (2019). One could use

their block bootstrap procedure to re-sample the data first, and then obtain the

reduced-form parameters for each data realization; instead of implementing step 2.

ii) Step 3 above is the crucial step of our bootstrap-type implementation. The ‘standard’

bootstrap algorithm computes

λm = e′

iCk(Am)
/

e′

iΓm

for each re-sampled value of (Am, Γm). A valid confidence interval under strong in-

struments can be obtained from the quantiles of {λm}M
m=1. We also report such

bootstrap-like confidence interval in our Matlab suite for comparison to standard

delta-method inference. We remark, however, that such procedure is not valid under

weak instrument asymptotics.
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Figure 1

(a) 68% Bootstrap CSAR (b) 95% Bootstrap CSAR
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A.5. Details of the Monte Carlo exercise

We conduct a simple Monte Carlo exercise to analyze the finite-sample coverage of our

confidence set. The data generating process for the SVAR-IV model is parameterized by

the matrix of autoregressive coefficients, the matrix of contemporaneous impulse-response

coefficients, the variance of the structural innovations, and the joint distribution of the

external instrument and target shock.

The population parameters in the Monte Carlo (henceforth, MC) design depend on the

estimators obtained from the oil SVAR in Kilian (2009). We compute the MC coverage of

our confidence interval and also the MC coverage of the standard delta-method confidence

set. The details are as follows:

1. Specification of (A1, A2, . . . , Ap): We use Kilian (2009)’s data to estimate the constant

term and slope coefficients of the model:

Yt = µ + A1Yt−1 + A2Yt−1 + . . . + A24Yt−1 + ηt,

with a sample size of T = 356. We let µ̂T and ÂT denote the least-squares estimators

of the parameters µ and A, and we let Σ̂ denote the estimated covariance matrix of

the reduced-form residuals; which is given by:

Σ̂ ≡ 1

T

T∑

t=1

η̂tη̂
′

t; η̂t = Yt − µ̂T − Â1Yt−1 − . . . − ÂP Yt−1.

2. Specification of the first column of the matrix Θ0 = [Θ0,1, Θ0,2, Θ0,3]: We specify the

matrix Θ0 in three steps. First, we set σ2
1 = σ2

2 = σ2
3 = 1. Second, we specify the first

column, denoted Θ0,1. Third, we specify the elements [Θ0,2, Θ0,3].

(a) We propose a DGP in which Θ0,1 is proportional to e = [1, 1, −1]′. The signs of

this vector are in line with the typical interpretation of an expansionary supply

shock. To guarantee that Θ0,1 is still the first column of a square root of Σ̂ we

set:

Θ̂0,1 = e/
√

e′Σ̂−1e.

This yields the vector [2.8276, 2.8276, −2.8276]′.

(b) Specification of the second and third column of the matrix Θ0 = [Θ0,1, Θ0,2, Θ0,3]:

To specify the remaining columns of the matrix Θ, we exploit the follow-

ing observation. Let D = diag(σ2
1 , σ2

2 , σ2
3). It is straightforward to show that

BDB′ = Σ holds if and only if:

Θ′

0,lΣ
−1Θ0,m = 0, and Θ′

0,mΣ−1Θ0,m = 1/σ2
m, for l, m = 1, 2, 3.
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Thus, we can compute the orthogonal complement of Σ̂−1/2Θ̂0,1 and find an

orthornormal basis [γ̂2, γ̂3] ∈ R3×2 for such space.2 We can then define the

vectors:

Θ̂0,2 ≡ Σ̂1/2γ̂2, Θ̂0,3 ≡ Σ̂1/2γ̂3.

Note that since the columns of [γ̂2, γ̂3] have unit norm it follows that:

Θ̂′

0,jΣ̂−1Θ̂0,j = (Σ̂1/2γ̂j)′Σ̂−1(Σ̂1/2γ̂j) = 1, j = 2, 3.

Moreover, because the elements [γ̂2, γ̂3] are orthogonal then:

Θ̂′

0,2Σ̂−1Θ̂0,3 = (Σ̂1/2γ̂2)′Σ̂−1(Σ̂1/2γ̂3) = 0.

Since [γ̂2, γ̂3] are both in the orthogonal complement of Σ̂−1/2Θ̂0,1 it follows

that:

Θ̂′

0,jΣ̂−1Θ̂0,1 = (Σ̂1/2γ̂j)′Σ̂−1Θ̂0,1 = 0, j = 2, 3.

This means that we can set Θ0 as:

Θ̂ = [Θ̂0,1, Θ̂0,2, Θ̂0,3] ∈ R
3×3,

and, by construction, Θ̂ is guaranteed to be a square-root of Σ̂. This gives the

matrix: 


2.8276 −14.1971 9.7074

2.8276 1.6411 1.7045

−2.8276 2.5595 3.5324




3. Finally, we propose a joint distribution for the structural innovations and the external

instrument. Under the unit variance assumption for the structural shock Γ′

1Σ−1Γ =

α2. Thus, we set

α̂ ≡
√

Γ̂′Σ−1Γ̂, Γ̂ =
1

T

T∑

t=1

ztη̂t.

We introduce an auxiliary variable auxparam, define α̃ ≡ auxparam · α̂ and assume

that the data is generated according to:

2In Matlab, we find the orthogonal complement of Σ̂−1/2B̂1 using null(B̂′

1Σ̂−1/2)
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Yt = µ̂T + Â1Yt−1 + . . . + ÂpYt−p + B̂εt,(A.7)

zt = µ̂z + α̃ ε1,t +

√
V̂ar(zt) − α̃2vt,(A.8)




ε1,t

ε2,t

ε3,t

vt




∼ N4(0, I4), i.i.d.

with a vector of p initial conditions equal to the first p observations of Yt in the data.

Note that the specification for zt in (A.8) corresponds to a simple, linear measurement

error model for the external instrument zt.
3 The parameters of the model for zt are

chosen so that

E[zt] = µ̂z = −0.0182, Var(zt) = V̂ar(zt) = 0.7436, Cov(zt, ǫ1,t) = α̃.

Under this design, auxparam controls the correlation between the external instru-

ment and the target shock. We consider two different values for auxparam: 2.3452

and 4.4441. Each of these values correspond to a concentration parameter of 3.7 and

10.09, respectively.

Figure 2 presents the results of the MC coverage for a sample size of T = 356 and two

different values of the concentration parameter. The comparison is between the CSAR and

its bootstrap version, which complements the results reported in the main body of the

paper. Figure 3 reports the MC coverage for the standard CSAR and CSPlug-in sample size

of T = 1500.

3As we mentioned in the main body of the paper, the validity of our theoretical results
do not require a linear measurement error model for zt. The only restriction we place on
the joint distribution of {zt, εt}T

t=1 are Assumptions 1 and 2. The process is constructed to
guarantee that zt has the same variance as the one estimated from the data.
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Figure 2: Coverage of the nominal 95% CSAR and bootstrap CSAR, T = 356

MC Coverage (1000 MC draws, T=356, C. Parameter=3.7)
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(a) Concentration Parameter = 3.7 (auxparam= 2.3452)

MC Coverage (1000 MC draws, T=356, C. Parameter=10.09)
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(b) Concentration Parameter = 10.09 (auxparam= 4.4441)
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Figure 3: Coverage of the nominal 95% standard CSAR and CSPlug-in, T = 1500

MC Coverage (1000 MC draws, T=1500, C. Parameter=13.39)
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(a) Concentration Parameter = 13.39 (auxparam= 2.3452)

MC Coverage (1000 MC draws, T=1500, C. Parameter=39.14)

0 2 4 6 8 10 12 14 16 18 20

Months after the shock

0.8

0.9

1

M
C

 C
ov

er
ag

e

Cumulative Response of Oil Production

0 2 4 6 8 10 12 14 16 18 20

Months after the shock

0.8

0.9

1

M
C

 C
ov

er
ag

e

Response of Global Real Activity

0 2 4 6 8 10 12 14 16 18 20

Months after the shock

0.8

0.85

0.9

0.95

1

M
C

 C
ov

er
ag

e

Response of the Real Price of Oil

CSAR

CSplug-in  (95%)

(b) Concentration Parameter = 39.14 (auxparam= 4.4441)
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A.6. An overview of r external instruments and r target shocks

A.6.1. Notation and Identification

Let εt denote the vector containing the n structural shocks of the model. As in the main

text, let

ηt ≡ Θ0εt =
n∑

j=1

Θ0,jεj,t,

and let D ≡ E(εtε
′

t) be a diagonal matrix. We are interested in the impulse responses of Yt+k

to the first r elements of εt, denoted by ε1:r,t = (ε1,t, ε2,t, ..., εr,t)
′. As shown in equation

(1.6) in the main text, these impulse responses are a linear function of the first r columns

of Θ0, which we denote by Θ0,1:r. In this subsection we discuss identification of Θ0,1:r and

D1:r,1:r = E(ε1:r,tε
′

1:r,t) using a r × 1 vector of external instruments zt. The Rr-valued ran-

dom vector zt satisfies the natural extension of Assumption 1:

Assumption 1*:

1. E [ε1:r,tz
′

t] = Φ, where Φ ∈ Rr×r has full rank (relevance)

2. E [εj,tz
′

t] = 0 for j > r (exogeneity).

Under these assumptions:

(A.9) Γ ≡ E(ηtz
′

t) = Θ0,1:rΦ.

The identification problem involves determining the value of (Θ0,1:r, D1:r,1:r) from the second

moments of (ηt, zt).

As a prelude to solving this problem, suppose for a moment that the random vector

at = Θ0,1:rε1:r,t

was observed. In this case, the covariance matrix of at partially identifies the model’s pa-

rameters by the equation

(A.10) Σaa ≡ Θ0,1:rD1:r,1:rΘ0,1:r.

This means (Θ0,1:r, D1:r,1:r) could be determined from Σaa after imposing r(r + 1)/2 addi-

tional a priori restrictions on (Θ0,1+r, D1:r,1:r). This is the usual identification problem in

structural vector autoregressions, but now involving only r shocks instead of the original n

shocks. As an example, when r = 1, only one additional restriction is required, and in the
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main text this was the unit-effect normalization Θ0,11 = 1. When r > 1, the standard ’Wold’

(or Cholesky) restriction is that Θ0,1:r is lower triangular, the unit-effect normalization could

be used to impose unit coefficients on the diagonal, and together these yield the required

r(r + 1)/2 restrictions. Other restrictions could be used instead; for example, a long-run

Wold causal ordering, or, as we discuss in detail in an example below, the assumptions used

in Mertens and Ravn (2013).

With this prelude, the identification problem for (Θ0,1:r, D1:r,1:r) becomes the problem of

determining Σaa from the second moments of (ηt, zt). A direct calculation yields4

(A.11) Σaa = Γ(Γ′Σ−1
ηη Γ)−1Γ′.

An intuitive derivation of this result can be given using linear projection arguments. Let

P roj(Y |X) = ΣY XΣ−1
XXX denote the projection of the random vector Y onto the random

vector X , then

P roj(zt|ηt) = P (zt|εt) = P (zt|ε1:r,t) = Φ′D−1
1:r,1:rε1:r,t

where the first equality follows from εt = Θ−1
0 ηt and the final two equalities follow from

Assumption 1*. This means that, by our assumptions, the best linear predictor of the in-

strument in terms of the structural shocks of interest is exactly the linear combination

that entangles the impulse response coefficients. Thus the linear combination at can be

re-expressed as the best linear predictor of the residuals ηt in terms of P roj(zt|ηt):

at = Θ0,1:rε1:r,t

= P roj(ηt|ε1:r,t)

= P roj(ηt|Φ′D−1
1:r,1:rε1:r,t)

= P roj(ηt|P roj(zt|ηt))

where the third equality follows from the non-singularity of Φ (Assumption 1*). A direct

4Since η ≡ Θ0εt, then Σ−1
ηη = (Θ′

0)−1D−1(Θ0)−1. Let sr denote the matrix that collects
the first r columns of the identity matrix of dimension r × r. Since Γ = Θ0,1:rΦ = Θ0srΦ,
then

Γ′Σ−1
ηη Γ = (Φ′s′

rΘ0)
(
(Θ′

0)−1D−1(Θ0)−1
)

Θ0srΦ = Φ′D−1
1:r,1:rΦ.

Under the assumption that Φ has full rank, then

Γ(Γ′Σ−1
ηη Γ)−1Γ′ = (Θ0,1:rΦ) (Φ)−1D1:r,1:r(Φ′)−1(Φ′Θ′

0,1:r) = Σaa
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calculation yields the desired result

Σaa = Γ(Γ′Σ−1
ηη Γ)−1Γ′

so that Σaa is identified. Thus, the identification of (Θ0,1:r, D1:r,1:r) follows from the factor-

ization of Γ(Γ′Σ−1
ηη Γ)−1Γ′ = Θ0,1:rD1:r,1:rΘ0,1:r after imposing r(r+1)/2 additional a priori

restrictions so the factorization provides a unique solution.

This calculation highlights the role of zt in the analysis: the covariance of zt and ηt isolates

the linear combinations of ηt associated with ε1:r,t. That is, the instruments reduce the

standard SVAR identification problem from n dimensions (requiring n(n + 1)/2 identifying

restrictions) to r dimensions (requiring only r(r + 1)/2 restrictions).

A.6.2. Weak instrument robust inference for impulse responses

Let ϑ denote the j × 1 vector of (possibly dynamic) impulse responses with respect to

the structural shocks in ε1:r,t. From equation (1.6) in the main text, we can write ϑ =

C(A)vec(Θ0,1:r), where the matrix C(A) of dimension j×nr depends on the relevant horizons

and variables of interest. In this subsection we outline weak-instrument robust methods for

inference about ϑ.

It is useful to review the weak instrument inference strategy discussed in the main text

for r = 1. There, equation (A.9) together with the unit-effect normalization Θ0,11 = 1,

allowed us to solve for the value Φ as a linear function of Γ; in particular, Φ = Γ11, so

that (A.9) becomes Γ − Θ0,1Γ11 = 0. Using this, linear restrictions on Θ0,1, say CΘ0,1 = c,

imply linear restrictions on Γ. And, because Γ̂
a∼ N(Γ, V ) holds regardless of the value of Φ

(that is, regardless of the strength of the instruments), standard Wald tests of these linear

restrictions on Γ provide weak-instrument robust tests of the null hypothesis that CΘ0,1 = c.

This insight generalizes directly to the model with r > 1, with one important caveat:

solving Φ as a linear function of Γ using the equation Γ = Θ0,1:rΦ, requires r2 a priori

restrictions on (Θ0,1:r, Φ). When r = 1, the unit-effect normalization suffices, but when

r > 1 more restrictions are needed.5

The next section discusses an example of these r2 restrictions motivated by the empirical

model studied in Mertens and Ravn (2013). In any event, with these restrictions in hand,

solving for Φ can be shown to yield a linear estimator for the nuisance parameter vec(Φ);

that is, we can show that the additional restrictions imply: vec(Φ) = Bvec(Γ), where B is

a r2 × nr matrix that depends on the r2 a priori restrictions imposed on (Θ0,1:r, Φ). This,

5For example, in some applications these restrictions might impose that the first r rows of
Θ0,1:r are the identity matrix: this yields Φ = Γ1:r,1:r. Or, in another application, Φ might be
restricted to be diagonal (so that each instrument is correlated with a unique element of ε),
and the r diagonal elements of Θ0,1:r restricted to be unity (the unit-effect normalization);
in this case the diagonal elements of Φ are given by the diagonal elements of Γ.
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together with Γ = Θ0,1:rΦ, implies vec(Γ) − (Ir ⊗ Θ0,1:r)(Bvec(Γ)) = 0. It is then possible

to construct a weak-instrument robust confidence interval for Θ0,1:r (inverting a Wald test)

and project the resulting confidence region to conduct inference about ϑ. As in the model

with r = 1, the resulting tests are robust to weak instruments.

As discussed in the last subsection, identification of Θ0,1:r required Assumption 1* to-

gether with r(r + 1)/2 a priori restrictions. In constrast, the weak-instrument robust in-

ference outlined in the preceding paragraph requires more restrictions. In particular, we

show that r2 a priori restrictions suffice. When r > 1, this implies that we will have

r(r − 1)/2 over-identifying restrictions. These over-identifying restrictions are easily tested

under strong-instruments, but weak-instrument robust tests for over-identifying restrictions

are more difficult to construct, and we left this question out for future research.

A.7. An example: two external instruments for two target shocks

This subsection works through a specific example inspired by the empirical model in

Mertens and Ravn (2013). In this example, r = 2, and the goal is to identify [Θ0,1Θ0,2].

We will start by showing how to build a weak-instrument robust confidence set for the full

vector of contemporaneous impulse responses, Θ0,1:2. The test will be based on the S-test

of Stock and Wright (2000). We then focus on the problem of inference about a vector of

dynamic impulse responses, where we focus on the case in which the object of interest is the

response of variable i to the two structural shocks of the model (ε1,t, ε2,t), k periods ahead

in the future.

A.7.1. Identifying restrictions.

As in the discussion above, 2 instruments and r(r + 1)/2 = 3 identifying restrictions suffice

for identification when Φ has full rank. The first identifying restriction we will impose is

(A.12) c′Θ0,1 = 0,

where c is an Rn×1 vector that is allowed to depend on (A, Σ). This type of restriction is

used in Mertens and Ravn (2013).

The other two restrictions are “unit effect normalization” restrictions. In particular, we

require that each of the two shocks have a unit impact effect of Y1,t:

(A.13) e′

1[Θ0,1, Θ0,2] = [1, 1].
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To verify that these these assumptions identify Θ0,1:2, note that under Assumption 1*

(A.14) [e1, c]′Γ =

(
1 1

0 c′Θ0,2

)
Φ.

Φ has full rank. If we assume further that c′Θ0,2 6= 0 then the left hand side of equation

(A.14) has also full rank.6 Consequently,

(A.16) [Θ0,1, Θ0,2] = ΓΦ−1 = Γ([e1, c]′Γ)−1

(
1 1

0 c′Θ0,2.

)
.

This implies that Θ0,1 is identified as

(A.17) Θ0,1 = Γ([e1, c]′Γ)−1(1, 0)′.

Next, since Θ0 is also assumed to be invertible, then Θ0,2 satisfies the restriction Θ′

0,1Σ−1Θ0,2 =

0. Using an analogous argument to the one used to get an expression for Θ0,1 we get

(A.18) Θ0,2 = Γ([e1, Σ−1Θ0,1]′Γ)−1(1, 0)′.

These identification results have been used elsewhere in the literature; for example in the

work of Mertens and Ravn (2013). The results we presented in this section simplify some of

their algebra, and we present them here for the sake of exposition.

The identification results also imply that strong-identification inference (derived under the

assumption that Φ has full rank and that c′Θ0,2 6= 0) is straightforward under the following

extension of Assumption 2:

Assumption 2∗:

(A.19)
√

T




vec(ÂT − A)

vec(Γ̂T − ΓT )

vech(Σ̂T − Σ)


 d→




ζ

ξ

φ


 ∼ N (0, W )

6Crucially, in order to distinguish the structural shocks we also require that

(A.15) c′Θ0,2 6= 0.

This means that the zero restriction is binding for the response of the first structural shock,
but not for the second. Intuitively, this is necessary to be able to distinguish the responses
to the two structural shocks.
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A.7.2. S-test for contemporaneous impulse responses

Throughout this section, and for simplicity in the exposition, we assume that c is a

deterministic vector (this happens, for example, when the zero restrictions are imposed on

the contemporaneous impulse responses).

Consider the null hypothesis

H0 : [Θ0,1, Θ0,2] = [Θ∗

0,1, Θ∗

0,2]

The null hypothesis above restricts all of the contemporaneous impulse responses to the

two structural shocks of interest. This also imposes 2n restrictions, which is larger than r2

as long as n > 2. It is therefore possible to construct a linear estimator for the nuisance

parameter Φ. Our off-the-shelf suggestion is based on the S -test of Stock and Wright (2000).

Under the null hypothesis, we can use equation (A.14) to estimate Φ using the linear

estimator:

Φ̂0 ≡
(

1 1

0 c′Θ∗

0,2

)−1

[e1, c]′Γ̂,

This estimator belongs to the general class we discussed in Section A.6.2, since standard

properties of the vec operator imply vec(Φ̂0) is a linear combination of vec(Γ̂). Assump-

tion 2∗ readily implies that Φ̂0 is consistent and asymptotically normal regardless of the

identification strength. The S-test uses the statistic

(A.20) Ψ(Θ∗

0,1, Θ∗

0,2) ≡
√

Tvec
(

Γ̂ − [Θ∗

0,1, Θ∗

0,2]Φ̂0

)
.

Assumption 1∗ and 2∗ imply that under the null hypothesis

√
Tvec

(
Γ̂ − [Θ∗

0,1, Θ∗

0,2]Φ̂0

)

equals

√
T vec


Γ̂ − [Θ∗

0,1, Θ∗

0,2]

(
1 1

0 c′Θ∗

0,2

)−1

[e1, c]′Γ̂


 ,

=
√

T vec


(Γ̂ − Γ) − [Θ∗

0,1, Θ∗

0,2]

(
1 1

0 c′Θ∗

0,2

)−1

[e1, c]′(Γ̂ − Γ)


 ,

where the last line uses the fact that under the null

Γ = [Θ∗

0,1, Θ∗

0,2]Φ0, and Φ0 =

(
1 1

0 c′Θ∗

0,2

)−1

[e1, c]′Γ.
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Therefore, under Assumptions 1∗-2∗ and the null hypothesis:

(A.21) Ψ(Θ∗

0,1, Θ∗

0,2)
d→ N2n(0, M0),

where algebra provides a closed-form expression for M0.7

The (1 − α)100% S-test for the null hypothesis H0 : [Θ0,1, Θ0,2] = [Θ∗

0,1, Θ∗

0,2] can then

be defined as the test that rejects whenever

(A.22) S(Θ∗

0,1, Θ∗

0,2) ≡ Ψ(Θ∗

0,1, Θ∗

0,2)′M̂−1
0 Ψ(Θ∗

0,1, Θ∗

0,2) > χ2
2n,1−α,

where χ2
2n,1−α denotes the 1 − α upper quantiles of a χ2 random variable with 2n degrees

of freedom (n is the dimension of the SVAR). The algebra above (in particular, equation

A.21) shows that S-test is a valid test for H0 : [Θ0,1, Θ0,2] = [Θ∗

0,1, Θ∗

0,2], regardless of the

rank of Φ.

A.7.3. S-region for dynamic impulse responses

The S-region, defined as the collection of all values of [Θ0,1, Θ0,2] that cannot be re-

jected by the S-test, provides a weak-instrument robust confidence set for the full vector of

contemporaneous impulse responses.

In this subsection, we show how to combine the Projection and Bonferroni methods to

construct a confidence region for dynamic impulse responses.

The k-period ahead response of variable i to a shock in ε1,t is defined as

λk,i,1 ≡ e′

iCk(A)Θ0,1

This parameter depends not only on Θ0,1 but also on the autoregressive coefficient, A. If

A were known, a standard application of the projection method would yield a valid (but

conservative) confidence set for the impulse response coefficient. We can account for the

uncertainty in A by further relying on Bonferroni’s method, in addition to the Projection

method.

Let CS(Θ0,1, 1−β) be a (1−β)100% confidence region for Θ0,1 (for example, the projection

of the S-region obtained by inverting the S-test in A.22) and let CS(A, 1−η) be a (1−η)100%

confidence region for the parameter A (obtained, for example, using a typical Wald ellipse).

7In particular, the expression is

(
I2 ⊗

(
In − [Θ∗

0,1, Θ∗

0,1]

(
1 1
0 c′Θ∗

0,2

)−1

[e1, c]′

))
W

(
In − [Θ∗

0,1, Θ∗

0,1]

(
1 1
0 c′Θ∗

0,2

)−1

[e1, c]′

)′

.
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Consider the confidence region CS(λ, β, η) for λk,i,1 defined by

(A.23) {λ ∈ R | λ = e′

iCk(A)Θ0,1 for Θ0,1 ∈ CS(Θ0,1, 1 − β), A ∈ CS(A, 1 − η)}.

Let λ0 = e′

iCk(A0)Θ0,1 denote the true value of λk,i,1. Then,

P(λ0 ∈ CS(λ, β, η)) ≥ P(A0 ∈ CS(A, 1 − η) and Θ0,1 ∈ CS(Θ0,1, 1 − β)),

= 1 − P (A0 /∈ CS(A, 1 − η) or Θ0,1 /∈ CS(Θ0,1, 1 − β)),

≥ 1 − P (A0 /∈ CS(A, 1 − η)) − P (Θ0,1 /∈ CS(Θ0,1, 1 − β)),

≥ 1 − (η + β).

Thus, if η + β ≤ α the confidence set in (A.23) provides a valid (but conservative)

confidence interval for λk,i,1. This shows that a relative off-the-shelf application of the results

in Stock and Wright (2000) allows us to conduct valid (but conservative) weak-identification

robust inference for dynamic impulse responses, as long as we maintain the assumption that

c′Θ0,2 is bounded away from zero.

A.7.4. Confidence Sets for the dynamic response of one variable to both structural shocks

We have shown that the S -test can be used to construct a confidence region for the

full vector of contemporaneous impulse responses of interest (Θ0,1 and Θ0,2). We have also

shown that we can combine Projection/Bonferroni adjustments to construct a valid (but

conservative) confidence region for dynamic impulse responses.

In this section we argue that we can construct a confidence region for the dynamic re-

sponses of a particular variable to both shocks by inverting a test for the following null

hypothesis

H0 : λk,i,1 = a0, λk,i,2 = b0, c′Θ0,2 = c0.

Note that instead of postulating a null value for the parameters [Θ0,1, Θ0,2] we only postulate

a value for the three scalars: the dynamic response of a particular variable at a particular

horizon, and the value of c′Θ0.2). An important remark is that we use the hypothesized

value c0 in order to have an estimator of Φ that is robust to the identification strength.

Namely:

(A.24) Φ̂c0
≡
(

1 1

0 c0

)−1

[e1, c]′Γ̂.
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We can then suggest a test for the null hypothesis using the statistic

(A.25) QT (a0, b0, c0) ≡
√

Tvec
(

e′

iCk(Â)Γ̂ − [a0, b0]Φ̂c0

)
.

The expression above can be viewed as a natural extension of the statistic we used to

construct the Anderson-Rubin test in the case with only one structural shock. The key

difference is that in a model with two instruments and two shocks we also need to postulate

a value for c′Θ0,2. As we mentioned before, this value is used to construct an estimator of the

nuisance parameter Φ whose performance does not depend on the identification strength.

Assumptions 1∗ and 2∗ imply that under the null hypothesis

(A.26) QT (a0, b0, c0)
d→ N2(0, V0),

where V0 can be readily obtained by a straightforward application of the δ-method. Thus,

a valid α-level test for the null hypothesis (regardless of the rank of Φ) rejects whenever

(A.27) QT (a0, b0, c0)′V −1
0 QT (a0, b0, c0) > χ2

2,1−α.

Interestingly, when Φ has full rank, this test has the same local power as the test for

H0 : λi,k,1 = a0, λi,k,2 = b0 based on the plug-in estimators of the dynamic impulse responses

(assuming c′Θ0,2 is known).

Our approach will provide weak-instrument robust inference as long as c′Θ0,2 is bounded

away from zero. Thus, our approach makes sense as long as the researcher’s main concern is

the strength of the correlation between the instruments and the target shocks, and not the

validity of the additional zero restriction imposed.
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A.8. Marginal Tax Rates and GDP

In this section we use our inference tools to revisit the question of whether real economic

activity in the United States (measured by the Gross Domestic Product, henceforth GDP)

responds to cuts in marginal tax rates. This question received renewed attention in 2017-

2018, during the discussion of the costs and benefits of the 2017 tax law (initially referred to

as Tax Cuts and Jobs Acts). This tax reform implied, among its provisions, a 2.3 percentage

point reduction in average marginal tax rates; see Barro and Furman (2018) p. 298.

We base our analysis on the recent work of Mertens and Montiel Olea (2018), which use

the SVAR-IV framework outlined in this paper—along with the strong-instrument inferential

methods herein suggested—to study the effect of exogenous changes in marginal tax rates

over different macroeconomic variables. It is worth mentioning that even though the main

focus of their work is the estimation of the short-run elasticity of taxable income, some of

the references to their results—for example, the Economic Report of the President of the

Council of Economic Advisers (2018)—emphasized their findings concerning GDP.

Consider the following VAR representation with two lags for the log of real GDP and

average marginal tax rates




− ln(1 − AMT Rt)

ln(GDPt)

Xt


 = µ + A(L)︸ ︷︷ ︸

p=2




− ln(1 − AMT Rt−1)

ln(incomet−1)

Xt−1


+ Θ0




εAMT R
t

εincome
t

εx
t


 ,

where Xt−1 is a vector of control variables of dimension n − 2 (so that there are a total

of n variables in the VAR) and the matrix Θ0 need not be invertible (εx
t can have larger

dimension than Xt−1).8 The data are yearly, and available from 1948 to 2018, but we decide

to focus on 1950-2008.9 The construction of the external instrument is detailed in Section

IV.C of Mertens and Montiel Olea (2018).10 The first-stage statistic ξ1 described in Section

4.2 of the main body of the paper (and using Newey and West (1987) standard errors with

8The controls we use are the same as in Mertens and Montiel Olea (2018), and include the
unemployment rate, the log real stock market index, inflation and the Federal funds rate,
log real government spending per tax unit (purchases and net transfers) and the change in
log real federal government debt per tax unit.

9This is a common approach in practice, and avoids the inclusion of the major 1948 tax
reform and the recession dummy for 1949.

10In a nutshell, the instrument is based on the Romer and Romer (2010) classification
of postwar legislated tax changes but excludes changes that i) respond to current/planned
changes in government spending (e.g., increase in payroll taxes due to Medicare 1965);
ii) respond to current/expected economic conditions (e.g., tax cut in Tax Reduction act
of 1975); iii) are legislated at least 1 year before becoming effective. There are fifteen tax
reforms that satisfy such criteria, but only eight of them include direct changes to the income
rate tax schedules (1948, 1964, 1978, 1981, 1986, 1990, 1993, and 2003). The external IV
consists of the eight scored changes in the average marginal tax rate.
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8 lags) is 7.0832. The usual HAC first-stage statistic is 34.0610.

We construct confidence intervals for the dynamic responses to innovations in εAMT R
t that

decrease − ln(1 − AMT R) in 1% (this is the unit effect normalization).

Figure 4 reports 95% (strong-instrument) bootstrap and delta-method confidence intervals

for the responses of income and GDP. The 1-period ahead response of GDP is estimated to

be around .7956%. and is significant under both bootstrap and the delta-method inference.

The 1-period ahead response of income (which is typically used as an estimator of the short-

run elasticity of taxable income) is 1.3311. This elasticity parameter is significantly different

from zero under both the delta method and the bootstrap.

Figure 5 reports the bootstrap and delta-method versions of the weak-instrument robust

confidence interval suggested in this paper. The bootstrap confidence regions are represented

by circles, and each of the circles represent one particular null hypothesis that we were not

able to reject using the procedure described in A.4. The gray area represents the Anderson-

Rubin confidence region computed using the delta method. This area is also obtained via

test inversion, but the closed-form formulae discussed in Section 4.1 implies there is no need

to conduct grid search.

The figures show that the bootstrap version of the Anderson-Rubin confidence set cannot

reject the null hypothesis (at the 5% level) that the effect of cuts in marginal tax rates

over GDP is zero. This stands in contrast to the results obtained using inference based on

the assumption of strong instruments. The figure also shows that the short-run elasticity of

taxable income remains statistically significant. The confidence interval for this parameter

is wider than its strong-instrument counterpart, but most of the increase in uncertainty

involves potentially higher values.
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