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Abstract

Long-run forecasts of economic variables play an important role in policy, planning,

and portfolio decisions. We consider forecasts of the long-horizon average of a scalar

variable, typically the growth rate of an economic variable. The main contribution is

the construction of prediction sets with asymptotic coverage over a wide range of data

generating processes, allowing for stochastically trending mean growth, slow mean

reversion and other types of long-run dependencies. We illustrate the method by

computing prediction sets for 10 to 75 year average growth rates of U.S. real per-capita

GDP and consumption, productivity, price level, stock prices and population.

JEL classi�cation: C22, C53, E17

Keywords: prediction interval, low frequency, spectral analysis, least favorable

distribution

�We thank Frank Diebold, Graham Elliott, Bruce Hansen, James Stock, Jonathan Wright, three referees,

and the Editor, Stéphane Bonhomme, for useful comments and advice. Support was provided by the National

Science Foundation through grants SES-0751056 and SES-1226464. Replication �les and a supplementary

appendix is available at http://www.princeton.edu/~mwatson.



1 Introduction

This paper is concerned with quantifying the uncertainty in long-run predictions of economic

variables. Long-run forecasts and the uncertainty surrounding them play an important role

in policy, planning, and portfolio decisions. For example, in the United States, an ongoing

task of the Congressional Budget O¢ ce (CBO) is to forecast productivity and real GDP

growth over a 75-year horizon to help gauge the solvency of the Social Security Trustfund.

Uncertainty surrounding these forecasts is then translated into the probability of trust fund

insolvency.1 In�ation �Caps�and �Floors�are option-like derivatives with payo¤s tied to the

average value of price in�ation over the next decade; their risk-neutral prices are determined

by the probability that the long-run average of future values of in�ation falls above or below

a pre-speci�ed threshold.2 And, there is a large literature in �nance discussing optimal

portfolio allocations for long-run investors and how these portfolios depend on uncertainty

in long-horizon returns.3

Let xt denote a time series, such as the in�ation rate, the growth rate of real GDP or

the return on a portfolio of stocks. Sample data on xt are available for t = 1; :::; T , say

1947-2014. Let xT+1:T+h = h�1
Ph

t=1 xT+t denote the average value of the series between

time periods T + 1 through T + h, say the 32-year horizon 2014-2046. We are interested

in the date T uncertainty about the value of xT+1:T+h, as characterized by prediction sets

that contain xT+1:T+h with a pre-speci�ed probability (such as 90%). This is a long-horizon

problem, since the horizon h is large relative to the number of available observations T (in

the example, r = h=T t 0:5).
We structure the problem so that the coverage probability can be calculated using as-

ymptotic approximations based on a central limit theorem. In particular we suppose that

both T and h are large, and construct the prediction sets as a function of a relatively small

number of weighted averages of the sample values of xt. We apply a central limit theorem to

the variable of interest (xT+1:T+h) and the predictors, and study an asymptotic version of the

prediction problem based on the multivariate normal distribution. Were all the parameters

of this normal distribution known (or consistently estimable), the prediction problem would

be a straightforward application of optimal prediction in the multivariate normal model.

The problem is complicated by unknown parameters that characterize the stochastic

process xt and hence also the covariance matrix of the normal distribution in the large-sample

1See Congressional Budget O¢ ce (2005).
2See Fleckenstein, Longsta¤, and Lustig (2013), Hilsher, Raviv, and Reis (2014) and Kitsul and Wright

(forthcoming), who use market prices on various in�ation-related derivatives to estimate market-based pre-

dictive distributions of in�ation.
3See, for example, Campbell and Viceira (1999), Pastor and Stambaugh (2012), and Siegel (2007).
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problem. We assume that the �rst di¤erences �xt = xt � xt�1 are covariance stationary.
(Recall that xt is a series like the growth rate of real GDP, in�ation, or asset returns, so

this does not rule out stochastic trends in these growth rates.) Since we are interested in a

long-run prediction (xT+1:T+h, for h large relative to T ) the crucial characteristic of xt is its

(pseudo-) spectrum near frequency zero. The relative paucity of sample information about

these low-frequency properties precludes a nonparametric approach. We therefore proceed

by constructing a �exible parametric model for the shape of the spectrum near frequency zero

that nests the fractional, local-to-unity and local-level forms of long run persistence. The

uncertainty about the parameter � of this model in turn becomes an important component

of the uncertainty about xT+1:T+h.

We use both Bayes and frequentist methods to incorporate this uncertainty in our predic-

tion sets. The Bayes procedure is straightforward: given a prior for the parameter �, and the

Gaussianity of the limiting problem, the predictive density for xT+1:T+h follows from Bayes

rule, so that prediction sets are readily computed. While Bayes sets have many desirable

properties, they have the potentially undesirable property of controlling coverage (that is,

the probability that the set includes the future value of xT+1:T+h) only on average for values

of � drawn from the prior. Thus in general, coverage will fall short of the nominal level for

some values of �, and the speci�cs of this undercoverage will depend on the prior used. To

address this limitation we robustify the Bayes prediction sets by enlarging them so that they

have frequentist properties: the resulting sets provide (possibly conservative) coverage for

all values of �. Using ideas borrowed from Müller and Norets (2012), we do this in a way

that minimizes the sets�average expected length.

In economics, arguably the most well-known predictive densities and corresponding pre-

diction sets are the �Rivers of Blood�shown in the Bank of England�s In�ation Report. These

are judgmental prediction sets for in�ation that are computed over a four year horizon by

the members of the Bank�s Monetary Policy Committee. In contrast, we are interested in

prediction sets computed from probability models over long horizons, and the literature on

this topic is relatively sparse. Most of the existing literature on long-horizon forecasting

stresses the di¢ culty of constructing good long-term forecasts under uncertainty about the

long-run properties of the process. Granger and Jeon (2007) provide a mostly verbal account.

Elliott (2006) compares alternative approaches to point forecasts and compares their mean

squared errors. Kemp (1999), Phillips (1998) and Stock (1996, 1997) show that standard

formulas for forecast uncertainty break down in the long-horizon local-to-unity model, but

they do not provide constructive alternatives. In the related problem of estimating long-

run impulse responses Pesavento and Rossi (2006) construct con�dence sets that account

for uncertainty about the local-to-unity parameter. Chapter 8.7 in Beran (1994) discusses
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forecasting of fractionally integrated series, and Doornik and Ooms (2004) use an ARFIMA

model to generate long-run uncertainty bands for future in�ation, but without accounting for

parameter estimation uncertainty. Two strands of literature study long-run forecast uncer-

tainty for time series that we analyze by constructing series-speci�c Bayesian models. Pastor

and Stambaugh (2012) compute predictive variances of long-run forecasts of stock returns

that account for parameter uncertainty. Lee (2011) and Raftery, Li, Sevcíkova, Gerland, and

Heilig (2012) study long-run forecasts of population and fertility rates.

The outline of this paper is as follows. Section 2 formalizes the long-horizon prediction

problem and discusses the low-frequency summaries of the sample data used in the analysis.

This section also introduces two running examples: forecasting the average growth rate of

real per-capita GDP and the average level of consumer price index (CPI) in�ation in the

U.S. over the next 25 years. Section 3 discusses and develops the requisite statistical tools

for constructing the long-horizon prediction sets. Two sets of tools are needed. The �rst is a

central limit theorem and associated covariance matrix that yields a large-sample Gaussian

version of the prediction problem. The second are methods for constructing Bayes and fre-

quentist prediction sets for this limiting problem. The Bayes procedures are standard; the

frequentist procedures are not, and are developed in Section 3.3. Section 4 takes up the

important practical problems of parameterizing the covariance matrix in the limiting prob-

lem (which involves parameterizing the spectrum of xt near frequency 0), choosing a prior

for the Bayes prediction sets and a related weighting function for the frequentist sets (to

obtain a scalar criterion for comparing the e¢ ciency of sets), and choosing the number of

low-frequency averages of the sample data to use (which involves a classic trade-o¤ between

e¢ ciency and robustness). Taken together, Sections 2-4 develop methods for constructing

prediction sets with well-de�ned large-sample optimality properties; these methods are il-

lustrated using the GDP and in�ation running examples throughout these sections. Section

5 uses simulations and pseudo-out-of-sample experiments to evaluate the performance of

these sets in small samples. One focus of this analysis is the e¤ect of level and/or volatility

�breaks�on the prediction sets. Following this extensive background, Section 6 applies these

methods to construct prediction sets spanning up to 75 years for eight U.S. economic time

series: the running examples of real GDP and CPI in�ation, the rates of growth of per-capita

consumption expenditures, total factor and labor productivity, population, stock prices, and

an alternative measure of price in�ation. Section 7 concludes.
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2 The Prediction Problem

Let xt be the economic variable of interest which is observed for t = 1; : : : ; T . The objective

is to construct a prediction set, denoted by A, of the average value of xt from periods T + 1

to T + h,

xT+1:T+h = h
�1

hX
t=1

xT+t (1)

with the property that P (xT+1:T+h 2 A) = 1 � �, where � is a pre-speci�ed constant. The
prediction set A is constructed using the sample data for xt, so that A = A

�
fxtgTt=1

�
.4 We

restrict A in two ways. First, we allow A to depend on the sample data only through a small

number low-frequency weighted averages of the sample data, and second, we restrict A to

be scale and location equivariant. We discuss each of these restrictions in turn.

Cosine transformations of the sample data. Because h is large, the prediction sets involve

long-run uncertainty about xt. It is therefore useful to transform the sample data into

weighted averages that capture variability at di¤erent frequencies �we will be interested

in the weighted averages corresponding to low frequencies. Thus, consider the weighted

averages (x1:T ; XT ), with x1:T = T�1
PT

t=1 xt, XT = (XT (1); : : : ; XT (T � 1))0, and where
XT (j) is the jth cosine transformation

XT (j) =

Z 1

0

	j(s)xbsT c+1ds = �jTT
�1

TX
t=1

	j

�
t� 1=2
T

�
xt (2)

with 	j(s) =
p
2 cos(j�s) and �jT = (2T=j�) sin(j�=2T ) ! 1. The cosine transforms have

two properties we will exploit. First, they isolate variation in the sample data corresponding

to di¤erent frequencies: x1:T captures 0-frequency variation and XT (j) captures variation at

frequency j�=T . Second, because the 	j weights add to zero, XT (j) is invariant to location

shifts of the sample, a property we use when we construct equivariant prediction sets.

The T � 1 vector (x1:T ; XT ) is a nonsingular transformation of the sample data fxtgTt=1,
but we will construct prediction sets based on a truncated information set that includes only

x1:T and the �rst q cosine transforms, XT;1:q = (XT (1); XT (2); :::; XT (q))
0 and where q is much

smaller than T �1. Thus, the prediction sets we consider are of the form A = A(x1:T ; XT;1:q),
and so rely solely on variability in the data associated with frequencies lower than q�=T .

4Of course, when xt is the �rst di¤erence of another variable yt, so that xt = yt � yt�1, then forecasts of
yT+h can be constructed from forecasts of xT+1:T+h using the identity yT+h = yT + hxT+1:T+h. Moreover,

prediction sets for xT+1:T+h and yT+h are readily converted into prediction sets for monotonic transformation

of these variables. For example, a prediction set for the average growth rate of real GDP (xT+1:T+h) yields

a prediction set for the log-level of real GDP (yT+h) or the level of real GDP (exp(yT+h)).
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We compress the sample information into the q + 1 variables (x1:T ; XT;1:q) for two reasons.

The �rst is tractability: with a focus on this truncated information set, the analysis involves

a small number of variables (the (q + 2) variables (xT+1:T+h; x1:T ; XT;1:q)), and because each

of these variables is a weighted average of fxtgT+ht=1 , a central limit theorem derived in the

next section allows us to study a limiting Gaussian version of the prediction problem that is

much simpler than the original �nite-sample problem. The second motivation for truncating

the information set is robustness: we use the low-frequency information in the sample data

(x1:T and the �rst q elements of XT ) to inform us about a low-frequency, long-run average of

future data, but we do not use high frequency sample information (the last T�1�q elements
of XT ). While high frequency information is informative about low-frequency characteristics

for some stochastic processes (for example, tightly parameterized ARMA processes), this is

generally not the case, and high-frequency sample variation may lead to faulty low-frequency

inference. Müller and Watson (2008, 2013) discuss this robustness issue in detail. In Section

4 below we present numerical calculations that quantify the e¢ ciency-robustness trade-o¤

embodied by the choice of q in the long-run prediction problem.

Invariance. In our applications it is natural to restrict attention to prediction sets that

are invariant to location and scale, so for example, the results will not depend on whether

the data are expressed as growth rates in percentage points at an annual rate or as per-

cent per quarter. Thus, we restrict attention to prediction sets with the property that if

y 2 A(x1:T ; XT;1:q) then m+by 2 A(m+bx1:T ; bXT;1:q) for any constants m and b 6= 0 (where
the transformation of XT;1:q does not depend on m because, as mentioned above, XT;1:q is lo-

cation invariant). Invariance allows us to restrict attention to prediction sets that depend on

functions of the sample data that are scale and location invariant; in particular we can limit

attention to constructing prediction sets for Y sT given X
s
T;1:q, where Y

s
T = YT=

q
X 0
T;1:qXT;1:q

with

YT = xT+1:T+h � x1:T (3)

and Xs
T;1:q = XT;1:q=

q
X 0
T;1:qXT;1:q.5

Running examples: Two of the economic time series studied in Section 6 are the growth

rate of U.S. real per-capita GDP and the rate of in�ation in the U.S. based on the consumer

price index. We use these series as running examples to illustrate concepts as they are

introduced. Panels (i) in Figure 1 plot the quarterly values of these time series from 1947-

2014, along with the low-frequency components of the time series formed as the projection of

5Setting m = �x1:T =
q
X 0
T;1:qXT;1:q and b = 1=

q
X 0
T;1:qXT;1:q implies that for any invariant set A,

y 2 A(x1:T ; XT;1:q) if and only if (y � x1:T )=
q
X 0
T;1:qXT;1:q 2 A(0; XT;1:q=

q
X 0
T;1:qXT;1:q), and thus also

xT+1:T+h 2 A(x1:T ; XT;1:q) if and only if Y sT 2 A(0; Xs
T;1:q).
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the series onto cos[(t�1=2)�j=T ] for j = 0; :::; 12. (The value q = 12 is used in the empirical
analysis in Section 6 for reasons discussed below). The coe¢ cients in the projection are the

cosine transformations, XT;1:q, and their standardized values, Xs
T;1:q are plotted in panels (ii).

These low-frequency components of the data are the summaries of the sample data we use to

construct long-horizon prediction sets. Looking at panels (i), in�ation exhibits much more

low-frequency variation than GDP growth rates over the sample period; this is manifested in

panels (ii) by the relatively larger magnitude of in�ation�s �rst few cosine transformations,

capturing pronounced low-frequency movements. N

3 Statistical Preliminaries

The last section laid out the �nite-sample prediction problem. In this section we review and

develop the statistical theory that will guide our approach to constructing prediction sets.

We divide the section into three subsections. The �rst provides a central limit theorem that

characterizes the large-sample behavior of the weighted averages (XT;1:q; YT ), and provides

a characterization of the limiting covariance matrix based on the properties of the (pseudo-)

spectrum of xt near frequency zero. The second subsection illustrates this framework in

the fractional I(d) model and reports prediction sets for known d and Bayes prediction sets

using a prior for d. The �nal subsection discusses the generic problem of robustifying Bayes

prediction sets to obtain sets with frequentist coverage uniformly over the parameter space.

3.1 Large-Sample Approximations

To derive the asymptotic behavior of (XT;1:q; YT ), note that each element can be written as

a weighted average of xt, t = 1; : : : ; T + h. Thus, let g : [0; 1 + r] 7! R denote a generic
weighting function, where r = limT!1(h=T ) > 0, and consider

�T = T
1��
Z 1+r

0

g(s)xbsT c+1ds (4)

for a suitably chosen constant �: In our context, the elements of XT;1:q are cosine transfor-

mations of the in-sample values of xt (cf. (2)), so that g(s) =
p
2 cos(j�s) for 0 � s � 1

and g(s) = 0 for s > 1; YT de�ned in (3) is the di¤erence between the out-of-sample and in-

sample average values of xt, so that g(s) = �1 for 0 � s � 1 and g(s) = r�1 for 1 < s � 1+r.
These weights sum to zero, so that the (unconditional) expectation of xt plays no role in the

study of �T .

In Appendix 8.1 we provide a central limit theorem for �T under a set of primitive

conditions about the stochastic process describing xt and these weighting functions. We
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will not list the technical conditions in the text, but rather give a brief overview of the key

conditions before stating the limiting result and discussing the form of the limiting covariance

matrix. In particular, the analysis is carried out under the assumption that �xt = �xT;t

is a double array process with moving average representation �xT;t = cT (L)"t, where "t is

a possibly conditionally heteroskedastic martingale di¤erence sequence with more than 2

unconditional moments, which allows for some forms of short memory stochastic volatility.6

The moving average coe¢ cients in cT (L) are square summable for each T , so that�xT;t has a

spectrum, denoted by FT (�). The motivation for allowing cT (L) and FT to depend on T is to

capture many forms of persistence, as stemming from an autoregressive root local-to-unity,

�T = 1� c=T , for instance.
The main regularity condition of the central limit theorem concerns the behavior of the

(pseudo-) spectrum of xT;t, RT (�) = FT (�)=j1 � e�i�j2, for frequencies close to zero. (In
general, RT is only a pseudo spectrum, since

R �
�� RT (�)d� might not exist; for instance, it

doesn�t if �xT;t is white noise, so that xT;t is a random walk). In particular, we assume that

there exists a function S : R 7! R such that for all �xed K > 0,

lim
T!1

Z K

0

jT 1�2�RT (
!

T
)� S(!)jd! ! 0 (5)

where S is such that
R1
0
!2S(!)d! <1. Intuitively, S describes the limiting behavior of RT

close to frequency zero, and we correspondingly denote it as the �local-to-zero�spectrum.

Under these and additional technical assumptions, Theorem 1 in the appendix shows

that �T has a limiting normal distribution,
7 and as an implication

T 1��

"
XT;1:q

YT

#
)
"
X

Y

#
� N (0;�) � N

 
0;

 
�XX �XY

�Y X �Y Y

!!
(6)

withX = (X1; : : : ; Xq)
0 (we omit the dependence ofX on q to ease notation). The asymptotic

covariance matrix � is a function of the local-to-zero spectrum S, as discussed further below.

The limiting density of the invariants Xs
T;1:q = XT;1:q=

q
X 0
T;1:qXT;1:q and Y sT =

6The restriction E[�xt] = 0 rules out a deterministic trend in xt. This restriction is plausible in our

empirical analysis in which xt denotes growth rates of real variables like per capita GDP, in�ation rates, and

asset returns.
7As in any central limit theorem, the conditions underlying Theorem 1 imply that no single shock has

a substantial impact on the overall variability of �T . This assumption might be violated by rare but

catastrophic events stressed in the work of Rietz (1988) and Barro (2006), for example. Note, however,

that such events would need to substantially impact the average �xT+1:T+h over a long horizon to invalidate

a normal approximation.
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YT=
q
X 0
T;1:qXT;1:q follows directly from (6) and the continuous mapping theorem,"

Xs
T;1:q

Y sT

#
)
"
Xs

Y s

#
=

"
X=
p
X 0X

Y=
p
X 0X

#
: (7)

Note that as a consequence of the imposed scale invariance, the convergence (7) holds irre-

spective of the scaling factor � in (4), and the distribution of (Xs; Y s) does not depend on

the scale of �. Explicit expressions for the densities fXs and f(Xs;Y s) of Xs and (Xs; Y s) as

a functions of �XX and � are provided in Appendix 8.2.

With � known, it is straightforward to compute prediction sets of Y s given Xs = xs: A

calculation shows that the distribution of Y s conditional on Xs = xs satis�es (see Appendix

8.2)
Y s � �Y X��1XXxsq

�Y Y � �Y X��1XX�XY
q
xs0��1XXx

s=q
� Student-tq (8)

so that prediction sets for Y s of a given level 1 � � are readily computed using Student-t
quantiles. These sets in turn imply asymptotically justi�ed prediction sets for Y sT via (7),

and thus also for xT+1:T+h via the de�nition of (Xs
T;1:q; Y

s
T ) and (3).

In particular, when xT;t is I(0) with long-run variance �2 (i.e., the local-to-zero spec-

trum is �at, S(!) = (2�)�1�2), it turns out that �Y X = 0, �XX = �2Iq, �Y Y =

(1 + r�1)�2, and the 1 � � prediction set for Y is given by the interval with endpoints

�tq(1��=2)
p
q(1 + r�1)X 0X, where tq(1��=2) is the (1 � �=2) quantile of the student-t distri-

bution with q degrees of freedom. The asymptotically justi�ed prediction set for xT+1:T+h
is therefore x1:T � tq(1�a=2)(1 + r�1)1=2T�1=2sLR, where s2LR = (T=q)X 0

T;1:qXT;1:q. Note that

this interval becomes smaller for a larger horizon r �a law of large numbers e¤ect reduces

the variability of the average of future values, with the residual uncertainty under r ! 1
stemming from sampling uncertainty about the population mean E[xt].

More generally, the asymptotic covariance matrix � can always be expressed as a function

of the local-to-zero spectrum S and the weighting functions gj that correspond to the jth

element of (X 0; Y )0. In particular, Corollary 1 of Appendix 8.1 implies that

�j;k =

Z 1

0

S(!)wjk(!)d! (9)

where wjk(!) = 2Re[
�R 1+r

0
gj(s)e

�i!sds
��R 1+r

0
gk(s)e

i!sds
�
]. The elements of the covari-

ance matrix of (X 0; Y )0 are thus weighted averages of the local-to-zero spectrum S, with

weights wjk(!) that are functions of Fourier transform of the xt weights gj(s) used to con-

struct X and Y .

9



The weights wjk(!) are plotted in the supplementary appendix; we highlight three fea-

tures here. First, wjk(!) with j 6= k, integrates to zero, which implies that for a �at

local-to-zero spectrum S (corresponding to an I(0) model), � is diagonal, as already noted

above. Second, the weight associated with the predictor Xj is mostly concentrated in the

interval �j � 2�, so the variance of Xj is determined by the value of S in this frequency

band. Third, the weight associated with Y has its mass concentrated near ! = 0; for exam-

ple when r = 1=2, the variance of Y is mostly determined by the shape of S on the interval

! 2 [0; 4�]. The implication of these results is that the conditional variance of Y given X

depends on the local-to-zero spectrum, with the shape of S for, say, ! < 12�, essentially

determining its value, even for large q. In terms of the original time series, frequencies of

j!j < 12� correspond to cycles of periodicity T=6. For instance, with 60 years worth of data
(of any sampling frequency), the shape of the spectrum for frequencies below 10 year cycles

essentially determines the uncertainty of the forecast of mean growth over the next 30 years.

3.2 Prediction Sets in the I(d) Model

A leading example of this analysis is given by the fractional I(d)model, which has a (pseudo-)

spectrum proportional to j�j�2d for � close to zero; this yields the local-to-zero spectrum
S(!) / j!j�2d, and the central limit result from the last subsection is applicable for �1=2 <
d < 3=2. The I(d) model captures a wide range of long-run dependence patterns including

the usual I(0) and I(1) models, but also persistence patterns between and outside these two

extremes. With negative values of d it also allows for long-run anti-persistence (which may

arise from overdi¤erencing), and with d > 1 it allows for processes more persistent than an

I(1) process.8

Running example (continued): Panels (i) of Figure 2 shows the appropriately centered

and scaled Student-t predictive densities from (8) for the average growth rate of U.S. real

per-capita GDP and the average value of CPI-in�ation over the next 25 years for various

values of d in the I(d) model. For real GDP growth rates, predictive densities are shown for

d = �0:4, 0:0, 0:2 and 0:5, and for in�ation the predictive densities are shown for d = 0:0, 0:4,
0:7, and 1:0. For both series, as d increases, the variance of the predictive density increases

because more persistence leads to larger variability in future average growth. The mode

of the I(0) predictive density is given by the in-sample mean (see the discussion following

equation (8)), and the mode shifts to the left for d > 0 re�ecting the persistent e¤ect of the

slow growth and low in�ation experienced at the end of sample. In contrast, the mode of the

d = �0:4 predictive density (shown for real GDP growth rates) is larger than the in-sample
8We discusss the numerical determination of � in the fractional model in the supplementary appendix.
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mean because faster than average growth is required to return the log-level of GDP to its

pre-Great Recession trend growth path.

Evidently, both the length and location of 25-year ahead prediction sets depend critically

on the d. This raises the question: What is the value of d for these series?

Panels (ii) summarize what the sample data say about the value of d. It plots the �low-

frequency� log-likelihood values for d based on Xs
T;1:12 and its large-sample density from

(7), and with the log-likelihood of the I(0) model normalized to zero. The numbers for

real per-capita GDP suggest only limited persistence for this series (values of d > 0:6 yield

a log-likelihood 3 points lower than the I(0) model), but values of d ranging from �0:4
(suggesting some reversion to a linear trend in the log-level of GDP, so that the growth

rate is overdi¤erenced) to 0:2 (slight persistence in the GDP growth rates) all �t the data

reasonably well. In contrast the in�ation data suggest much more persistence: the likelihood

has a maximum at d = 0:65 with corresponding log-likelihood value that is 2:3 points larger

than the I(0) model.

Taken together, the results in panels (i) and (ii) indicate that much of the 25-year-ahead

forecast uncertainty is associated with uncertainty about the degree of persistence in the

stochastic process, which in the I(d) model is governed by the value of the parameter d. N
Bayes Prediction Sets: A natural way to incorporate this parameter uncertainty is to use

a Bayes approach, where the limited sample information is combined with a prior on d. This

is straightforward: With � the prior on d, the Bayes predictive density for Y s conditional

on Xs = xs is given by

f�Y sjXs(ysjxs) =
R
f(Xs;Y s)jd(x

s; ys)d�(d)R
fXsjd(xs)d�(d)

with f(Xs;Y s)jd and fXsjd the densities of (Xs; Y s) and Xs in (7) with the value of � implied

by a local-to-zero spectrum S(!) proportional to j!j�2d.
Bayes prediction sets can be readily computed from the predictive density.

For example the �highest predictive density� (HPD) set for Y s is AHPD(xs) =n
ys : f�Y sjXs(ysjxs) > cv(xs)

o
, where cv(xs) solves

R
AHPD(xs)

f�Y sjXs(ysjxs)dys = 1 � �. This
HPD Bayes set is the smallest length set that satis�es the coverage constraint relative to

f�Y sjXs . Alternative Bayes prediction sets, such as equal-tailed sets, can be used instead.

Thus, let ABayes(xs) denote a generic Bayes prediction set for Y s as a function of xs. Be-

cause Y s = Y=
p
x0x and xs = x=

p
x0x, equivariance implies the extension to generic x via

ABayes(x) = fy : y=
p
x0x 2 ABayes(x=

p
x0x)g.

Running example (continued): Panels (i) of Figure 2 shows the resulting Bayes predictive

densities for �xT :T+h with a uniform prior on d 2 [�0:4; 1:0]. This mixture of Student-t
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densities is no longer necessarily symmetric, as the the underlying Student-t densities don�t

have the same mode. So for instance, for the GDP series, one obtains a left-skewed Bayes

predictive distribution since larger values of d both increase uncertainty and shift the most

likely future values to the left. N

3.3 Frequentist Robusti�cation of Bayes Prediction Sets

As discussed in Section 3.1, the distributions of (X; Y ) and (Xs; Y s) depend on the covariance

matrix �, which in turn depends on the low-frequency spectrum S of xt. In the next section,

we discuss a parameterization of the spectrum that is more general than the I(d) model, so

in general, � = �(�) where � is a parameter vector. In this section we discuss the general

problem of constructing frequentist prediction sets that incorporate uncertainty about the

value of �. We provide additional details in Appendix 8.3.

The (frequentist) coverage probability of a setA, P�(Y 2 A(X)), generally depends on the
value �. A Bayes prediction set has coverage probability of 1��, on average relative to the
prior �, that is

R
P�(Y 2 ABayes(X))d�(�) = 1��, but in general, P�(Y 2 ABayes(X)) < 1��

for some values of �. In this subsection, we "robustify" Bayes sets by enlarging them so they

have frequentist coverage: inf�2� P�(Y 2 A(X)) � 1��. There is no unique way to achieve
this. We focus on sets with smallest weighted expected length.

To be speci�c, let A(X) denote an arbitrary prediction set, and V�(A) = E�[vol(A(X))]

denote its expected length (which depends on �). The goal is to choose A to minimize V�(A)

over the parameter space � for �. In many problems, including the one considered in this

paper, there is no set A that simultaneously minimizes V�(A) for all � 2 � while maintaining
coverage, so there is an inherent trade-o¤ of expected length over di¤erent values of �. Let

W denote a weighting function that makes this trade-o¤ explicit. Consider the following

problem:

min
A

Z
V�(A)dW (�) (10)

subject to

Equivariance: y 2 A(x) implies by 2 A(bx) for all x; y and jbj 6= 0 (11)

Frequentist Coverage: inf
�2�

P�(Y 2 A(X)) � 1� �, and (12)

Bayes Superset: ABayes(x) � A(x) for all x. (13)

Because the objective function depends on the weighting function W , so will the solution,

and we discuss speci�c choices for W in the following section. The constraint (11) imposes

scale invariance �recall that location invariance in the original problem is imposed by the
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choice of Y and X. The coverage constraint that de�nes a (1��)-frequentist prediction set
is given by (12).

The constraint (13) can be motivated in a variety of ways. One motivation is ad hoc

and simply says that the goal is to robustify a Bayes set by enlarging it so it has frequentist

coverage properties. Another focuses on properties of frequentist sets that do not impose

(13). Notably, conditional on particular realizations of X these sets can have unreasonably

small length; indeed they can be empty. In particular, even with � known (i.e., � = f�g),
solving (10) subject to (11) and (12) does not in general yield the known-� prediction set

(8), but rather a prediction set whose coverage of Y is equal to 1� � only on average over
repeated draws of X, but not conditional on the observed X. Müller and Norets (2012)

show that imposing (13) eliminates these arguably unattractive properties. We �nd the

Müller and Norets arguments compelling and therefore enforce the constraint (13) for the

frequentist sets used in the empirical analysis of Section 6. However, for comparison we also

study solutions that do not impose (13) in Section 4 and the supplementary appendix.

The solution to the program (10)-(13) can be found in three steps: the �rst step trans-

forms the problem to impose equivariance (11); the second uses a �least favorable distribu-

tion�for � to simplify the coverage constraint (12); and the third enforces (13). We discuss

these steps in turn.

Equivariance: If A(X) is scale equivariant, then Y 2 A(X) if and only if Y 2p
X 0XA(Xs). Thus, vol(A(X)) =

p
X 0X vol(A(Xs)) and V�(A) = E� [g�(Xs) vol(A(Xs))],

where g�(Xs) = E�[
p
X 0XjXs]. Imposing this restriction, the objective function (10) be-

comes

min
A

Z
E� [g�(X

s) vol(A(Xs))] dW (�), (14)

and the coverage (12) and Bayes superset (13) constraints can be rewritten as

inf
�2�

P�(Y
s 2 A(Xs)) � 1� � (15)

ABayes(xs) � A(xs) for all xs: (16)

Note that (14)-(16) only involve the value of A evaluated at xs, which lives on a smaller

subspace xs0xs = 1 compared to x 2 Rq, but on that subspace, A is unrestricted. The

solution to (14) subject to (15) and (16), A�(xs), then implies the solution A�(x) = fy :
y=
p
x0x 2 A�(x=

p
x0x)g to the original problem (10) subject to (11)-(13).

Frequentist Coverage: For the coverage constraint (15), suppose for a moment that � is

a random variable with distribution �, and consider solving (14) subject to the resulting

single coverage constraint Z
P�(Y

s 2 A(Xs))d�(�) � 1� �. (17)

14



A calculations yields the solution

A�(x
s) =

8>><>>:ys :
Z
f(Y s;Xs)j�(y

s; xs)d�(�)Z
g�(xs)fXsj�(xs)dW (�)

> cv

9>>=>>; (18)

where cv is chosen to satisfy (17) with equality. Of course, while A� satis�es the average

coverage constraint (17), it does not necessarily satisfy the uniform coverage constraint (15)

required for a frequentist prediction set. However, because any set satisfying (15) also satis�es

(17), the value of the objective (14) evaluated at A� provides a lower bound for any set

satisfying (15). Therefore, if a distribution �y can be found under which A�y satis�es (15),

then A�y solves the minimization problem (14) subject to the uniform coverage constraint

in (15). Such a �y is called the �least favorable distribution� for the problem. Elliott,

Müller, and Watson (2015) develop numerical methods for approximating least favorable

distributions in related problems, and we use a variant of those methods here. See the

supplementary appendix for details.

Bayes Superset: The �nal step �incorporating the constraint (16) �is straightforward:

it simply amounts to replacing (18) with the set

AMN(xs) =

8>><>>:ys :
Z
f(Y s;Xs)j�(y

s; xs)d�y(�)Z
g�(xs)fXsj�(xs)dW (�)

> cvMN

9>>=>>; [ ABayes (19)

where (�y; cvMN) are now such that
R
P�(Y

s 2 AMN(Xs))d�y(�) = 1�� and inf�2� P�(Y s 2
AMN(Xs)) � 1� � (cf. Theorem 4 in Müller and Norets (2012)).

4 Parameterizations for Long-Horizon Prediction Sets

Implementation of the prediction sets discussed in the last section requires four ingredients:

(i) a parameterization of S, the local-to-zero spectrum, which yields the covariance matrix

�(�) via (9); (ii) a Bayes prior �(�), which yields the Bayes prediction set ABayes; (iii) a

frequentist weighting function W (�), which quanti�es the trade-o¤ of expected length for

various of � in the objective function (10); and (iv) a choice for q, the number of cosine

weighted averages used for the prediction problem. These are discussed in the following

three subsections.
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4.1 Parameterizing the Low-Frequency Spectrum

The I(d) model introduced in Section 3.2 above is a �exible one-parameter model that

captures a wide range of long-run persistence patterns. Because of its simplicity, �exibility,

and use in other empirical analyses involving long-run behavior of economic time series, we

use the I(d) parameterization for our equal-tailed Bayes prediction sets ABayes.

However, a concern is that the family of I(d) local-to-zero spectra may not be su¢ ciently

�exible to capture all forms of long-run dependencies in economic time series. This suggests

the need for a richer class of local-to-zero spectra, and we construct such a class by considering

two other models that have proven useful for modelling low-frequency characteristics in other

contexts. The �rst is the local-level model which expresses xt as the sum of an I(0) process

and an I(1) process, say xt = e1t + (bT )
�1Pt

s=1 e2s, where fe1tg and fe2tg are mutually
uncorrelated I(0) processes with the same long-run variance. The I(1) component has

relative magnitude 1=b and is usefully thought of as a stochastically varying �local mean�

of the growth rate xt, as arising from some forms of stochastic breaks. In this model,

S(!) / b2+!�2. The second model is the local-to-unity AR(1) model, widely used to model
highly persistent processes. In this model xt = (1�c=T )xt�1+et, where et is an I(0) process,
and a straightforward calculation shows that S(!) / 1=(!2+c2). (Note that (b; c)! (1;1)
and (b; c)! (0; 0) recover the I(0) and I(1) model, respectively). The I(d), local-level and

local-to-unity models are nested in the parameterization

S(!) /
�

1

!2 + c2

�d
+ b2 (20)

where b = c = 0 for the I(d) model, d = 1, and c = 0 for the local-level model, and d = 1,

and b = 0 for the local-to-unity model.9

Figure 3 plots the logarithm of the local-to-zero spectrum of the I(d) model in panel (a),

and of this �bcd-model�in panel (b). The bcd-parameterization allows us to capture a wide

range of monotone shapes for the low frequency (pseudo-) spectrum of xt, including, but

not limited to, the three benchmark models discussed above. In the analysis below we let

� = (b; c; d), so that �(�) is given by (9) with the local-to-zero spectrum S as in (20).

9This is recognized as the local-to-zero spectrum of the process xt = e1t+(bT d)�1zt, where (1��TL)dzt =
e2t with �T = 1� c=T and fe1tg and fe2tg are mutually uncorrelated I(0) processes with the same long-run
variance. It is also recognized as the spectrum of the Whittle-Matérn process from spatial statistics (e.g.,

Lindgren (2013)). Autocovariances for this process are derived in the supplementary appendix.
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4.2 Bayes and Frequentist Weighting Functions

In the empirical analysis in Section 6, we assume that S is characterized by the bcd-model,

with �0:4 � d � 1:0 and b; c � 0.10 As mentioned above, we construct Bayes sets using a
prior that puts all weight on the I(d) model (so that b = c = 0); we use a prior with uniform

weight on values of d 2 [�0:4; 1:0]. The AMN sets robustify these Bayes sets so they have

frequentist coverage for all values of b; c � 0 and d 2 [�0:4; 1:0]. The analysis is usefully
thought of in terms of the various spectral shapes plotted in Figure 3, and the Bayes prior

is seen as putting equal weight on the various shapes in panel (a). Because S may take on

shapes other than those represented by the I(d) models in panel (a), the AMN sets robustify

the Bayes analysis to ensure frequentist coverage over all shapes shown in panel (b).

Construction of the AMN sets requires speci�cation of the weighting function W in (10).

As noted in Section 3.3, the function W determines the trade-o¤ between expected length

for various of �, which is necessary because there is no single prediction set that minimizes

expected length for all �. Our choice of W is guided by the observation that, even with �

known, the minimized values of V�(A) vary greatly over the values of �. For example, in the

I(d) model with known d, prediction sets are much wider when d = 1 (so that xt � I(1))

than when d = 0 (xt � I(0)). To account for these di¤erences we scale V�(A) so that it is
expressed in units of the expected length of the predictions set for known �. Denote this

10For the variables we study (growth rates of real variables, in�ation rates, and asset returns), values of

d > 1:0 are unnecessary, but these values may be appropriate in other applications, and we note that the

results in Section 3.1 hold for the bcd-model with �0:5 < d < 1:5, and b; c � 0.
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scaled version of V�(A) by R�(A) = V�(A)=V
known
� , where V known� is the expected length of

the prediction set for known value of � implied by (8). In terms of R�(A) we use a weighting

function that coincides with the Bayes prior: uniform on d 2 [�0:4; 1:0] and with b = c = 0
(so in terms of V�(A), the weighting function W is proportional to 1=V known� ).11

Table 1 shows coverage rates for 67% and 90% prediction sets for h = rT , with r = 0:5

using q = 12 cosine transforms. (This is the value of q we will use in the empirical analysis,

and is discussed more fully in the next subsection). Table 1 answers two questions. First,

what is the frequentist coverage of the Bayes prediction sets across the range of processes

represented by the spectra in panels (a) and (b) of Figure 3? And second, does the I(d)

model provide su¢ cient �exibility so that the additional parameters b and c are unnecessary

in practice? The table therefore displays coverage rates for three prediction sets: the Bayes

set, ABayes; the set robusti�ed to have correct frequentist coverage over d but with b = c = 0,

denoted AMN
d ; and the set robusti�ed to have correct frequentist coverage over (b; c; d),

AMN
(b;c;d). Coverage rates are shown for three con�gurations of (b; c; d). In the �rst, values of

(b; c; d) are drawn from the prior, so ABayes has correct coverage; in the second, the coverage

probability is minimized over �0:4 � d � 1:0 with b = c = 0, so AMN
d has correct coverage;

and in the third, the coverage probability is also minimized over b; c � 0, so AMN
(b;c;d) has

the correct coverage. The table indicates that ABayes exhibits substantial undercoverage for

some values of d and (b; c; d). It also indicates substantial undercoverage of AMN
d for some

values of (b; c; d). Evidently, controlling coverage over d does not provide adequate coverage

for long-run persistence patterns associated with non-zero values of b and c. Thus, because

11We investigate how this weighting function performs relative to other possible weighting in the sup-

plementary appendix, where we also compute the cost (in terms of expected length) of the Bayes superset

constraint (16).
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some economic variables are arguably well-described by stochastic processes with non-zero

value of b and c, it seems prudent to construct the AMN
(b;c;d) sets.

12

We draw four conclusions from Table 1 and the analysis of W detailed in the supplemen-

tary appendix. First, Bayes sets constructed using a uniform prior on d exhibit substantial

undercoverage for some values of d. Second, robustifying these sets to achieve frequentist

coverage over d is inadequate for some processes with non-zero values of b and c. Third, for

many values of (b; c; d) our benchmark choices of � andW produce sets with expected length

close to the smallest achievable length under the coverage constraint. And �nally, for most

values of (b; c; d) there is little cost in terms of expected length for constructing frequentist

sets that are supersets of Bayes sets (and therefore share some their desirable properties).

4.3 Choice of q

As discussed in Section 2, the choice of q may usefully be thought of as a trade-o¤ between

e¢ ciency and robustness. In principle, the central limit theorem for (X 0
T1:q; YT )

0 discussed

in Section 3.1 holds for any �xed q, at least asymptotically. And the larger q, the smaller

the (average) uncertainty about YT . This suggests that one should pick q large to increase

e¢ ciency of the procedure.

At the same time, one might worry that approximations provided by the central limit

theorem for (X 0
T1:q; YT )

0 become poor for large q. The concern is not only that the high-

dimensional multivariate Gaussianity might fail to be an accurate approximation; more

importantly, any parametric assumption about the shape of the local-to-zero spectrum be-

comes stronger for larger q. In particular, for a given sample size T , the assumption that

the spectrum of xt over the frequencies [�q�=T; q�=T ] is well approximated by the spectrum
of the bcd-model becomes less plausible the larger q. Roughly speaking, we �t a parametric

model to the q observations XT;1:q, so a concern about nontrivial approximation errors arises

for large q, irrespective of the sample size T:

We are thus faced with a classic e¢ ciency and robustness trade-o¤. Recall from the

discussion in Section 3.1, that the object of interest �the variability of long-run forecasts,

as embodied by the conditional variance of Y given X �is a low frequency quantity that

is essentially governed by properties of xt over frequencies [�12�=T; 12�=T ]. Since the

12The approximate least favorable distributions (ALFDs) that underlie the AMN
(b;c;d) sets are plotted in

the supplementary appendix. The ALFD is non-degenerate and has most of its mass on spectra that are

relatively �at for larger !, but with a pronounced pole at zero (these spectra arise, for instance, in the

local-level with moderate b). Intuitively, in the local-level model, the strong mean reversion of the I(0)

component masks the pronounced long-run uncertainty, making it relatively hardest to control coverage.
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predictors XT (j) provide information for frequency j�T , this suggests that the marginal

bene�t of increasing q beyond q = 12 is modest, at least with the spectrum known.

With the spectrum unknown, X with larger q provides additional information about

its scale and its shape. The scale e¤ect is most easily understood in the I(0) model. As

discussed above, the I(0) prediction set is x1:T � tq(1�a=2)(1 + r�1)1=2T�1=2sLR, where s2LR =
(T=q)X 0

T;1:qXT;1:q. The average asymptotic length of this forecast is thus 2T�1=2t
q
(1�a=2)(1 +

r�1)1=2E
p
X 0X=q with X � N (0; �2Iq), which decreases in q, since tq(1�a=2)E

p
X 0X=q is a

decreasing function of q.13 But the bene�t of increasing q is modest: for a 90% interval, the

average length for q 2 f24; 48;1g is only f3:0%; 4:4%; 5:8%g shorter than for q = 12, for

instance.

When the shape of the spectrum is unknown but parametrized, as in the bcd-model,

increasing q beyond 12 provides additional information about the shape of the spectrum over

the crucial frequencies [�12�=T; 12�=T ]. Table A.2 in the supplementary appendix quanti�es
the combined scale and shape e¤ects by reporting the value of the objective

R
V�(A)dW (�)

in the program (10) for q 2 f6; 12; 24; 48g. In this � unknown case, there is an 8% decrease

in average length as q increases from q = 12 to q = 24 and a further reduction of 5% for

q = 48:

In our view, these potential gains are still relatively moderate and do not outweigh

concerns about spectral misspeci�cation that arise with a large choice of q. We therefore

suggest constructing the prediction sets by default with q = 12, but also report results for

di¤erent values of q in Section 6 below.

Running example (continued): Table 2 shows the 67% and 90% ABayes and AMN 25-

year-ahead predictions sets for real GDP growth and in�ation using the benchmark values

of the Bayes prior (�), weighting function (W ), and q = 12. The 67% ABayes and AMN sets

13This is analogous to the wider con�dence intervals that arise from the use of inconsistent HAC estimators

as developed by Kiefer, Vogelsang, and Bunzel (2000) and Kiefer and Vogelsang (2005), for example; see

Müller (2014) for a review.
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coincide, while the 90% AMN sets are somewhat wider than the ABayes sets. For comparison,

the table also shows the prediction sets computed from the I(0) model. These are similar

to the ABayes and AMN sets for GDP (although the 67% I(0) set is shifted to the left for

reasons discussed above), but are much di¤erent for in�ation (where the I(0) are shifted the

right and are much narrower), and where both results are as expected given the predictive

densities and log-likelihood values displayed in Figure 2. Section 6 discusses these empirical

results in more detail. N

5 Finite Sample Experiments

In the last two sections we developed a large-sample framework for constructing Bayes and

frequentist long-run prediction sets that is tailored to models of long-run persistence typically

used for economic time series. This large sample analysis is su¢ ciently general to allow for

in-sample and out-of-sample stochastic breaks in the series, as long as these breaks occur

with su¢ cient frequency that sample averages satisfy the central limit theorem discussed

in Section 3. And the large-sample analysis also accommodates short memory stochastic

shifts in volatility. But does this large-sample analysis provide reliable prediction sets for

the sample sizes and stochastic processes typically encountered in applied economics? This

section addresses this question using two sets of �nite sample experiments. The �rst set of

experiments are Monte Carlo simulations in which we generate data with level and volatility

breaks designed to mimic the kinds of breaks seen in some macroeconomic time series. The

second set of experiments uses rolling samples of daily interest rates and stock returns to

construct pseudo-out-of-sample prediction sets and uses actual values of returns to evaluate

these sets. We discuss these experiments in the following two subsections.

5.1 Monte Carlo Simulations with Breaks in Level and Volatility

Post-sample breaks of arbitrary size can undermine any attempt at prediction, so the meth-

ods proposed here are not immune to arbitrarily de�ned breaks. That said, a more relevant

concern is how well the methods fare in the face of breaks that plausibly have occurred in

the kinds of series to which the methods are to be applied. We address that question in this

subsection. Statistical characterizations of uncertainty require a probability framework, so

we consider breaks that occur probabilistically. And, because of the macroeconomic applica-

tions we carry out in Section 6, the models for these breaks are motivated by the behavior

of important macroeconomic time economic series in the post-WWII United States.
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We consider �ve models. The �rst two involve breaks in the level of xt

xt = �t + ut (21)

where �t denotes the �level�of xt and ut is a zero-mean stochastic process that is independent

of �t. We suppose that �t shifts discretely by an amount �� at irregular time periods
determined by the indicator st, so that

�t = �t�1 + st�t (22)

where st is an i.i.d. Bernoulli process with P (st = 1) = p, and �t = �� with equal probability
independent of st. Because �t follows a martingale, an I(1) process, its sample averages are

characterized by the Gaussian limits in Section 3 (as an I(1) model for �xed p; � > 0 and

a special case of the local-level model in subsection 4.1 for �xed p > 0 and � = O(T�1)).

That said, when p is small, shifts in �t occur infrequently and the �nite sample behavior of

sample averages may be quite di¤erent from their large-sample Gaussian limit.

The second two models involve breaks in volatility. In these models xt has components

that can be represented as �tet, where et is an I(0) process and �t is a volatility process

that evolves as ln(�t) = �t, where �t follows (22). While the central limit used in Section

3 allows for certain forms of heteroskedasticity, it does not allow volatility to evolve as an

I(1) process. Thus, the volatility models in this section involve stochastic processes that are

strictly more general than the processes analyzed above, even in large samples.

The �nal model involves breaks in both the level and volatility of xt. Speci�cally, following

Pesaran, Pettenuzzo, and Timmermann (2006) (also see Chib (1998)), xt follows a di¤erent

AR(1) process (with intercept and possibly a unit root) within each a sequence of regimes.

Regimes end stochastically according the Bernoulli process st above, although with a regime-

speci�c value of p, and new regimes begin with new parameter values for the AR process

and p drawn from a �xed probability distribution.

We choose model parameters to match speci�c characteristics of post-WWII U.S. quar-

terly macroeconomic data. Thus, we chose T to correspond to 65 years, and as above we

consider forecast horizons of h = 0:5T with q = 12 and the prior (�) and weighting function

(W ) described in Section 4. For models 1-4, we choose two values for the break frequency:

plarge = 1=40 (so a break occurs, on average, once every 40 quarters) and psmall = 1=260

(so a break occurs, on average, once during the sample period period). The other parame-

ter values depend on the experiment and are motivated by the behavior of particular U.S.

macroeconomic time series.

Model 1 is motivated by the growth rate of average labor productivity, which visually

appears to be an I(0) process but around a time varying level. (See the supplementary
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appendix Figure B.4.) Labor productivity growth averaged 2:2% per year in the post-WWII

period, but experienced decade-long swings that were roughly one percentage point higher

(early 1960s and late 1990s) or lower (1970s and early 1980s) than the average. The �rst

model therefore takes the form (21) with ut � iidN (0; �2u), where �u is chosen to match
the long-run standard deviation of average labor productivity, and the magnitude of the

breaks in �t was chosen to yield a sensible value for the interquartile range (IQR) of �T ��0.
Speci�cally, for each value of p we chose two values for �; where the �rst, �small, yielded an

IQR of 0:5% and the second, �large, yielded an IQR of 1:5%.

Model 2 is similar to Model 1, but is motivated by the behavior of nominal interest

rates, which follow a pattern consistent with (21) but with ut a highly serially correlated

process. Thus for this experiment, ut was generated by an AR(1) process with coe¢ cient

0:98, Gaussian innovations with variance chosen to match 10-year U.S. Treasury Bonds, and

�small and �large chosen so that the IQR for �T � �0 was 2:0% and 4:0%, respectively.

Model 3 is designed to capture features in the data like the �Great Moderation�: a low-

frequency reduction in the volatility in real U.S. macroeconomic variables. For example, the

standard deviation of growth rates of measures of real aggregate activity (GDP, employment,

etc.) fell rather abruptly by roughly 30% in the early 1980s (e.g., Stock and Watson (2002)).

Thus, in this model the data were generated as xt = �tet, with et � iidN (0; 1) and ln(�t) =
�t generated as described above with �small and �large chosen so that the IQR for ln(�T=�0)

was 0:25% and 0:75%, respectively.

Model 4 is designed to capture the changes in variability and persistence evident in the

U.S. in�ation process. Stock and Watson (2007), Cogley and Sargent (2014), and others

argue that these features can be captured by a local-level-model with stochastic volatility.

Thus, in this model we generate data as xt = e1t +
Pt

s=1 �se2s where e1t and e2t are mutu-

ally independent i.i.d. standard normal random variables, ln(�t) = �t follows the process

described above, and the parameters are chosen to mimic estimates of the time-varying

IMA(1; 1) representation of the model found in U.S. data (e.g., Watson (2014)). Speci�-

cally, �0 is chosen so that MA coe¢ cient is 0:5 in the initial period, and �small and �large were

chosen so that the IQR of the full-sample change in the MA coe¢ cient was 0:5 and 0:8.

Model 5 uses parameter values from Pesaran, Pettenuzzo, and Timmermann (2006) of

their analysis of nominal U.S. Treasury Bill rates from 1947-2002 and therefore captures the

changing volatility and persistence in post-WWII interest rates.14

Results for the various experiments are shown in Table 3, where panel (a) shows results

for the ABayes sets and panel (b) shows results for the AMN sets. The �rst row of each panel

shows results for the model with p = 0 (so that breaks are absent); the other rows show

14The speci�c parameter values are discussed in the supplementary appendix.
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results for psmall, plarge, �small and �large. When p = 0, Models 1 and 3 are i.i.d. processes

for which both ABayes and AMN have coverage rates that exceed their nominal level. This

overcoverage occurs because ABayes provides correct average coverage for I(d) processes that

includes both small and large values of d, and coverage for small d is less than the average

coverage. Similar reasoning explains the overcoverage for AMN , which is designed to achieve

uniform coverage over (b; c; d). And with p = 0, Model 2 is well approximated by the

local-to-unity model with c = 260(1 � 0:98) = 5:2 and Model 4 is well approximated by

an I(1) process; AMN satis�es the coverage constraint in both models, while ABayes severely

undercovers in model 4, achieving the same undercoverage shown previously in Table 1 for

the I(d) model. Moving to the results with p > 0, ABayes has coverage rates notably less than

its nominal level in Models 4 and 5; coverage rates for nominal 67% AMN are approximately

correct for all models, but there is some undercoverage in Models 4 and 5.

In summary, we conclude that the build-in safeguards against non-stationarities in our

approach seem to be mostly adequate for series that are comparable to post-WWII U.S.

macroeconomic series.

5.2 Pseudo-out-of-sample Forecasts

The last section examined the performance of long-run prediction sets using simulated data,

but how well do the sets perform for actual data? Ideally, pseudo-out-of-sample experiments

could be used to answer this question using economic time series from a wide array of

stochastic processes. However, this is di¢ cult in our setting � where we are interested

in long-horizon forecasts for macroeconomic series in developed economies like the U.S. �

because the available macroeconomic data provide little pseudo-out-sample information.

But the salient de�nition of a long-run forecast is that the horizon is long relative to

the sample data. And in contrast to macroeconomic data, there are long time series on

high-frequency �nancial variables. One empirical test of the methods developed here is thus

to see whether forecasts constructed from, say, one year of �nancial data, have reasonable

empirical coverage for forecasts of the average value over the following half year. We carry

out two pseudo-out-of sample experiments.

For the �rst experiment we use value-weighted S&P daily returns from CRSP from 1926-

2014, for a total of 23; 535 returns. The pseudo-out-of-sample exercise uses a rolling sample

of T = 260 observations to construct prediction sets for the average value of rt and r2t over

the next h = 0:5T = 130 periods, where the choice of T matches the sample size used in

the last section and in much of the empirical analysis in Section 6. Rolling through the

sample in this way allows us to compute 23; 145 (or 178 non-overlapping) pseudo-out-sample
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prediction sets. The second experiment is similar, but uses daily observations on nominal

interest rates for 3-month U.S. Treasury Bills from 1954-2014.

Results for 67% and 90% prediction sets are summarized in Table 4. For the return series,

both ABayes and AMN have sample coverage rates slightly larger than their nominal values;

this result is not unexpected given the results in the preceding sections. Squared returns are

signi�cantly more persistent than the level of returns, and are often given as an example of

an economic time series that exhibits I(d) low-frequency behavior (see, for instance, Ding,

Granger, and Engle (1993)). Table 4 indicates that the pseudo-out-of-sample coverage for

ABayes is slightly lower than its nominal level, while the coverage of AMN remains near

its nominal level; again, these results are not unexpected given the simulation results of

the last subsection. Daily values of nominal interest rates are highly persistent and exhibit

shifting volatility; coverage rates for ABayes are substantially below their nominal levels, while

coverage rates for AMN are much closer to the nominal level; these results are broadly in

line with those from Model 5 of the last section. In contrast, for squared returns and the

interest rate series, forecast intervals computed from the I(0) model have coverage far below

nominal level, underlying the necessity to �exibly adjust to various forms of persistence.

5.3 A Final Pseudo-out-of-sample Forecast

The results from the Monte Carlo simulations lead us to conclude that predictions sets based

on asymptotic approximations developed in Sections 3 and parameterizations in Section 4

perform reasonably well in the face of the kinds of breaks that have occurred in the post-

WWII U.S. macroeconomy. This conclusion is buttressed by the results from the pseudo-

out-of-sample forecasts for daily asset returns and interest rates. Of course, this does not

imply that these prediction sets will produce sensible ex-post results in all circumstances,

and we end this section with one example.
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Data on per-capita GDP suggest that the U.S. economy was dramatically more volatile in

the pre-WWII period than after. For example, the standard deviation of annual per-capita

GDP growth rates fell from 7.8% over 1901-1946 to just 2.4% over 1947-2014. Estimates

of long-run standard deviations show a similar reduction (8.5% falling to 2.6%). While the

source of the decline is a matter of debate (see Balke and Gordon (1989), Romer (1989), and

Watson (1994) for discussion), imagine using the data from 1901-46 to construct a prediction

set for average growth over the following 46 years, from 1947-1992. Using the formula below

equation (8), the I(0) prediction set is �x1901:1946 � t121�� � 2 � 46�1=2 � sLR, where sLR is
the estimated long-run standard deviation constructed from the pre-war data with q = 12.

Using �x1901:1946 = 1:86% and sLR = 8:54%, the 67% prediction set is wide: (�0:7%; 4:4%).
Indeed, given the low volatility experienced since 1947, the prediction set is implausibly

wide; had it been constructed using the post-1946 value of sLR = 2:6% it would have been

much narrower, (1:1%; 2:6%). (The realized value of average GDP growth over 1947-1992

was �x1947:1992 = 2:1%.)

What do we make of the 1946 prediction set? Here are two observations. First, there

was considerable uncertainty about the future of U.S. growth following WWII, with many

forecasters predicting a return to the growth patterns experienced during the 1930s and

others predicting rapid growth (see Walton and Rocko¤ (2013)). The 1946 prediction set was

arguably more plausible in 1946 than it is today. Second, while the Monte Carlo simulations

suggested relatively small coverage distortions associated with low-frequency volatility shifts,

these shifts (i) were not as large as the 2.5-fold decrease in volatility in post-WWII GDP and

(ii) were two-sided (volatility increases and decreases), while the single realization for GDP

was necessarily one-sided. A lesson from this example is that in some circumstances it may

be important to explicitly incorporate large and potentially predictable breaks in volatility,

and the required modi�cations are outlined in the paper�s �nal section.

6 Prediction Sets for U.S. Macroeconomic Time Series

In this section we present prediction sets for eight U.S. economic time series for forecast

horizons ranging from 10 to 75 years using sample data through 2014. These series include

the growth rate of per-capita values of real GDP and CPI in�ation used as the running

examples, and also the growth rates of real per-capita consumption expenditures, population,

productivity (both total factor and labor productivity), real stock returns, and prices as

measured by the PCE de�ator. We construct prediction sets using post-WWII quarterly

samples, and for several series, samples that extend into the early 20th century. We also

examine prediction sets for in�ation in Japan as a contrast to results for U.S. in�ation.
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Sources and details of construction of the data are presented in the supplementary Data

Appendix. Supplementary appendix Figures B.1-B.14 provide a variety of summary statistics

for each series including a plot of the series, its low-frequency components, normalized cosine

transformations, low-frequency I(d) log-likelihood values, and 67% and 90% Bayes, MN and

I(0) prediction sets for all horizons between 10 and 75 years. Table 5 reports a summary of

the prediction sets for prediction sets for 10, 25, 50, and 75 year horizons.

We now discuss the results for speci�c series in more detail.

Real per capita GDP. The Bayes prediction sets for per-capita GDP narrow as the forecast

horizon increases, consistent with the reduction in variance of the sample mean for an I(0)

process. The frequentist sets coincide with the Bayes sets for (relatively) short horizons

but include smaller values of average GDP growth rates at longer horizons. Apparently, to

guarantee high coverage uniformly in the bcd-model at long horizons, the frequentist sets

allow for the possibility of more persistence in the GDP process, so that the slow-growth

rates of the past decade are predicted to potentially persist into the future. A comparison of

the prediction sets constructed using the post-WWII data and the long-annual (1901-2014)

series shows that the pre-WWII data tend to widen the predictions sets, presumably because

of the higher (long-run) variance in the pre-WWII data discussed above.

At the 75-year horizon the 80% Bayes prediction interval (not shown) is 1:3 to 2:5,

which roughly coincides with the 80% interval reported by the Congressional Budget O¢ ce

(2005) for 75-year forecasts beginning in 2004. The coincidence of the Bayes/CBO sets

arises despite important di¤erences in the way they are computed. The CBO interval is

based on simulations computed from its long-run model with inputs such as TFP growth

simulated from estimated I(0) models. The CBO interval di¤ers from the Bayes interval in

two important respects. First, because the simulations are carried out using �xed values of

the model parameters, the CBO method ignores the parameter uncertainty in x1:T (as an

estimate of �) and s2LR (as a an estimate of the long-run variance). Ignoring this uncertainty

leads the CBO interval to underestimate uncertainty in the predictions. Second, in the CBO

model, GDP growth is I(0), while the Bayes method allows values of d that di¤er from

d = 0. The log-likelihood values plotted in Figure 2 suggest that GDP growth is plausibly

characterized by a process with some low-frequency anti-persistence, and this translates into

less forecast uncertainty than the CBO�s I(0) model. Thus, the CBO method tends to

understate forecast uncertainty because it ignores parameter uncertainty in the estimated

mean and long-run variance, and to overstate forecast uncertainty because its model does

not capture long-run anti-persistence associated with negative values of d. Apparently these

two errors cancel, so that the CBO prediction interval essentially coincides with the Bayes

set.
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Productivity. The log-likelihood values for d indicate that productivity (TFP and average

labor productivity) may have somewhat greater than I(0) persistence; see Figures B.3 and

B.4. This translates into prediction sets that are wider than I(0) sets, particularly for

frequentist sets at large forecast horizons. Bayes intervals are essentially �at as the forecast

horizon increases (unlike in an I(0) model, where the intervals narrow), while the frequentist

sets widen (the unmodi�ed Bayes intervals systematically undercover for larger values of d,

forcing the frequentist intervals to more heavily weigh the possibility of larger d).

Population. U.S. population growth shows considerable low-frequency variability over the

20th century and the post-WWII period. Immigration and fertility dynamics are presumably

at the source of these long swings. The low-frequency MLE of d is very close to unity over

both sample periods, with the I(1) log-likelihood more than 7 points higher than in the

I(0) model. Table 5 and Figures B.5 and B.12 show prediction intervals that widen as the

forecast horizon increases, a natural characteristic of I(1) predictive densities. There is little

di¤erence in the sets constructed using the post-WWII samples and long-samples.

In�ation. As discussed above, the in�ation process is characterized by more than I(0)

persistence, and this is re�ected in the prediction sets in two ways. First, they are not

centered at the sample mean of the series, but rather at a level dictated by the values near

the end of sample period, and second, the prediction sets widen with the forecast horizon.

The prediction intervals indicate considerable uncertainty in in�ation even at relatively short

horizons; this is true for both Bayes and frequentist sets. For example, while the 10-year 67%

Bayes prediction set for U.S. CPI in�ation is (0:4; 4:5), the 90% set widens to (�1:2; 6:0).
These predictions sets may strike some readers as too large, but it is instructive to consider

the history of Japan where the 10-year moving average of CPI in�ation was less than zero

from 2003 through 2013. (See Figure B.8.) Moreover, they are in line with predictive

densities derived from asset prices. For example, Kitsul and Wright (forthcoming) use CPI-

based derivatives to compute market-based risk-neutral predictive densities for 10-year ahead

average values of in�ation. They �nd de�ation (average in�ation less than 0%) probabilities

that averaged approximately 15% over 2011 and �high in�ation" (average in�ation greater

than 4%) of 30%.15 The corresponding probabilities computed from the Bayes predictive

density constructed using the post-WWII data are 11% for de�ation and 28% for high

in�ation.

Stock Returns. Post-WWII real stock returns exhibit slightly more persistence than is

implied by the I(0)model, and this translates into prediction sets that are wider than implied

15See Kitsul and Wright (forthcoming), Figures 3 and 4. Fleckenstein, Longsta¤, and Lustig (2013)

estimate somewhat lower probabilites for de�ation, but similar probabilities for in�ation exceeeding 4%.

(See their Figures 4 and 5). For a related calculation, see Figure 3 in Hilsher, Raviv, and Reis (2014).
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by the I(0) model. For example, at the 25-year horizon, the 67%-I(0) prediction set (from

Figure B.9) is (3:4; 11:2) while the corresponding Bayes and MN prediction sets (from Table

7) are (1:8; 15:3). The longer-span data suggest somewhat less persistence (bdMLE = �0:2 for
the 1926-2014 sample) yielding Bayes and frequentist prediction intervals that are somewhat

narrower than those constructed using the post-WWII data.

Pastor and Stambaugh (2012) survey the large literature on long-run stock return volatil-

ity and construct Bayes predictive densities using models that allow for potentially persistent

components in returns. While their results rely on more parametric models than ours �they

use all frequencies and exact Gaussian likelihoods �our empirical conclusions are similar.

Using our notation, Pastor and Stambaugh (2012) are concerned with the behavior of the

variance of
p
h�xT+1:T+h and how this variance changes with the forecast horizon h. If the

variance of
p
h�xT+1:T+h is unchanged as h increases, and if the predictive density is Gaussian,

then the width of prediction intervals for �xT+1:T+h will be proportional to h�1=2. Pastor and

Stambaugh �nd that the variance of
p
h�xT+1:T+h is not constant, but rather increases with

h. Consistent with this, we �nd Bayes prediction sets that narrow as h increases, but more

slowly than h�1=2.

Results for di¤erent values of q. As discussed in Section 4, the choice of q = 12 involved

an e¢ ciency/robustness trade-o¤, where a larger value of q results in more information about

the scale and shape parameter, but potential misspeci�cation because the higher-frequency

spectrum may not be well-described by the same model and parameter. It is therefore

interesting to see how the prediction sets vary with q, and this is reported in Table 6, which

shows the 67% and 90% prediction sets for the 25-year ahead forecasts for q = 6; 12; and 24.

Looking across all of the entries, the prediction sets behave roughly as expected, in the sense

that they remain centered at roughly the same value but tend to narrow as q increases. For

example, averaging across the 14 series, the 67% MN prediction set is 11% narrower using

q = 24 than with q = 12 broadly consistent the results discussed in Section 4.

7 Conclusions

This paper has considered the problem of quantifying uncertainty about long-run predictions

using prediction sets that contain the realized future value of a variable of interest with

prespeci�ed probability. The long-run nature of the problem both simpli�es and complicates

the problem relative to short-run predictions. The problem is simpli�ed because of our focus

on forecasting long-run averages using a relatively small number of (low-frequency) weighted

averages of the sample data. As we show, these averages conveniently have an approximate

joint normal distribution under fairly general conditions. However, the prediction problem
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is complicated because the covariance matrix of the limiting normal distribution depends on

the shape of the spectrum over very low frequencies, and there is limited sample information

about this shape. Uncertainty about the low-frequency characteristics of the stochastic

process is then an important component of the uncertainty about long-run predictions.

We proposed a �exible parametric model (the bcd-model) to characterize the shape of

the spectrum at low frequencies. Uncertainty about the shape then becomes equivalent to

uncertainty about the values of the bcd-parameters. Incorporating this parameter uncertainty

into prediction uncertainty is straightforward in a Bayesian framework, and we provide the

details in the context of the long-run prediction problem. However, because of the paucity of

sample information about these long-run parameters, the resulting Bayes prediction sets may

depend importantly on the speci�cs of the prior. This motivates us to robustify the Bayes sets

by enlarging them so that, by construction, they control coverage uniformly over all values

of the bcd-parameters. We construct minimum expected length frequentist prediction sets

using an approximate �least favorable distribution� for the parameters, and we generalize

these to conditionally sensible frequentist prediction sets using ideas from Müller and Norets

(2012).

We apply these methods and construct prediction sets for nine macroeconomic time

series for forecast horizons of up to 75 years. In general, we found that for many series, the

prediction sets are wider than those that one obtains from the I(0) model, but narrower than

one would obtain from, say, the I(1) model. From a statistical point of view, this underlines

the importance of modelling the spectral shape at low frequencies in a �exible manner.

Substantively, it demonstrates that even after accounting for a wide variety of potential

long-run instabilities and dependencies, it is still possible to make informative probability

statements about (very) long-run forecasts.

While the analysis presented in this paper accommodates a wide range of low-frequency

persistence patterns, it was not designed to directly accommodate large breaks in volatility

such as those evident in the pre- and post-WWII U.S. GDP growth rate data. In principle it

is possible to explicitly account for non-negligible non-stationarities in the volatility process

by postulating a stochastic process for the volatility path, and integrating out this additional

source of uncertainty (similar to the approach of Müller and Watson (2008) in their Section

3.3, say).

Also, our analysis has been univariate in the sense that we have constructed predictions

sets for a scalar random variable xT+1:T+h using sample values of xt. However, answers to

some questions require multivariate prediction sets. The statistical theory discussed and

developed in Section 3 carries over directly to multivariate settings. That said, there are

important practical obstacles to constructing multivariate prediction sets. These obstacles
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include �nding a convenient, but �exible, parameterization of the multivariate local-to-zero

spectrum, constructing accurate approximations to least favorable distributions with high

dimensional �, and computing accurate approximations to the density of relevant invariants.

Overcoming these obstacles is left to future research.
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8 Appendix

8.1 Central Limit Theorem of Section 3

Theorem 1 Let �xT;t =
P1
s=�1 cT;s"t�s. Suppose that

(i) f"t;Ftg is a martingale di¤erence sequence with E("2t ) = 1, suptE(j"tj2+�) < 1 for some
� > 0, and

E("2t � 1jFt�m) � �m (23)

for some sequence �m ! 0;
(ii) for every � > 0 the exists an integer L� > 0 such that

lim supT!1 T
�1P1

l=L�T+1

�
T supjsj�l jcT;sj

�2
< �;

(iii)
P1
s=�1 c

2
T;s <1 (but not necessarily uniformly in T ). The spectral density of �xT;t thus

exists; denote it by FT : [��; �] 7! R;
(iii.a) there exists a function S : R 7! R such that ! 7! !2S(!) is integrable, and for all �xed

K, Z K

0
jFT (

!

T
)� !2S(!)jd! ! 0; (24)

(iii.b) for every diverging sequence KT !1

T�3
Z �

KT =T
FT (�)�

�4d� =

Z �T

KT

FT (!=T )!
�4d! ! 0; (25)

(iii.c)

T�3=2
Z �

1=T
FT (�)

1=2��2d� = T�1=2
Z �T

1
FT (!=T )

1=2!�2d! ! 0; (26)

(iv) for some �xed integer H, the function g : [0;H] 7! R is of bounded variation and satis�esR H
0 g(s)ds = 0.
Then

T�1=2
Z H

0
g(s)xT;bsT c+1ds) N (0;

Z 1

�1
S(!)

����Z H

0
e�i!sg(s)ds

����2 d!) (27)

where xT;t =
Pt
s=1�xT;s.

Remarks: Note that the linear process �xT;t is not restricted to be causal. The m.d.s. struc-
ture of the driving errors "t in assumption (i) allows for some departures from strict stationarity.

It also accommodates conditional heteroskedasticity, with the second order dependence limited by

the mixingale condition (23).

The linear coe¢ cients cT;s are scaled by the sample size T such that the convergence (27)

holds with the same scaling factor T�1=2 across various types of persistence, such as I(0) and I(1)

models. See below for examples. Given our interest in scale equivariant prediction sets, this scale

normalization is without loss of generality.
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Since for any �xed K, sup0�!�K jT�2 !2

j1�e�i!=T j2 � 1j ! 0, assumption (iii.a) is equivalent to

(5) (with � = 3=2).

To better understand the role of assumptions (ii) and (iii), consider some leading examples.

Suppose �rst that �xT;t is causal and weakly dependent with exponentially decaying cT;s, jcT;sj �
C0e

�C1s for some C0; C1 > 0, as would arise in causal and invertible ARMA models of any �xed

and �nite order. Then T�1
P1
l=LT+1

�
T supjsj�l jcT;sj

�2
! 0 for any L > 0, !2S(!) is constant and

equal to (2�)�1 times the long-run variance of �xT;t, and (25) and (26) hold, since FT is bounded,R1
KT
!�4d! ! 0 for any KT !1 and

R1
1 !�2d! <1.

Second, suppose �xT;t is fractionally integrated with parameter d 2 (�1=2; 1=2) (corresponding
to xT;t being fractionally integrated of order d+1). With �xT;t scaled by T�d, cT;s � C0T�dsd�1,
so that T�1

P1
l=LT+1

�
T supjsj�l jcT;sj

�2
!
R1
L s2d�2ds, which can be made arbitrarily small by

choosing L large. Further, for � close to zero, FT (�) � (2�)�1C20 (�T )
�2d, so that !2S(!) =

(2�)�1C20!
�2d, and (25) and (26) are seen to hold under weak assumptions about higher frequency

properties of �xT;t. For instance, even integrable poles in FT at frequencies other than zero can

be accommodated.

Third, suppose xT;t is an AR(1) process with local-to-unity coe¢ cient �T = 1 � c=T

and unit innovation variance. Then cT;0 = 1 and cT;s = �(1 � �T )�
s
T , s > 0. Thus

T�1
P1
l=LT+1

�
T supjsj�l jcT;sj

�2
! c2

R1
L e�2csds, which can be made arbitrarily small by choos-

ing L large. Further, FT (�) = (2�)�1j1 � e�i�j2=j1 � �T e�i�j2, which is seen to satisfy (24) with
S(!) = (2�)�1(!2 + c2)�1. Conditions (25) and (26) also hold in this example, since FT (�) � 1.

As a �nal example, suppose �xT;t = T"t � T"t�1 (inducing xT;t to be i.i.d. con-

ditional on "0, with a scaling such that FT (�) is Op(1) for � = O(T�1)). Here

FT (�) = (2�)�1T 2j1 � e�i�j2 = (2�)�14T 2 sin(�=2)2, so that S(!) = (2�)�1, and

(25) evaluates to 4(2�)�1
R �T
KT
T 2 sin(!=2T )2!�4d! � (2�)�1

R �T
KT
!�2d! ! 0, and (25) to

2(2�)�1=2T�1=2
R �T
1 T sin(!=2T )!�2d! � (2�)�1=2T�1=2

R �T
1 !�1d! ! 0, where the inequalities

follow from sin(�) � � for all � � 0.
The number H is assumed to be an integer to ease notation. Note that a constant g would not

satisfy assumption (iv), as it does not integrate to zero, but all functions of interest in the context

of this paper do. The implication of Theorem 1 that is of interest for Section 3 follows from the

following Corollary.

Corollary 1 For some 0 < r < H � 1, let gq+1 : [0;H] 7! R equal gq+1(s) = �1[0 � s �
1] + r�11[1 < s � 1 + r] and let gj : [0;H] 7! R equal to gj(s) = 1[s � 1]

p
2 cos(�js) for

j = 1; : : : ; q. Under the assumptions of Theorem 1 (i)-(iii),

T�1=2
Z H

0

266664
g1(s)
...

gq(s)

gq+1(s)

377775xT;bsT c+1ds) N (0;�)
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where �j;k =
R1
�1 S(!)

�R H
0 e�i!sgj(s)ds

��R H
0 ei!sgk(s)ds

�
d! for j; k = 1; : : : ; q + 1.

Proof. Follows from Theorem 1, Lemma ?? and the Cramer-Wold device via������
Z H

0
e�i!s

0@q+1X
j=1

�jgj(s)

1A ds
������
2

=

q+1X
j;k=1

�j�k

�Z H

0
e�i!sgj(s)ds

��Z H

0
ei!sgk(s)ds

�

since g(s) =
Pq+1
j=1 �jgj(s) clearly satis�es the assumption in Theorem 1 (iv).

8.2 Density of (Xs; Y s) and Related Results

Let Z = (X 0; Y )0 and U =
p
X 0X. Write �l for Lebesgue measure on Rl, and �q for the surface

measure of a q dimensional unit sphere. For x 2 Rq, let x = xsu, where xs is a point on the

surface of a q dimensional unit sphere, and u 2 R+. By Theorem 2.1.13 of Muirhead (1982),

d�q(x) = uq�1d�q(xs)d�1(u). Further, for y 2 R, consider the change of variable y = ysu with

u 2 R+ and ys 2 R, so that d�1(y) = ud�1(ys). We thus can write the joint density of (Xs; Y s; U)

with respect to �q � �1 � �1 as

(2�)�(q+1)=2j�j�1=2 exp[�1
2

 
xsu

ysu

!0
��1

 
xsu

ysu

!
]uq

and the marginal density of Zs = (Xs0; Y s)0 with respect to �q � �1 is

fZs(z
s) = (2�)�(q+1)=2j�j�1=2

Z 1

0
uq exp[�1

2u
2(zs0��1zs)]d�1(u)

= (2�)�(q+1)=2j�j�1=2 12
Z 1

0
t(q�1)=2 exp[�1

2 t(z
s0��1zs)]d�1(t)

= (2�)�(q+1)=2j�j�1=2 12�(
q+1
2 )2

(q+1)=2
�
zs0��1zs

��(q+1)=2
= 1

2�
�(q+1)=2j�j�1=2�( q+12 )

�
zs0��1zs

��(q+1)=2
where the second equality follows from the form of the Gamma density function, and � denotes the

gamma function. The implied marginal density of Xs is

fXs(xs) = 1
2�

�(q)=2j�X j�1=2�( q2)
�
xs0��1X x

s
��q=2

.

Similarly, with g(xs) = E[
p
X 0XjXs = xs], we obtain

fxs(x
s)g(xs) =

Z 1

0
uf(Xs;U)(x

s; u)d�1(u)

= u(2�)�q=2j�XX j�1=2
Z 1

0
uq�1 exp[�1

2u
2(xs0��1XXx

s)]d�1(u)

= 2�1=2��q=2j�XX j�1=2�( q+12 )(x
s0��1XXx

s)�(q+1)=2:
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Finally, from (6), ~Y = Y � �Y X��1XXX � N (0;�Y Y � �Y X��1XX�XY ) and X are independent

normal random variables. Also, using well known properties of a multivariate standard normal

distribution, X 0��1XXX � �2q is independent of ~Xs = �
�1=2
XX X=

q
X 0��1XXX. Since X

s is a one-to-

one transformation of ~Xs, we thus obtain

~Yq
X 0��1XXX=q

q
�Y Y � �Y X��1XX�XY

jXs � Student-tq

and the result (8) follows by dividing the numerator and denominator by
p
X 0X.

8.3 Approximate Least Favorable Distributions

In practice, it won�t be possible to compute a least favorable distribution �y that perfectly solves the

program (14)-(16). To make further progress, we follow Elliott, Müller, and Watson (2015) (EMW

in the following), and �rst formally state a lower bound on (14), and then de�ne an approximate

least favorable distribution (ALFD) �� that solves (10) within a tolerance of �.

To ease notation, write VW (A) =
R
V�(A)dW (�) and C�(A) = P�(Y s 2 A(Xs)). Also, we make

the dependence of the set (18) on cv explicit by writing

A�;cv(x
s) =

8>><>>:ys :
Z
f(Y s;Xs)j�(y

s; xs)d�(�)Z
g�(xs)fXsj�(xs)dW (�)

> cv

9>>=>>; : (28)

We begin by proving the optimality of the set A�;cv in the problem minA VW (A) subject toR
C�(A)d�(�) = 1� �.

Lemma 1 Let A�;cv be such that
R
C�(A�;cv)d�(�) = 1��. Then A�;cv solves minA VW (A) subject

to
R
C�(A)d�(�) � 1� �.

Proof. Note that any A is equivalently characterized by the test-function ' : Rq �
R 7! f0; 1g de�ned via '(ys; xs) = 1[ys 2 A(xs)]. In this notation, VW (A) =R R R

g�(x
s)fXsj�(x

s)'(ys; xs)d�q(x
s)d�1(y

s)dW (�) =
R
'(zs)f1(z

s)d�q;1(z
s), and

R
C�(A)d�(�) =R R R

fZsj�(x
s; ys)'(ys; xs)d�q(x

s)d�1(y
s)d�(�) =

R
'(zs)f0(z

s)d�q;1(z
s), where d�q;1(z

s) =

d�q(x
s) � d�1(ys), f1(zs) =

R
g�(x

s)fXsj�(x
s)dW (�) and f0(zs) =

R
fZsj�(z

s)d�(�). Thus, the

problem is equivalent to the problem of �nding the best test that rejects (that is ' = 1) with

probability at least 1 � � when the �density�of Zs is f0, and minimizes the rejection probability
when the �density�of Zs is f1. These densities do not necessarily integrate to one, but the solution

still has to be of the Neyman-Pearson form (18), as can be seen by the very argument that proves

the Neyman-Pearson Lemma: Set '�(ys; xs) = 1[ys 2 A�;cv(xs)] and '(ys; xs) = 1[ys 2 A(xs)] for
some A that satis�es

R
C�(A)d�(�) � 1� �. Then

R
'f0d�q;1 � 1� � (we drop zs as the dummy

variable of integration for notational convenience), and

0 �
Z
('� � ')(f0 � cv f1)d�q;1
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� cv(

Z
'f1d�q;1 �

Z
'�f1d�q;1)

where the �rst inequality follows from the de�nition of '� and the second from 1�� =
R
'�f0d�q;1 �R

'f0d�q;1.

A second result mirrors Lemma 1 of EMW and bounds the value of minA VW (A), formalizing

the result verbally stated in Section 3.3.

Lemma 2 Let A�;cv as in Lemma 1. Then for any A that satis�es inf� C�(A) � 1� �, VW (A) �
VW (A�;cv):

Proof. The result is immediate from Lemma 1 after noting that inf� C�(A) � 1 � � impliesR
C�(A)d�(�) � 1� �.
Lemma 2 is useful, as it provides a set of lower bounds (indexed by �) on the achievable values

of the objective (14). Thus, if a � can be identi�ed that implies a small lower bound in the sense

that a small adjustment to the critical value yields a set with uniform coverage and only marginally

larger objective, the problem has been solved as a practical matter. Again following EMW, we

denote such a distribution an ALFD.

De�nition 2 An �-approximate least favorable distribution �� is a probability distribution on �
satisfying

(i) there exists cv� such that A��;cv� satis�es
R
C�(A��;cv�)d�

�(�) = 1� �
(ii) there exists cv�� < cv� such that inf�

R
C�(A��;cv��) � 1 � �, and VW (A��;cv��) �

VW (A��;cv�) + �.

The strategy is thus to set some small tolerance level �, and to numerically identify an �-ALFD

��. By de�nition, A��;cv�� controls coverage uniformly, and invoking Lemma 2, its W -weighted

average length is at most � larger than of any prediction set that controls coverage uniformly.

Generalizations of Lemmas 1 and 2 for A(xs) additionally restricted to be a superset of some

given set B(xs) are proven entirely analogously and are omitted for brevity (cf. Lemma 3 in EMW

and Theorem 4 in Müller and Norets (2012)).
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