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Abstract—This paper presents a hypothetical Turing test in
power electronics, leveraging structured computer vision as a step
towards domain-specific artificial general intelligence (AGI). To
illustrate the key principles of such a power electronics Turing
test, we developed PowerVision, a computer vision framework
designed to teach machines to understand schematic draw-
ings. PowerVision comprises four key components: 1) Com-
ponentNet: an image database for component recognition; 2)
CircuitNet: an image database for schematic recognition; 3)
NetlistMaker: a schematic recognition tool that converts human-
readable schematics into netlists for SPICE simulations; and 4)
NetlistClassifier: a circuit classification tool that can categorize
different power electronics circuits based on machine-generated
netlists. The PowerVision platform can facilitate the learning
of power electronics fundamental principles by large-scale AGI
models through human-accessible information including texts,
schematics, computer simulations, and experimental results, ul-
timately enabling machines to comprehend power electronics.

Index Terms—artificial general intelligence, Turing test, ma-
chine learning, computer vision, netlists, SPICE simulation

I. INTRODUCTION

ARtificial general intelligence (AGI), a type of AI that can
perform as well as or better than human and interact

with human across a wide range of cognitive tasks, holds
great potential engineering design [1]–[4]. A critical aspect of
human learning in power electronics is the coherent integration
of vast amounts of information in various formats, such as text
descriptions, schematics, computer simulations, and images in
textbooks, scientific publications, and engineering handbooks.
For domain specific AGI models to assist human designers or
to perform automated design tasks, they must be capable of
learning from human-accessible information.

Training AGI models (e.g., ChatGPT) to understand domain
knowledge is challenging because of the lack of good training
data and domain-specific knowledge abstraction. There is no
large-scale high-quality database (such as those in [5], [6]) for
AGI models to learn about power electronics. Modern large
language models (e.g., ChatGPT-3.5, Google Gemini, Github
Copilot) understand texts and netlists, but there is no database
for them to understand the connections among texts, netlists,
and drawings. This paper tries to address the above challenges
by developing PowerVision, an end-to-end framework for
exploring AGI in power electronics, comprising:

1) ComponentNet: a hand-collected image database with
2,561 power electronics component drawings;

Fig. 1. A power electronics Turing test revolves around both machines and
humans establishing understandings about schematic drawings and circuit
functions, subsequently engaging in communication with a human evaluator.

2) CircuitNet, a hand-collected image database with 200
hand-labeled power electronics circuit schematics;

3) NetlistMaker, an automated schematic recognition tool
which converts human-readable schematics;

4) NetlistClassifier, an automated circuit classification tool
which can classify different power electronics circuits
based on the machine-readable netlists.

5) NetlistSimulator, an automated circuit simulator which
allows the AGI model to run SPICE simulations based
on the netlist created.

All data and tools are open-sourced in GitHub1.

II. POWER ELECTRONICS TURING TEST

The Turing test, initially proposed as the imitation game
by Alan Turing in 1950 [7], assesses a machine’s capa-
bility to demonstrate intelligent behavior comparable to, or

1PowerVision: https://github.com/minjiechen/PowerVision

https://github.com/minjiechen/PowerVision


Fig. 2. Power electronics topologies and their operational principles: https://www.ti.com/lit/ml/sluw001g/sluw001g.pdf. The majority of practical power
electronics converters are derived from these topologies. Each of these topologies can serve as a basis for conducting a domain-specific Turing test in power
electronics. Comprehending the operational principles of these topologies constitutes the initial step towards achieving AGI in power electronics.

indistinguishable from, that of a human. A more specific
interpretation of the Turing test focuses on a computer’s ability
to successfully mimic human behavior within a designated
domain of human intelligence, such as power electronics.
Illustrated in Fig. 1, the hypothetical power electronics Turing
test entails a human evaluator posing questions to both a
human expert and a computer model, seeking explanations of
schematic drawings. The evaluator remains unaware of which
conversational partner is the machine, and all participants
are isolated from each other. The conversation begins with
a schematic drawing as input and culminates in a human-
language description of the schematic or a response to a
specific inquiry. If the evaluator cannot reliably distinguish
between the machine and the human, the machine is deemed
to have successfully passed the test.

Figure 2 showcases twelve main-stream dc-dc power elec-
tronics topologies commonly employed in practical appli-
cations, comprising: Buck, Boost, Buck-Boost (Inverting),
SEPIC, Flyback, Forward, 2 Switch Forward, Active Clamp
Forward, Half Bridge Push Pull, and Full Bridge Phase Shift
ZVT. A significant portion of power electronic systems are
designed based on these switching cells. An average power
electronics engineer possesses the ability to swiftly classify
these topologies from schematic drawings and articulate their
operational principles using concise natural language sen-
tences. In a power electronics Turing test, the evaluator might
present a drawing of a power converter to both the human
expert and the computer model, asking, “Is this converter
a pulse-width-modulated (PWM) converter? How does it
work? Can you simulate it, and describe how it works?”
If the evaluator cannot discern between the responses from
the machine and the human expert, the machine would be
considered to have successfully passed the specific test.

A machine needs to be trained using data. While the
learning process for human and machine experts may differ,
the data used for training should be similar and inclusive
of widely available, well-documented human-accessible in-
formation sources of high quality. Establishing an effective

Fig. 3. State-of-the-art AGI (e.g., ChatGPT-3.5 [8]) can generate commonly
used power electronics netlists based on user prompts. However, it lacks the
ability to interpret power electronics schematics or offer design guidance.

framework for machines to comprehend human-accessible
information is pivotal for developing a domain-specific AGI
capable of assisting power electronics design.

III. POWERVISION FRAMEWORK

As depicted in Fig. 3, contemporary AGI models like
ChatGPT possess the ability to read and generate text as well
as simple drawings [8]. However, they currently struggle with
comprehending power electronics components or schematic
drawings, primarily due to the absence of high-quality training
data. Early attempts in power electronics topology synthesis
lacked the support of modern artificial intelligence [9]. Modern
tools for schematic to netlist conversion exist [10]–[12], but
no effort has been shown to holistically integrate them into an
end-to-end machine learning framework, such as the proposed
Power Electronics Turing Test. This paper aims to bridge this
gap and push toward strong AI in power electronics.

https://www.ti.com/lit/ml/sluw001g/sluw001g.pdf


Fig. 4. The information flow for both human learning and machine learning
in passing the Turing test involves processing text and SPICE information.
While human learners excel at comprehending schematic drawings, machines
demonstrate proficiency in interpreting structured data like netlists.

Figure 4 outlines the fundamental information flow of
PowerVision. To effectively train large language models for
human interaction, it’s imperative to convert human knowledge
into machine-readable data. Human-accessible information
encompasses schematic drawings and textual descriptions,
where the operational principles are articulated in natural
language. Although qualitative and concise, human-accessible
information can be prone to inaccuracies. Machine-accessible
information in power electronics comprises netlists, compo-
nent bill-of-materials, printed circuit boards (PCBs), and 3-D
assembly drawings. Additionally, computers can engage circuit
simulation tools to interpret netlists or utilize finite-element
modeling (FEM) software like ANSYS to analyze physical
components, PCBs, interconnects, and electromagnetic radi-
ation. Machine-readable information is characterized by its
quantitative, structured, complex, and precise nature.

At the core of PowerVision lies the circuit netlist, which is
both human and machine accessible. The PowerVision plat-
form encompasses the following five pivotal function blocks:

• ComponentNet: a large scale image database comprising
thousands of images of different electrical components.
Currently, the database contains 2,544 hand-collected and
labeled component images in 11 categories, including “ac-
src”, “battery”, “cap”, “curr-src”, “diode”, “inductor”, “re-
sistor”, “swi-ideal”, “swi-real”, “volt-src”, “xformer”.

• CircuitNet: a large scale image database comprising hun-
dreds of power electronics schematics for netlist generation
and classification. Currently the database contains 200 hand-
collected and hand-labeled power electronics schematics.

• NetlistMaker: a computer program which reads the
schematic drawing, then generates a netlist and an incident
matrix based on the detected components and the wires that
connect the components together.

Fig. 5. The “switch-real” subfolder within the ComponentNet database
comprises 202 images depicting various symbols for semiconductor switches.
The complete database encompasses 2,544 manually collected component
images categorized into 11 classes.

Fig. 6. The CircuitNet database encompasses 200 images representing various
power electronics circuit topologies.

• NetlistClassifier: a computer program which classifies dif-
ferent power electronics schematic drawings and create
labels such as “PWM”, “isolated”, etc.

• NetlistSimulator: The created netlist is SPICE compatible.
The NetlistSimulator can simulate the netlist in SPICE (e.g.,
PySPICE in Python) to autonomously create new knowledge
and label new data.

A. ComponentNet and CircuitNet

Figures 5 and 6 illustrate the principles of ComponentNet
and CircuitNet. ComponentNet contains 2,544 hand-collected
component images in 11 categories, including “ac-src”, “bat-
tery”, “cap”, “curr-src”, “diode”, “inductor”, “resistor”, “swi-
ideal”, “swi-real”, “volt-src”, and “xformer”. Each image is a
64×64 .PNG file with about 6 KB of size. CircuiNet contains
200 hand-collected circuit images with hand-labeled markers



Fig. 7. Key principles of the NetlistMaker tool. Initially, the 200 schematics stored in the schematic database undergo segmentation for component detection,
utilizing OpenCV. Following segmentation, a CNN is trained using the component database to classify the detected components within the segmented
schematics. Once classified, the components, along with network information, are transformed into an incidence matrix and represented as a netlist.

such as “PWM”, “non-PWM”, “isolated”, “non-isolated”, “in-
ductive”, “capacitive”, “bi-directional” and so on. The image
dimension pixels (width or height) range from 100 to more
than 1000. Each image is in the size of about 15 KB. The
image sources for the components and circuits include open-
source databases, public images, textbooks, scientific publi-
cations, presentations, and technical application notes [13]–
[15]. The ComponentNet is used to train a model which can
recognize components in a schematic drawing. The CircuitNet
is used to train a model which can convert schematic drawings
into netlist and then perform classification or simulation.

B. NetlistMaker

Figure 7 illustrates the underlying principles of Netlist-
Maker, a fully automated image recognition tool designed
to convert schematic drawings into netlists. Apart from em-
ploying a suite of standard image processing techniques like
sharpening, color inverting, object detection, scaling, and
normalization, NetlistMaker’s core comprises a convolutional
neural network (CNN) tailored for component classification.
This CNN architecture is specifically crafted and trained for
power electronics. It features: 1) an image pre-processing
layer for data augmentation, which randomly rotates, flips, and
rescales component images; 2) three sets of 2D convolution
and pooling layers; 3) a flatten layer followed by three dense
layers for layer aggregation and classification. The training
images are formatted as binary (64×64) pixels, and the
CNN kernel size is (3×3). The model encompasses 276,491
parameters and occupies 1.05 MB of space. Figure 8 presents
the confusion matrix of the classification results across 11
categories, with an overall accuracy of approximately 90%.
Notably, the performance varies across different component

TABLE I
CNN ARCHITECTURE OF THE NETLISTMAKER

Layer (type) Output Shape Param #
Random Flip (64, 64, 1) 0

Random Rotation (64, 64, 1) 0
Rescaling (64, 64, 1) 0
Conv 2D (61, 61, 64) 1088

MaxPooling 2D (30, 30, 64) 0
Conv 2D (26, 26, 64) 102464

MaxPooling 2D (13, 13, 64) 0
Conv 2D (9, 9, 64) 102464

MaxPooling 2D (4, 4, 64) 0
Flatten 1024 0
Dense 64 65600
Dense 64 4160
Dense 11 715

models. Enhancements in component detection accuracy can
be achieved through improved data, refined models, and opti-
mized training processes.

After detecting and labeling each component, the Netlist-
Maker then identifies how these components are connected
with each other and create an incidence matrix. Each row of
the incidence matrix represents a component in the schematic.
Each column of the incidence matrix represents a wire node
in the schematic. If one component is connected to a node
(overlaps detected in the schematic), the element located at
the corresponding row and column is sequentially marked as
integer numbers “1”, “2”, “3”, etc. Different integer numbers
indicate different ports of the same component. All other



Fig. 8. The confusion matrix for classifying the 11 categories of components
revealed that the model achieved satisfactory performance for most categories.
It exhibited poor performance specifically for the “battery” and the “swi-ideal”
categories, indicating a need for further refinement and improvement.

Fig. 9. The NetlistMaker processes an example SEPIC converter schematic
drawing with: (1) component detection; (2) netlist recognition; and (3)
component value assignment. The component values are randomly selected.

elements are marked as “0”. The incidence matrix is a unique
mathematical representation of the detected schematic, and can
be used for SPICE simulation and topology classifications.

Figure 9 illustrates the key operation steps of NetlistMaker
when processing a SEPIC converter. First, the components
are detected with typical computer vision tools; Second, the
components are recognized by the CNN, and the wires and
connections are identified by image processing tools (such
as OpenCV) through overlap detection; (3) each components

are assigned with specific component values. In this particular
example, the incidence matrix of this SEPIC converter is:

N0 N1 N2 N3 N4 N5

R 2 1 0 0 0 0
C 2 1 0 0 0 0
V 2 0 0 0 1 0
L 2 0 1 0 0 0
M 3 0 0 1 0 2
L 0 0 0 2 1 0
D 0 2 1 0 0 0
C 0 0 2 1 0 0


. (1)

Here the six columns – {N0, N1, N2, N3, N4, N5} – represent
the six nodes in the schematic, and the eight rows – {R, C,
V , L, M , L, D, C} – represent the eight components in
the schematic. The NetlistMaker made a perfect schematic
recognition in this example with all components and wire
connections correctly identified. The SPICE netlist is:

* Netlist for sepic.net
* Sources:
V1 4 0 5 * voltage source
* Components:
R1 1 0 10 * load resistor
C1 1 0 10u * output capacitor
L1 2 0 1u * output inductor
M1 3 p1 0 0 mosfet * main switch
L2 4 3 10u * source inductor
D1 2 1 diode * output diode
C2 3 2 10u * blocking capacitor
* Drivers:
Vdrv1 p1 0 PULSE(20 0 0 0 0 5.0u 10.0u)
* Models:
.model mosfet NMOS(Kp=60 Vto=4.5) * switch model
.model diode D * diode model
.tran 10m * simulation mode
.end

Figures 10 shows the component detection and recognition
results of the 12 example topologies listed in Fig. 2. With
a SPICE netlist, an AGI model can automatically call a
SPICE simulation platform to enhance the learning process.
In PowerVision, the generated SPICE netlist is then fed into
PyLTSpice2 - a tool-chain of python utilities design to interact
with LTSpice. It is mostly based on the SPICELib3 package,
automatically selecting LTSpice to perform all simulations.
Figure 11 shows an example simulation results from PyLT-
Spice for this SEPIC converter during a startup transient.

C. NetlistClassifier

We evaluate PowerVision’s capability in classifying differ-
ent circuit topologies. Human experts classify different circuit
schematics by identifying the critical components and patterns
in how they are connected to each other. An incidence matrix
uniquely represents a circuit netlist and can be used as a key
identifier. In NetlistClassifier, a netlist incidence matrix is first
converted into a 2-D .PNG image whose element values are
coded to represent different components, e.g., a “capacitor”
row of the incidence matrix will be represented by a deeper
color in a gray-scale image, and an “inductor” row of the

2PyLTSpice: https://pypi.org/project/PyLTSpice/
3SPICELib: https://github.com/nunobrum/spicelib

https://pypi.org/project/PyLTSpice/
https://github.com/nunobrum/spicelib


Fig. 10. Component detection and recognition results of the 12 example topologies listed in Fig. 2, with key circuit patterns highlighted.

Fig. 11. PyLTspice simulation as a part of the PowerVision platform. The
voltage waveforms of multiple switching nodes are shown.

incidence matrix is represented by a lighter color in a gray-
scale image. In this way, the incidence matrix classification
problem is converted into an image classification problem
which can be solved by various computer vision tools.

Figure 12 explains the correlation between the patterns
in the circuit schematic and the patterns in a color-coded
incidence matrix. Human eyes recognize the patterns in the
circuit schematic and infer the basic circuit behavior (e.g.,
a half-bridge switching cell usually comprises two switches
and one inductor connected to one joint node). State-of-the-art
machine learning algorithms (such as a Convolutional Neural
Networks [16], or Transformers [17]) have similar “attention”
mechanisms to recognize unique patterns in the incidence

Fig. 12. The correlation between patterns in the circuit schematic and patterns
in the incidence matrix. Human eyes rely on recognizing circuit patterns to
infer circuit functions and behaviors. Machine intelligence rely on patterns in
the incidence matrix to build connections with circuit functions.

matrix, opening the opportunity to implement AGI models
which can correlate circuit schematics with circuit functions.

Figure 13 illustrates a few example incidence matrices
represented as 2-D gray-scale images, which can be processed
as tensors for image recognition. Each row represents a com-
ponent. Each column represents a node in the schematic. The
non-black pixels represent non-zero elements in the incidence
matrix. The component types are coded in the pixel darkness.

Table II lists the structure of the CNN of the Netlist-
Classifier. The 200 schematics in the CircuitNet were all
converted into 2-D images, then hand-labeled as “PWM”



Fig. 13. 2-D gray-scale “fingerprint” images representing the incidence
matrices of the 12 example topologies listed in Fig. 2. The size of these
2-D images are much smaller than the original schematic drawings.

TABLE II
CNN ARCHITECTURE OF THE NETLISTCLASSIFIER

Layer (type) Output Shape Param #
Conv 2D (30, 30, 8) 80

MaxPooling 2D (15, 15, 8) 0
Conv 2D (13, 13, 8) 584

MaxPooling 2D (6, 6, 8) 0
Flatten 288 0
Dense 8 2312
Dense 2 18

or “non-PWM”, “isolated” or “non-isolated” converters. In
each experiment, 160 schematics were used for training the
NestlistClassifier model, and 40 schematics were used for
testing. The confusion matrix for classifying the “PWM” and
“isolated” converters are listed in Fig. 14. Without extensive
training or model optimization, the accuracy for “PWM” vs.
“non-PWM” classification was 70%. The accuracy for the
“isolated” vs. “non-isolated” classification was 62.5%. Clearly,
the PowerVision model we developed in this paper will not
pass the power electronics Turing test.

IV. CHALLENGES AND OPPORTUNITIES

PowerVision’s capabilities in component detection and
topology classification are still far behind that of an average
human learner. The inaccuracies in the PowerVision frame-
work may stem from: (1) errors in component detection and
netlist creation; (2) errors during the training and testing
phases of classification; (3) errors in human labeling of com-
ponents and schematics. These errors tend to propagate and
magnify, limiting the overall end-to-end prediction accuracy.

An illustration of component detection and classification
errors is provided in Fig. 15. Figure 16 shows a wide range of
different symbols used for representing power transformers.

Fig. 14. Confusion matrix for classifying “PWM” and “isolated” converters.
The accuracy for “PWM” vs. “non-PWM” classification was 70%. The
accuracy for the “isolated” vs. “non-isolated” classification was 62.5%.

Fig. 15. Example component detection and classification results when reading
an example circuit. It correctly detected the three diodes, two capacitors, two
inductors, one battery, and one resistor, and the series and parallel relationships
among them, and created a netlist. It mistakenly classified a transistor as an
inductor, and mistakenly detect a wire-crossing as a voltage source which
does not exist in the circuit. Potential ways to address these mistakes include
(1) enlarging the database and improve the data quality; (2) utilizing better
computer vision tools; and (3) developing better neural networks.

PowerVision cannot differentiate these symbols, and cannot
identify correct netlist if these symbols present in the schemat-
ics. Although the NetlistMaker generally performs well with
over 90% accuracy, errors still occur, potentially influencing
subsequent simulations or classifications. Other remaining
challenges preventing PowerVision from rapidly learning from
a massive amount of human-accessible data include:

• Understanding semiconductor devices and magnetic
components. PowerVision cannot differentiate semicon-
ductor devices and magnetic components drawn in differ-
ent ways, and do not understand the principles used for
designing them (e.g., turns ratios, lumped models, etc.).

• Distinguishing circuits, text, markers, and labels. Hu-
mans interpret schematics by integrating graphical netlist
data with text positioned near graphic components. Over
time, humans naturally learn to discern various formats
of information (e.g., boxes, dashed lines, arrows, color
highlights). Presently, PowerVision lacks the ability to
independently interpret different types of drawing data.

• Identifying and categorizing overlapping components.
Human excels at distinguishing and isolating close or
even overlapping components. However, PowerVision
currently lacks this capability.



Fig. 16. A wide range of different power transformer models (Available:
https://www.electricaltechnology.org/2019/09/transformer-symbols.html).

• Interpreting wire connections. Humans possess the
ability to recognize and understand concepts like “cross-
wires” and “junctions” within schematic drawings. How-
ever, PowerVision currently lacks this capability.

• Automated error correction. Human readers often pos-
sess the capacity to comprehend a schematic by focusing
on high-level information and overlooking minor errors.
Flawless understanding on the circuit is not needed.
However, PowerVision currently lacks this ability.

Domain-specific AGI tools like PowerVision will continue
to benefit from advancements in general-purpose AGI. Ad-
dressing these limitations can be achieved through: (1) im-
proved dataset size and quality; (2) forthcoming developments
in computer vision and multi-modal learning; (3) refined
model architecture and training strategies; (4) deep understand-
ings about errors and approximations.

Training a comprehensive AGI model to comprehend power
electronics falls beyond the scope of this paper. However,
leveraging the PowerVision tool enables the swift conver-
sion of numerous power electronics schematics into netlists,
thereby establishing a sizable multi-domain database primed
for training. We’ve devised a software framework to auto-
mate this process entirely. Utilizing a PDF segmentation tool
(PDFSegmenter4), we automatically extract images and text
from a vast array of PDF documents. Schematic images,
their corresponding netlists (including incident matrices), and
descriptive texts are then paired and stored within the database.
Ultimately, this entire procedure can be automated and seam-
lessly integrated with a general-purpose AGI model.

V. CONCLUSION

This paper introduces PowerVision as a research framework
for investigating the power electronics Turing test – a domain-

4PDFSegmenter: https://pypi.org/project/PDFSegmenter/

specific method for assessing the proficiency of AGI models’
capability of understanding power electronics. PowerVision
facilitates automatic conversion of schematic diagrams from
power electronics literature into netlists, enabling basic tasks
such as SPICE simulations and topology classification. These
tools have the potential to significantly expedite the training
of general-purpose AGIs with domain-specific knowledge,
and enabling them to hierarchically process information and
provide useful guidelines in power electronics design.
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