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Abstract—In this part, a comparison between the different siate-space
models is presented. We discuss proper definitions of sfate, control-
lahitity and ohservahility and their refations to minintality of 2-1 sys-
tems.  We also present new circuit realtizations and 2.1 digital filter
hardware implenientation of 2-D transfer functions.

[ INnTrRODUCTION

URING RECENT YLEARS, several authors (Attasi,
Fornasini-Marchesini, Givone-Roesser) have proposed
different state-space models for 2-1 systems and have
suppested some extensions of the usual 1-1) notions of con-
troflability, observability, and minimality to the 2-D case
However, these results are not gquite salisfaciory; they either
Jack motivation for the state-space models introduced or the
notion of slate-space is improperly defined.

In this paper, we iry to provide sonie answers 1o fhese ques-
tions from a practical as well as algebraic standpoint. In Sec-
tion 11, we start with a comparison of all the current models
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based on a practical {circuit-oriented} peint of view and on
a proper definition of state.  Ti is shown that the model
of Givone-Roesser is the most satisiactory in that respect:
it is also the most generzl since the Aitasi and Fornasini-
Marchesini models can be imbedded in the Ghone-Roesser
model.

Also, from the circuit point of view, we present in Scetion
[1I an implementation of 2-D iransfer fonctions using two
types of dynamic elements, i¢., horizontal delay elements
271 and vertical delay elements w1 Ihe hardware implemen-
tation of 20 digital filters for imagping systems is aleo dis-
cussed in Section HL

In Section Il we peint out that a major difference between
1-1 and 2-D systems is that in the 2-1 case a global state
{which preserves all past information) and a local state (which
gives us the size of the recursions of the 2-D filter) can be in-
troduced. Tn Section 1V we discuss the corresponding prop-
ertics of global and local comniroliability (observability) and
show iliat these notions are not satisfactory from the point
of view of minimality.

However, a more alpebraic approach based an eigenonrves
and eigencones enables us in Section V o introduce the con-
cept of prodal controliabitity (observatility)  We show thiat 2
systent is minimal if and only if (ifl) it is modally obsers ahle
and conirollable.
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1t is then natural to ask whether minimal 2-D realizations
exist. I{ we are given an irreducible transfer function of order
(n, m), a state-space realization is minimal iff it is of size n +m.
The existence of such {n + m) (real or complex) realizations is
discussed in Section VI,

We show how Roesser’s model arises from the algebraic
point of view of Nerode equivalence. In conclusion, it appears
that the results obtained by the algebraic and the practical ap-
proaches are quite compatible,

Il. Sra1re-Sract MopELs ror 2-) SyYsrEMs

During recent years, several authors: Attasi [11, [2], Yor-
nasini-Marchesini [ 3], {4} and Givone-Roesser [S] have pro-
posed different state-space models for 2-D systems.  This
apparent divergence oi the reselts so far arises from the fact
that the previous auihors have investigated the problem of
state-space realization for 2-D systems from very different
points of view.

In {4], Fornasini and Marchesini were using the algebraic
point of view of Nerode equivalence. In this framework, the
slate space arises from the faclorization of the 2-Id input-
output map., Fornasini and Marchesini were also the first to
realize that a major difference between -1 and 2-D systems
is that we can introduce a global state and a local stete in the
2-» case.  The global state (which is of infinite dimension in
peneral) preserves all the past information while the local state
gives us the size of the recursions to be pertormed al each step
by the 21 filter.

However, Fornasini and Marchesini faited to exploit fully
the structure of the global state and its relation to the local
state, so that the statespace model they introduced is un-
satisfactory, as we shall see, in the sense that what they in-
troduce as the state is really only a “partial state™ (as defincd
by Wolovich in [6] for 1-D systems). Indeed, this partial state
does not obey a first-order ditference equation (the notion of
first order difference equation for linear systems on partiatly
ordered sets has been defined by Mullans and Elliott in [7]1)
Attasi’s model suffers from the same drawback.

On the other hand, Givone and Roesser in [8) and [5) have
used a “circuit approach” to the problem of state space real
ization for 2-D systems. They present a model in which the
local state is divided into an horizental and a verfical state
which are propapated, respectively, horizontaily and vertically
by first-order difference equations. From this point of view,
the global state appears as the boundary condition necessaty
to propagate the sfatc-spaca equations.

However, Givone and Roesser did not provide much motiva-
tion {or the inirodaction of such a model and seemed unaware
of the full-circuit interpretation of their model since they were
not able to implement an arbitrary 2-D transfer function, say
H(z, &2} = b(z, wfa(z, ) (where a(z, ) is assumed to be
monic), with their state-space model.

Mitra e# al,, pave an answer to this problem in [9] by pre-
senting an implementation method for 2-D transfer functions
using some delay elements z7? and !, We shall see below
that this approach is consistent with Roesser’s model.

In this paper, we reconcile the algebraic and the circuit ap-
proach. In Appendix Al we study the properties of the global
state and of its Telation to the local state. We show that
Roesser’s model appears naturally as a way to describe the
local state properties. For a transfer function Hiz, W) =
b{z, wifa(z, o3} where &§,2 = n, 6§ _,a=m, we exhibit some ca-
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nonical state-space forms (eg, the controllability, observabil-
ity, and controller forms)

However, these realizations are of size nm + n + m and,
untike in the 1-D case, are not minimal, but by a simple
reduction procedure;, we can manage to reduce them to an-
other simple canonical realization of size n + 2m (respectively
2n +m).

From the circuit point of view we then prove that there is
one-to-one  correspondence  between Roesser’s state-space
realization and the implementations of a 2-D transfer function
with delay elements z7' and w™': the number of delay ele-
ments will give us the size of the local state. Also the horizon-
tal states (respectively, the vertical states) will be interpreied as
the outputs of the z7! delay elements (respectively, of the
w Tdelay elements), ]

This interpretation will enzble us in Section I to present an
easy n + 2m (respectively 2n + m) cireuit implementation of
the 2-D transfer function If{z, <) which tums out to be cx-
actly the samc as the n + 2m realization derived from Nerode
cquivalence.

All this strongly indicates that Roesser’s model is the most
general 2-D stale-space model, and in fact we shall also prove
in this section that the models of Attasi and Forpasini-
Marchesini can be imbedded in Roesser’s modcl, so that there
wilt be no loss of generality in considering Roesser’s maodel in
the subsequent sections of this paper.

Roesser’s model is the following:

Ho. o
o XD
x(@ D=1
0D
where x is the Iocel state, x"', an nvector, is the horizontal
state, x¥, an m-vector, is the vertica! state, and

[xh(H-I,j)] AL A X"GD [n,]

v - = 1t uli, j)

EA O EY) [Aa Aa] x" (i, 1) B,
L,_Y___}

en

B,
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Pt
y(i,H=1C, C4] o s iLi=0 {(2.2)
k""_\f"‘_“_" X (!>])

where u, the input, is an Ivector and p, the output, is a p-
vector. Clearly x®, the horizontal state, is propapated hori-
zontally, and x”, the vertical state is propagated vertically by
first-order difference equations

Now, if we take the (z, w) transform of (2.2) (sce Appen-
dix A2}

(5

0
) A x{z, wy= Bulz, wr)
oy,

zf, 0 xéf ()
R EE
0 wl, x%h(z)
¥(z, W)= C x{(z, )

so that the initial conditions are given by x"(0, j) and x” (i, 0),
€I Then, let XY o= [xX"(0,p,jEN]: ‘.’(i’o o) belones
toX ¥ the space of n vector sc . ences. '

Similarly, SI‘(",‘O) = {xY{i, 0), i € N} belongs to X the space
of m vector sequence and i(n.o) = (‘-'I?o.o)v 3('(’0_0)) belongs to
A= 9q" XXV the global state-space of the 2-D system being
considered. It is infinite dimensional and A (0.0) is the initial
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wulr, w)

condition necessatry to propagale the state-space equation
2.2).

We shall snbsequently make a distinction between two types
of initial conditions: for a weak (local) initial condition we as-
sume x(0, 0) = ¥ arbitrary and x"(0, j) = xV{i, 0) = 0, for i,
j.; O for a strong (glohal} initial condition we assume that
i(o,o) = Zis arbilrary. .

Now, [rom the following circuil implementation (Fig. 1) of

zf -1
H(z,w)=(.‘[( " )—A] A
w‘[lﬂ

we can write directly the set of equations (2 .3).

From there it is clear that there is a one-to-one correspon-
dence between Roesser’s model and cirenit implementations
with delay elements z7' and w7t I should be noted that this
structure also arises naturally for delay-differential systems
{see [10]).

Fornasini-Marchesini’s model can be described as follows:
xR, =A, x(G,j+1)+4,; x(i+1,))
T A x{i, )+ Bu(i,f)
¥ D)=Cx,j), ij=0 (2.4)

wliere x 1s an m-vecior, ¥ a p-vecior, and u an Fvector. Atlasi’s
model corresponds to the special case when Ag = -4, 4, =
-A 2 A 1+

From the fact that x(7 + 1,7 + 1) depends on x (i, f) it is clear
that (2.4) are not first-order difference equations so that x is
only a “partial staie.” To be more precise let us define

FGD=xU it 1) - A, x(L7) (25)
s0 that
EG+ 1L, =Ay x(,j+ 1)+ Ag x(i, j) + B uli,f)

Hence

[E(H-l,j)] [Al A0+A1A7} %’ﬁ,f}] [B]
= 4 u{i,j)
,X(i,f + l) !:z AQ {X(l,]) 0

(2 6)

£,
yi,n=10 < [ ' ’_)]
x{i,j)

is a way to recast Fornasini-Marchesint™s model in Roesser’s

form. From (2.6) it is clear that x {7, /) is only a partial state,

il full state being
[Ss(i, i)]
X, )

E— —

247 4

A consequence is that the properties of controllability and
observability considered by Fornasini-Marchesini in {4] or by
Attasi in [2] are not adequate since they invelve only the par-

- tial state x.

HI. CircUIT REALIZATIONS AND HARDWARE DESIGNS

First, we can note that the notion of “dynamic elements,”
“multipliers” and “adders” is at the center of ciicuit theory.
In the I-D discrete-time case, the dynamic elements used are
{(time) delay elements., The 1-D realization problems have
teen well studied and, given any transfer function, it is well
known that the realization can be readily found in certain
standard (e.g., controlfer canonical) forms [11]. For the real-
ization of a 2-D transfer function, a major difference is thet
iwo types of dynamic elements are needed:

x(z7t wY) — AT, W)
T . T -

xz, W) — ol xE Y wly
P — (.:)_I 3 A

They will be termed as “horizontal defay element™ (') and
“vertical delay clement” (e 1), respectively.

Now an important problem is that of how to use 2-i3 dy-
namic clements, multipliers and adders, to reajize a 2-D digital
filter with the transfer function:

nooa §
D S5 SRR
bz T,w ) i=0g=0 (3.1)
IR S PR ' o
alz w ) #oin _ ¥
) 2. 2 agz tw!

i-0 /=0

iz w™h)

We can do this in two steps. First we rewrite (3.1} in a ra-
tional-gain represeniation, e,

"
> bl
Hz ey L —— — (37
n -
Z Hf(&) 1),, H
i=0

Without loss of peneralily, we can assume @gg = 1 and we
denote )

aple YR L+ dglo™)

thus usipg the 1-D realization technique, we write dowin the
reslization shown in Yig. 2, where the sains of the muliipiiers
are represented in F[w"1 1.

The realization is almost achieved: in addition to 1the 7 hori-
sontal delay elements of Fizg. 2 we necd only mm verticel deluy
elements to implement the feedback gains {_u,(o.)_l }oi= 0,
1, m}and m other vertical delay elements to implenent
the readont pains {p (e '), i=0,1, -, m}. Thuy, the comn-
plete realization shown in Fio. 3 requires only 21 + 2m dy namic
eleinents,

This realization is a standard {canonical) one; s stracture is
very simple and it involves only real gains, Note also that we
need fewer dynamic elements than was suggested by the ime
plementations of {91.



948

A. State-Space Model Representation

As remarked In Section U, ¢ircuit implementations with de-
lay clements 2% and w™! are in a oneto-one correspondence
with state-space models of Roesser's type. The outputs of the
z7" delays are the horizontal states and the outputs of the w™!
delays are the vertical states.

Thus, the implementation of Fiz. 3 can be transformed
readily into the following state-space modei:

n{[xplit1,/)" x5 (i, )
i Xp (74 1) [ = A x, ) | +Db i, i) (3.3)
m{| x,, G, i+ 1) Xy, (£, 1)

Yy, = cx(i,f)

where
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Fig. 3. 2.3 controller form realization.
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with

B¢

1<i<n, 1<jsm

1<i<n, 0<jsm,

i T AT dip Aoy,

H

4= bij~ gig by,

We shall postpone the discussion of some interesting prop-
crties of 2-D state-space models {o later sechions. We shall ex-

plote now another phase of the realization problem—hardware
implementation.

B. Hardware Design of 2-D Digital Filter

The idea of using two types of dynamic elements js not very
abstract; it is very natural in delay-differential systems, How-
ever, before considering its practical application {o image sys-
iems, two remarks have to be made:

1) Because the “spatial™ dynamic elements seem unimple-
mentable, we need to replace them by time-dclay elements,

2) In order to have a finite order description, we shall only
consider 2 bounded frame systemn, ie., we assume that the pic-
ture framé of inferest is an M X N frame {with vertical width
M and horizontal length N).

Note that in order to use time delay elements we need first
to find a way to code a 2-D spatial system into a 1-D (discrefe-
time) system and vice versa. Thus we shall propose the follow-
ing systein, composed of three subsystems in series;

1) The input scan generator codes the 2-D spatial input into
1-D (time) data according to the mapping function 1( , *)

1, 7y=iM +jN (3.4)
where 3 and N are relatively prime integers.

0y A I-D (diserete-time) digital filter processes the 1-1D data
generated by (i), This subsystemn is implemented by replacing
z ! by &, ™ by Ain a 2-D circuit realization {ey., 22D con-
troller form), & and A are chosen as

S=pM. AM-units delay element

A=pV = Nounits delay element. (3.9)

1) The output frame generator decodes the 1-D (discrete-
time) output of the 1-1) digital filter described above into a
2-D (discrete-spatial} picture according to the inverse mapping
of (3.4).

Q). juN=(Ptmod N, [t - (Pt mod NYM|IN)  (3.6)
where P is (he unique integer such that
PM-ON=1 and O<P<N (37

The overall design is shown in Fig. 4,
We shall show that this proposed 2D digital filier will work
Let us note the 1-D (discretestime) output will be

YD) = HDY UWD) _
=HE o uz T, Wt )|Z-—1;‘UM’ Wt plV

S NN, i i .
B 2‘ Ly,—_, 2o I;"l.:D” w e phN B8
r 7

where {y,-‘,-} repiesents the 221 (discrete spatial) output dala
field. Note also that

YA Dy, pt

I

(3.9)

fora frame: M X V=100 X 101

Lig. 3 and then replaciug z77
1-D yealization shown in Fig. 6.
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1= {time) -0 (tima}
INPUT DATA QUTPUT ATA
; l : f SGTroT
I!?CPJ:\JN JI( ! - FRAKME
GEWERATOR %, 10 DiGITAL FILTER ¥, GENERATOR
'3 —
r
T T 1
) o
w(r i1 B L1} %
U

2-D INPUT DATA FICLD 2-0 OUTPUT DATA FICLD

Fig, 4. Overall design of 2-D digital filter.

Ime/line

Scaaniog time.  0.01 mafpire) -
a

1 wz/line

Scunning augle: &5

Fig. 5. Input scan gencrator and output frame penerator.

Comparing (3.8) end (3 9), it is clear that

TR S Gl
(£,j):iM+jN=¢
Since the system is a causal system
yii=0, i Lj<0. (311}

Let us consider only the integer ¢ with

=M AN, Q<N j<M

then (3.10) and (3.11) give

-
Y=g

since, for this special case, the summation set of €3.1¢) con-
tains only one nonzero point.
bona fide ouiput picture inside the M X N franie.

Theiefore, we will obtain a

Let us remark that the imepe scanning and display systents

used in our 2-D digital filter design ate not as complicated as
they look.

In fact, they can be very suuple as we shall show in the nexi

desipn exaniple,

Lxaraple: Problem—Design a 2-D digital filier for

' ]
H(zil , w Py e e
) 1402270+ 03w 401271 !
Assumce = 0.0 ms
Solution:
(i) ISG - {n this special frame (with V=31 4 1), the input

scanning penerator is indeed very simple, as shown in Fia 3.

(i) 1-D Digital Filter—Constructing the 2-D realization of
by 8§ and w ! by A we have the

(ili) OFG—The output fiame generator does the 1everse of

the ISG, displaying the picture instead of SCAINITIE.,
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02 0.3

A 1.01 ca dielay element
B: .60 ms delay rlemont

Fig. 6.

C. Dimensionality of Global State

Coensidering a bounded frame (M X N) system, it is interest-
ing to know the dimension of the global staze (or initial con-
ditions) necded io process the M X N “future™ data ficld.
Since vertical states comvey information vertically, all the
vertical states along the X-axis are pecessary initial conditions
and their dimension is mN. Similarly, all the horizontal states
along the Y-axis are necessary initial conditions {(with dimen-
sion nM) since they convey information horizontally. There-
fore, in the bounded frame case a total number of mN + nif
are needed to summarize the “past” information.

This very same idea can be used again from a computationat
point of view. Indeed, the nomber of required storage ele-
ments for recursive computations is also equal to nM + mN if
initial conditions are not zero. However, it is quite often the
case that the system slarts with zero initial conditions; then
the size of storage required is reduced to mN (respectively
M) which js used to store the updated data row by row (re-
spectively column by column). No storape is needed for the
1est of the initial conditions-ndf horizontal states (respec-
tively mAN vertical statesy—since they are assumed fo be zero.
This Is consistent with the result of Read [12] derived from a
direct polynomial approach.

Another interesting observation concerns the dimension of
the 1-D digital {ilter contained by our 2-D digital filter design
discussed above. Since it needs nM-unit—dcelays and mN-unit-
delays, the comresponding 1-12 state-space also has a dimension
equal to nM + mN. Note that, despite the high dimension of
the corresponding 1-D filter, 1ts high sparsity is very encourap-
ing for further studies.

In short, our studies on the dimensionality of 2-D global
states have reached a consistent conclusion from either theo-
retical or practical approaches.

IV, LAcarL AND GLOBAT, CONTROLLABILITY
{OBSERVARILITY) OF 2-I) SYSTEMS

In the study of 1-D systems, the notions of controllabitity
and observability were very fruitful, by themselves, since they
yielded a canonical decomposition of the state-space and
also becausc a state-space realizatior was minimal (ie., of min-
imumn size) iff it was controllable and ohservable.

Such properties would be also desirable for 2-T) systems, and
in [5} and [13] Givone and Roesser introduced what we shall
call local controllability and observability notions. However,
unlike what these suthors scemed to believe in [5], these no-
tions are not very satisfactory in the sensc that a state-space
model can be locally controllabte and observable without be-
ing minimal, and conversely a system can be minimal without
being locally controllable or locally observable, as we shall
see. It should also be noted that the controllability and ob-
servability notions introduced by Attasi in {2] or Fornasini-

PROCEEDINGS OF THE IEEE, JUNE 1977

Marchesini in [4} were also local notions and had the addi-

tional disadvantape, as we remarked earlier, of considering
such properties only for a partial state,

Definition 4.1 a) the system (2.2) is locally controllable
if, for zero initial conditions (3((0‘0)) = 0 and { an arbitrary
n + m vecior, there exists N, M > 0 and a sequence of inputs
u(i, ) (0, 0) << (1, /Y << (N, M) such that x(¥, 2} =£. b) The
system (2.2) is locally observable if there is no nonzero weak
(local) initial condition such that for zero input u{i, j) = 0 I,
j 7= 0 the output is also identically zero: p(i,j} = 04,7 > 0.

To be more precise, if we define the transition matrix
AN by

7, 4 1!
Towm 0 ! I A-

-1 ]n 0 it - - ] .
= 2. [(z )A] = 2 AWl @

ho 0w, ij>0
Then, from (2.3) it is clear that the solution of (2.2)is
5o LMoy i 0
0= 35 a0 (MDY, |
r—o 0 0 x"(r, G)

+ 2.

(0,0)5 (k, ry<(i,f)

[A(i—l—k.jﬂ') gl1.0)

FAUTRT 1) pODY L gy (4.2)

p(1.0) _ [B’] B(o.x).‘[ 0]
0 B,

and f we take into account the 2-D Cayley-Hamilton theorem
{scc [ 131, [14]), it 1s clear from (4 2) that the system (2.2) is
locally controllable iff{

where

Cron = [H(1, O MO, 1) -+ M3 F) - - Min, m)] (4.3)
is full rank, where (0, 0) < (i, /) < (n, m)and
M(,-,j):A(f“Li) BL0Y 4 4 (1) p(ou1)
Similarly, the system (2.2} is locally observahle iff

C
AN
Oypm = (4.4)

A fr,m-1})

CA(H—I,m)

is full rank, where (0, 0) <X (4, /) < (n, m).

These notions, introduced by Roesser, look like natural gen-
cralizations of the 1-D case. However they are not closely re-
lated to the notion of minimality, as will be shown in Ex-
amples 4.2 and 43 Example 4.3 will also illustrate the fact
that these notions as presented in (4.3) and ¢4 4) do not yicld
a canonical decomposition of the state-space and that if we
want to obtain such a decomposition we need to consider s£/+

e
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argrely the local controllability (observability} of the hori-
zontal and of the vertical state, -

Example 4.2: Consider the transfer function H(z, w) =
(z = w)(zew - 1), Then, using Nerode equivalence (see Ap-
prendix Al) we obtain the controller realization:

Xy 0 > 0 1 Xy 1
(z__] oNT Y foo.lLll..
x = 006 1 X + u
0 wl, ? : 2
X3 10 0 X3 3
Xy
Yy=110{x;1. (4.5)
X3

It is easy to check that (M1, 0) A0, 1) #1(2, 1] =15 and

c 11 o] -
ca® =1 g 0 -
cqfo-1) 1 0 0

so that this realization is locally controlleble and observable,
But it is also easy to verify that

ZXy g - 1 X -1 Xy
= + o y=(1 1}
WXy -1 0 X3 1 X3
is also a reélizatiou of 1{z, w) vwhich is cleatly minimal since
we need at Ieast one z7' delay element and one ¢!
element 1o realize #(z, 3).
Hence the realization {4.3) is not miniinal even though it is

loeally controllable and ohservable,
Lxample 4.3: Consider the state-space model

delay

Xy 111 Xy 1
zl 0 _ .
Xa = 111 X2 +] 0 u
0 wi,
X3 0 0 1 X3 1
R s
A 7
X1
Y= 1 | x,]. (4.6)
LW—J
C X3
The observabilily matrix is
e 1 11 1]
C’A(l.o) i ) 1
caen oty g o
AR 223
{0.2)
_CA ] Ml 1 3_4

Its 1ank is 2, so that the system {4.6) is not locally ohservable
and the rank of

1T 00
(ML M0, DA, D=0 0 1
010

is 3 so that the system is locally controllable. However,

zl 0 -1
Hiz,w)=C [( ) —A] B
0 i,

b(z, w)}
alz, w)

wiz+w- 1)

- (W~ azw-z- w)

so that there is no cancellation in the transfer function, and
moreover since §;a =1, § ,a =2 we need at least 1 horizontal
slate and 2 vertical states to realize H(z, w) so that the sys-
tem (4.6) is minimal in spite of the fact that it is not locally
observable,

From Examples 4.2 and 4.3 we can conclude that the local
controllability and observability notions are not adequate as
far as minimality is concerned. However, by looking more
closely at Example 4.3 it is easy 1o reformulate the local con-
trollability and observability notions in 3 way that would puar-
antee at least that a minimal system is locally controllable and
abservable.

We can remark first that, in [13] » Roesser introduces the fol-
lowing class of similarity transform: :

( ?h ) I-l 0 ) xﬁ)
v o /]
\""V—l

7

(4.7)

PP, N =1 A -1
Then, if B=TB A=1TAY ,C=C7171,

~[fzr, 0 1 ad, 0 -1
¢ -4 B=c -4l a
0 wl”f 0 w!?n .

so that the fransfer function is invariani, while this would not
be the case for 4 more peneral

T, 7,
T = .
Ty Ts

But we can observe that the definitions (4.3) and (4..4) for
lacal controllability and observability are not compatible with
the class of similarity transform, since & sysiem ean be non-
controllable (nonobservable} and at the same time we may not
be able to find a similarity transform of the class (4.7) that
would display the noncontrollable (nonobservable) parts of
the stale. Indeed we are mot sure that if L€ Ker 0, ,, £is

either of the form
}a 0N
or
&

(x)
0 }m } mn

as would be required by (4.7). This is what occurs in Example
4.3 since

1
Ker0p 5= [ -1
0

Itas nonzero horizonta] and vertical components,
However this supgests the following reformulation of locat
controlability and observability notions. Let

n - m i
,_;-_, T C H } a
= 1 ) v T P .
On,m - [012,!;!1 . Ou,m] = u :
C 1o } m

ol
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Proposition 4.4 " and x¥ are separately locally control-

lable (respectively locally observable) iff " and CV (respec-
tively 07 and 0¥) are separately full rank.

This new formulation is clearly compatible with the class
{4.7) of similarity transforms and yieldsa canonical decompo-
sition of the horizontal and vertical state. As a consequence, if
a system is minimal, the horizontal and vertical staies are sepa-
rately locally controllable and observable.

As an illpstration, the system of Example 4.3 is locally ob-
servable (separately) since the matrices

1 I 1
1 1 i
0,=11 and 0,=] 1 2 ]are full rank.
2 2 3
1 1 3

We present now some alternative controlability and obseiv-
ability concepts.

In the 1-D case, there was a close connection hetween eon-’

trollability and observability properties and the properties of
surjectivity and injectivity of the maps appearing in the
state-space factorization of the Input-oulput map (sec [151).

The same approach for 2-1) systems yields the following
global conirollability and observebility notions (ie., we re-
quire controllability or observability of the global state).

Eet U be the space of past inputs {as defined in the Appen-
dix A1), Y the space of future outputs, I = R T
global state Then &, the controllzbility map is as follows:

G: -'I(' . ]EFU —r a-(0.0) G:—I

where
Lio,0y = (" (0, ), C 1Y, ("1, 0),1 €TD)
and
"0, jy= 109 > Mk, j-naulk,n
N, MY (K, < (0. )
x(i, 0y = 101 > M@~ &, - r) ulk, r)

I -0y (B, )< (0}

1(1.0):(!” 0) 1(0‘1);(0 o ) “.8)
00 ar,
Similarly &, the ebservability map is
a ZSI (0,0) C fI — y(.‘.‘) qui

with

i .. o, r i L 9
y(i,j)= Z CA('J"’) ( ( ))_{ X CA(‘—R»I)( . )

r=0 0 k-0 x (k,O)

{4.9)

Diefinirion 4. 5:

(1) The system {2.2) is globally controllable iff € is a sur-
jective map.

(i1} It is globally observable iff # is an injective map.

Haowever, as far as minimality is concerned the global con-

cepts are as unsatisfactory as the local ones, since a system can
be mintmal but not globaily observable,

N PROCEEDINGS OF THE IEEE, JUNE 1977

I*fxample 4.6 The system
ZXy ( 0 "I) (Xl) ("’]
= + u
(coxz) -1 0f \xq 1
X3
¥»=Q 1}
X2

of Example 4.2 is minimal. Yet, 3t is not globally observable
since the global initial condition .

0,H=1, foral jEN
xU(i,0)=-1, forall iCH

is not ohservable, indeed if « =0 then
. .
x(G = e forzll i,j

¥(i,j)=0,

Hence the most natural generalizaiions of the 1-D approach
to controllabitity and observability fail in the 2-D case. In the
next section, we present an allermative definition based on
coprimeness notions. We also give an inlerpretation of the fail
ure of plobzl controllability {observability).

forall i j.

V. Mopar CONTROLLABILITY (OOBSERVABILITY)
AND MINIMALITY

In the 1-D case, the telative primeness concepts could also
be used to define controllability and observability. In [16]
Rosenbrock proved that

A, B was controlluble iff zF - A, B were left coprime
C, 4 was observable iff €, zF - A were right coprime.

This approach can be generalized very easily to 2-I systems

- and will also provide a definition of minimality,

Definition 5.1: Tet H(z, @) = VT U where V, T, U are
2-I» polynomial matrices. It is a minimal description of f1(z, w)
iff

V, T arc right coprime and ¥, U are left coprime.

This amounts to requiring that there is no cancellation in the
2-D transfer function #(z, 2} In part ¥ we also proved the im-
portant pyoperty that if (¥, ¥, Iy and (Vy, T, U;) are two
minimal descriptions of £, {7} = |T;|. We also presented an
algorithm to extract the greatest common right (left) divisor of
two polynomial matrices, which enables us to find a minimal
description of ¥ from a nenminimal one.

Thus in the state-space description case

zf, 0 -
H= C -A B
0 wl, .

zl, O .
-A4,.8 are left coprime
0wl

is minimal iff

(5.1)

and

zf, O
C, -A are right coprime. 3.2
0 wl,
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Definition 5.2:

{i} A, B is modally controilable if (5.1) holds.
(1) C, A ismodelly observable if (5.2) holds.

These definitions are clearly connected to minimality but
the state-space significance of controllability and observability
disappears in this formulation. This is why we shall give now
an equivalent state-space characierization of the notions of
modaal controllability and observabilitv. Another consequence
#s that for a single-input-single-output system, if

bz, w}_

a{z, u3)

H{z, w) =

and if b and a are coprime with §_a = n b,,a =m, then if

zf 0 -1
0 qu .

is a minimal realization of H{(z, «3) we must have

(AR

and ence p=nand g =m.

Hence the validity of our definition of minimality of a state~
space model will depend on our ability to realize a fransfer
function of erder {n, m) with n + w1 states This problem will
pe considered in Section VL

A consequence of the relative primeness criterion for 2-D
potynomial matrices given in Part | is that ¢ and

zl, @
-A
0 Wi,

(o 2 )
) 0 51, =pdm

C

=afz, )

are Tight coprime Mf

for any generic point (¥, &) of any frreducible algebraic
curve V; appearing in the decomposition of V, the algebraic

curve defined by
zl, © al=o.
0w,

it i_s to be noted that the rank is considered over the field
K(Ey,52)
Now, assume that

: i, O
Cand -A
QO wly,

are not Tight coprime, this means that theze is an jfrreducible
alpebraic curve W, a generic point (£, £,) of this curve and
i € K"Ey E2 ), b, € K™ &y, £2) such that

A Dy (tl Ph)
e £ 0y
r

c( “) = 0. (53)
Do :

a53
Then, if we define
. n
guo = |4 A2 e g gon
0 £yl
and
I, 07
3(0.1) - [EZ n :A(O,l) +£21(1,0) (54)
Az Aa ]

the set of equations (5.3) can be rewritien

q0.0) (Ph) ~E, ([U:))
Py Py

Gm,n(f”’) _t, (”“) , 55)
Py Py .

c (ph) =0
Pu
s0 that (Pn)
Pv

is a common cigenvector of (i(l'o) and (((D’]) which is in the
null space of C. Define the transition matnx

qlsn - g0} gli-1.d) ¢ @(0,1) (I(ff--l)_ (5.6)

From (5.5) and {5 .6) it is easy to prove by recurrence that

o[BI Grip T
oD (") = —‘—_—f-)— ghoel (TTY) 0 foraiiig
Do ity Pu

D
C('r("")( “) =0, foralli,j. (7
pl}

Hence

Bui this is equivalent to

i gr i
Z cAt-i-n (Ez p;,) + i (‘A(i—k’}')( 0 ) =0
0 ck .
51 P

r=0 k=0
(5.8)

From {5.4) and (5.5) it can indeed be proved by recurience that

ot (““) - Zl, cAGT1) (J2 p“) £ Y calitRD (.ko )
_pv r=o Y k=0 1 P

A consequence of {5.8) s that
A&y, ) = (s pry, r €), B Py, A EM)EKer 0 (5 9)

where © is the global observability operator defined by (41.9)

So, if the system is not modally o bserreble, what happens 18
that a full cone (5.9) assaociated with the alpebraic vatiety W
and the peneric point (£, %) is in the null space of the vb-
servahility operator G,

Equation {5.9) provides also some motivation for the qualifi-
cation “modal” in our observability definition.  In the 1-13
case, a system was not observable iff there was a mode hg and
an associated cipenvector p(ig) whicl was not observable (ie.,
in the nuflspace of the Gbservability matrx) In the 2-D case,
the modes become irreducible algebraic curves W(Ey, E.) with

LY
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which are associated eigencones as in (5.9}, and a system is not
observable if one of these eigencones is in the null-space of the
observability operator O,

To be more precise, the eigencone defined by (5.9) in the
global space ¥ is such that

( +})! : Ph(&l,fz)
x(, ) =~—== ¢} ¢ (
RO S P

:
i

which is the 2-D peneralization of

x(i) =25 pho),

(where we suppose that u = 0, X¢o,0) being defined by (5 9)
in the 2-D case, x{(0) =p(Ay) in the 1-D casc).

Remark: In Part 1, we had remarked that algebraic varieties
of dimension 1 and not of dimension 0 were to be considered
for the 2-D coprimeness of two matrix polynomials A(z, ¢3)
and B(z, ). Similarly, for the notion of plobal observability
cigencones associated with algebraic vanetics of dimension |}
arc to be considered and not those associated with algebraic
varieties of dimension 0,

This gives us an interpretation of why global observability
notions fail. Indeed, for Lxample 4.6

(z. i ) z 1
-A
&N =ll ¢

- C I 1

), for 014, f

foralli

is not full rank at the point (zy,e)= (1, 1) which is an alpe-
braic variety of dimension 0, and

(2 )0)-()
o)

defines an cigencone of dimension 3, which, as we observed in
Example 4.6, is included in the null-space of the observability
map o,

To fix ideas let us consider the following example.

Example 5.3 We saw in Example 4.2 that the system

P 6 - 01 X1 1
(21 0) ----------
Xo | = : xXe 4 HL T Ju
0 wl, 2 ] : 01 2
X3 1 -0 ¢ X3 0]
X}
y=¢11 ol x,
X3

was not minimal, though it was locally controllable and ob-
servable. Now

z1 0
dct( )‘AIGJ(ZOJ“ 1)
o (.x)[g

so that this sysiem has two modes (eigencurves):
V) defined by o =0, : arbitrary;

Vo defined by (¥, £} =(z, V/2).

z 6 -1
£1 00 -1 ° 1}=2, sothat ¥V, is not modally
10 0" o controliable,
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If we test the modal controllabitity of ¥,

'z 0 -1 - 1
p 0 zl -1 - 1}1=3, so that V', is controflable.
-1 0 L.
4

Similarly, testing the modal observability

S

00 -1]

Vi 100 o™’
-1 1 o]
[z 0 -1

V,: 0 5 - _;3
= 1o o 1.
-1 1 0]

50 that the system is modally observable.

Then, we can clarify the notion of eigencone.  First, by
duality, the observability properties of {(B', 4"y are the same as
the controllability properties of (4, B); this implies that ¥, is
not modally observable for the pair C = g = (L 1 0)

(This duality arpument avoids the ditficolty of defiping lefe
eipencones associated with A4).
Now, since

z 0 -1 ¢
i
0 0 ¢ O
-1 —
-1 -1 0 0
z
1 1 0 | 0
1 z l.—q Pl
A -11= -1 and € |-1{ =0
0
z z/ | | =z

And, if we consider the global initia] condition

x(0,/3=0, foralljs

Iz(f, 0) . f-1
=z , forallis
X3(f, 0) z

when z ovaries, this initial condition describes a cone in the
global space ¥ . This cone has the property that if we assume
u(i,j)=0

{5.10)

) forj=0
(.11

0, forj=1
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and forall i, /s

¥4,))=Cx G, ) =0.
Hence the cone (4.12) cannotl be observed, moreover relation
(5.11) shows that this cone is an eigencone.

A consequence of Example 5.3 is that the system considered,
being not modally controllable, is not minimal as we had
properly pointed out in Example 4.2. However this raises two
important questions,

(i) The existence of a reduction procedurc for nonobservable
{noncontrollable} systems. In Part I we gave an algorithm to
extract the GCRD of two 2-D polynomial matrices so that if

zf,

~A
(")IIH

and C are not right coprime we can exhibit R(z, @), their com-
mon factor and -

ZIDI 0
0 o,

~A=AR

C=CR.

However, 4 and Eﬂj{re not any longer in state space form. Yet
we know that 8, 14] <n or 6,14} < m, so thal our ability to
exhibit a state-space model of lower dimension depends on the
existence of procedures o translorm A in a form which would
be row (or column) proper in both z and w.

(ii} The existence of minimal realizotions, iec, of order
n+wm for imreducible transfer functions f{z, )= bz, w)f
2(z, ) such thal S g ==n, § ,a=m. Clearly (i) and (i1) are
very related questions, which we shall discuss in Section VI,

VI MINIMALITY OF STATE-SPACE MODEL

it is shown in the last section that only a statespace realiza-
tion with order (1, m)}—iec., the same order as the transfer
function—can be bolh modally controllable and modally ob-
servable.  Now the question is whether such a realization
exists at all,

The best way to prove the existence of such realization is by
construction. Note that, in the 2-D statespace model, the par-
ticular transform

}h] __ Ty O Txu _ Xn

3:u 0 7, Xy Xy

cenables us to chanye e basis of the state-space. The matrices
{4, B, C, 1} ate transformed o

(6.1)

A=TATY B-1iR

C=01 D =D, (6 7)
In fact, it is more convenient 10 work with a canonical form
under the “similarily transform™ defined by (6.2).

fn the 1-D case, all minima! staie-space model can be trans-
formed to the coniroller canonical form., Similarly, almost
all' 2.1 statespace model can be transformed 1o the following

madal controller form {A, B, C,} (assuming D = 0)

TUntike 1-1) case, there are some 2-]) state-space systems {A L3, C, D}
which cannotl be transformed into this paticular canonical model
However, some modified canonical model can always be vsed as a
replacement,

On e understanding that some neadification on canonteal form may
bu necessary, here we shall concentiate on the “medal controller form.”’
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ot
o
»—-IC'

_
O
- Q

L_OA_ .

i Lo

O [bl(] EEP— 'ubn(}lblll ------- bonll .
(6.3)

where the entries of 413 and A4 are to be chosen such that

2l
det ( ) -A) =alz, w) (6 4)
C‘JIPN
and
2f

" -A| B

{ Lo bzw)  (65)
det T T - =0 Z, wr). 8]
- 0

It is casy to check that, in {(64), the cocfticients {egq,
0<i<in} and {ag;, 0% 7% m} have already been matched.
Similarly, in (6.4), the coeflicients 16,0 <i<n} and
{bojs 0 =<j < m } have also been metched. Thercfore only 2nm
coefficients {aj;, 1 <<i <in, 1 )= m} and {b,-‘,-, 1<i<n,
157 m} ate o be matched  In other words, there are
totally 2nm (nonlinear) equations to be satisfied. Coincidently,
the pumber of free parametlers in matiices Ay, and Ay s also
Tnm. Thercfore it is patural to conjecture that a solution (or,
more precisely, a finite number of sclutions) should always
exist.

Now let us examine the plausibility of this conjecture by
taking a low-order example.?

Lxample 6 1: {1, 1} Order Case-For ease of notation, let
A =@, Ay =B Also {without lass of penerality} let us
assume that by 7 0 {otherwise, we may have to use another
canonical form). Thep (4) becomes

2o g 2 Fapw - af o Fage taggw tay
or equivalently
aff =agy (606)
and {6.5) becomes
borz + Dyatr + {@wher Yoo Y bige tboi )
=hgzt bt by
or
borff + b= b ~worbio

(6.7)

“awpbor

TE Sontag (University of Flonida, Gainesville, FL) independently
arrived a1 the same conjecture {private communication).

et

¥ S
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Since big F 0., (6.6) and (6.7) have solutions

o= (b - bio b
2510( 10 “do1 10 T 10001
i"/(bu —ayebio - ambm)2 - 4ay boybyo)

B=-ayfo

(6.8)

Therefore, the existence of the (1, 1) order state-space model
has been proved by construction. "

Unfortunately, (6.4) and (6.5) usnally give a set of 2nm
nonlincar equations; thercfore, the solution may not always
be in real numbers. For realization with real-gain constraints,
we often need a realization order higher than n + m. To show
that an {n, m) order realpain realization may not exist, it is
easiest to work on an example.

Example 6.2: The problem is to show that thereisno (1, 1)
order real-pain realization for the transfer function (z + w)f
(zea~ 1) )

Solution: Let us assume

S
)

C=fg . (6.9)

Since a3 =-1, f=a". Then (6.4) is satisficd, and (6 5)
becomes

fhiz +egua— (eha Y tgfa) =zt w (6.10)
or equivalently,
fh=1 (6.11)
eg=1 (6.12)
eha +gfa=0. (6.13)
Now, (6.13) X hg - (611D X g2a - (6.12) X k7 e gives
g’(x +h%a =0, (6.14)

Since (6.14) has no real number sotution, no (1, 1) order real-
gain realization exists, =

In the practical aspect, real-pain realizations are much nrore
desitable than complex realizations because the former are
much easier to physically implement. Therefore, our (2m -+ 1)
order realgain realization (cf. Section 1) are justified to be
practical and low-order realizations. Indeed, for the transfer
function in Example 6.2, the minimal recl-pain realization
{4, B, C} can he ohtained by our realization method

0ot-1 0
=1t oo

10] -1 0

"1
B0

L3
c=[1 0 1)
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A. Special Transfer Functions ‘
In designing digital filter, the transfer function may be in-
tendedly chosen in a certain form for the purpose of an casier
andfor better realization. Therefore, it is worlth mentioning
that some special types of transfer function can bhe easily
realized in (1 + m) order reat-gain realizations. There are two
important special types of transfer functions:
(i} with separable denominator;
(ii) with scparable numerator.
¢t us first consider the separable denominator case. Assuming
bz et bzl ™)

alz ) Bw )

Hiz '™

Hr

> bz e

=0 j=G
13

az™ w ™)
n

h (aptogztv-- +a_1 27y ((;0_-%{3," P {377,.,10.-)?'}’_)’
0o 40, Bo#G (616)

then its circuit realization is shown in Fig. 7.

B. Special Form [

Tet us check the validity of this reslization. Note that in
Fig. 7 the leftamost “core’” cirenit is in the “controller form™
so the transfer function between the Input node and node o
(cf. Fig N is
e .

Bing, =5 e 1=l ,m
Il )
Also note that in Fig 7, the right-most part is in the “observer
form™ so the transfer function between node §; and the out-
put node is
z*!

g out a(;,]j. =1,

Therefore, the overall transfer function is

S e
s e
Talz My Blee™

which 15 clearly cquzﬂ to ii(z"", w D of (6.16).

Secondly, let us consider the separable numcrator case,
which is to say a system with transfer function
=1y 0 -1
~ oz Y5 (™)
-1 — — - - -
e whH=HE w0 T (6D

n n

Z Z i?i]'Z .-E(J)_i

=0 j=0
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At first sight, it seems quite difficult. However, Th actuality,
the realization can be readily obtained by using the inversion
Tule by Kung [17]. More precisely, to realize the inverse
system of Fig. ‘7, we first note that the path “input = - gy =
dg * - oulput” is a “feedthrough™ path (i.c., a path connecling
input and output with only constant gains). The second step is
to invert all the gains and reverse all the arrows on the path {in
onr case, replace bgg by b&f)_ Lastly, change signs of the gains
of the branches which are entering this path. These steps com-
plete the realization of H ™! (z_', w"l) as shown in Fig. 8.

C. Special Form I

Finally, we would like to point out that, in the usual design
problem, the constrain{ on pumerator is much weaker thaa
on depominator, hence the special form I seems to have
hipher potential in practical applications.

ArrenNDix Al
THE ALGEBRAIC REALIZATION OF 2-ID STATE-SPACE
MobnELs
The algebraic setting is the same as in Formasini-Marchesini
{31, 4] or Wyman [18}. ¥For convenience, we suinmarize
some of the notations.

A. The External Representation for 2-D Filters
We shall consider a discrete, linear, causal, 2-D invariant,
single-inputl=sinple-output (S1SO) 2-D filier, That is to say

T=%X % is the time ser, 2 X Z has the partial order
G, < (I,m)ifi<t! and j=<tm.

The past of the point G, /) is PG, = {(I, m) (I, m}<< G, )}
and its future is F@, fy= {0, m) G, jy=<< {1, m)}.

Since we consider a SISO filier, U (the set of inputs) = ¥ (1he
set of outputs) = K, an arbitrary field,

Now, K% j5 the vector space of sequences {5,-,.-, iCH, JEE,
s € K}andifs € K%% (he support of s is

sapp = {(, j) € EXE sy o}

5 € K%%% 35 said to he of past finite support (see Mullans and
Elliott [71)if supp s MV 20, /) is finite for all (7, /) &€ 2XZ.

2, the set of past finite sequences is a subvector space of
K5%% and we take U (the strings of inputs) = Y(the sirings of
outputs) 2 23 z and w, the shifls on ?, are defived by 2(5); =

2Yhie finite past condition ensures that for the output at time (i, f)
Vi = LauppG) PG, ) Tioh joivpg, the sum is finite,

957

F
p P

ia Te
J@P__jf__,ﬂ

Fig. 9.

sie1,j and s); =55 74y so that ¥ € Wand y € Y can be repre-
sented by

B - A -h, -k
ulz, w) 2 Z Uz P ® and yiz,w) 2 z Yot W
ok Bk

Then, the 2-D filter is given by the 2-IY input-output map
F:U—> Y Fisassumed linear, causal, and 2- invanant.

By 2-D inveriant, we mean that ¥ commutes with the shifts
z and w

Jz=zF and Fw=wT.

By ceusal, we mean that the spread function of an impulse at
time (0, 0) is contained in Fgqy o) the future of (0, Q).

Hence F(z, 1), the 2-D fransfer function coiresponding
to 9, is

F(z,w)= Z

0,0

fzjz*"m'jE Kz w1 At

and
¥z, @)=l (z, w)uiz, w)

is the (z, o) transform input—-output relation.
in the following, we shall consider that
bz, w)

1z, @)= alz, w)

is rational. In order to ensure causality, we assume that the
polynomial @ is monic

alz, w)=z"w" + > ajz" ™

(0,0)-<<(i, )= (n.m)

(A1.2)

B. Nerode Fguivalence

Cilearly, 9 has a Ki{z, w] module stiucture and since ¥ is a
2-D invariant, itis a Kz, ] module homomorphism. Now as
in the 1-D case (see [15]) we decompose ¥ as Fp © Ff where
Pp is the space of past sequences and Fx the space of future
sequences, :

The restricted input-output map 5 is defined by Fig 9,
where i, is the canonical infection of p in P, and 7 th€ pro-
jection of ? on Pr. M Pp is (z,¢2) invariant, ¥ is also a
Klz,wi module homoniorphism, the shiffs on ¥p being just
and ), and the shifts on $p being defined by zp = 7pz and
g = MG,

Remark: The decomposition of ¢ as ), © Fp- where ¥, is
(z, ) invariant coresponds to partitioning % X% into a
“globai past” and a “global future” with a cross cut of 2 X 2.

A cross cutr (@) of 2 X Z (see Mullans and Elliott [7}) s a
subset of 2 X Z such that for all (7, k)€ 2 X % one and only
one of the following is true: (1, K)E(C); (G, 7)< (I, Lk} for
some (7, 7YE (), U, k)< (i, 7} forsome (7, j) € {€).



Fig. 11,

Thus (@) defines a partition of 2X 22X & =PU &
P (the plobal past)
= {(h, KY:(r, kY {5, j) for some (i, N E ()}
F{tha global future)
= {(h, K):G, )<, EYforsome (i, j} & ey}

The conditions imposad on the cross cuts puarantee that £ s
{(z, ) invarjam {sze Fig 10} Frosm now on, we shall con-

sider the following cut of £ X 3. This corresponds to Pp =

o K [z, ] and
Op = 97 =K [z, 0] 2w K 2] {1
oz (K[} [z (A1 3)
Nete:
K21 lw "N # Ko 2]
Now, as in the I-I) case, canonical statespace realizations are

induced by the canonical factorizations of ¥, shown in Fig 11,
where % is a K [: wl module,, and ¥ are K [z, w] modu!u
homomorphisms, g is onto, ¥ is into.

Two particular }anomcal state-spaces of interest are 7602
9.{) Kur 1' and z)[c)b (H( f)

But since we bhave assumed that F(z, ) = k(z, eo2}falz, w)
15 Tational

&)
={y €9 npalz, )y =0}

Ker 5 =a(z,W)?p and

(A14)

Now, we shall study more closcly the canonical realizations
associated with X, znd T,

¢ The Controllability and Observability Realizations:
The Notions of Global and FLocal Stute-Space

We need first to study the structure of Fpa(z ) Fp. From
(A13)ifu€E 9

u=ulz, W)+ Z u:‘-‘)(z) w i Z ulz-(m) z7
1 1
where
u €K[z, 01, vy €K[z], uf EK[w].
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F
i (n--i)
[
1 {m-1)
H
)
1
\§
Fig. 12
]
— ____l F
s

Fig. 13,

Now, in order to reduce # € ¥p modulo a(z, ) Pp, we use the
Euclidean division algonithm over K{w)} [z] (respectively
Eizylw))yie  if § & K{w) (7]
K () [#] such that

, there exists unigue ¢ and rin

G =gatr, with d,r <n=8a.

With this procedure u(z, w} € #p can be reduced to x (=, )
such that

X (7, )= Z .x,-jz"mi (A.1.5)
e
where
D, = {0, ])0\1 -1, j=m-1
or 0=j<<m-1, i<in-—1}

(see Fig 12)

Hence the state-space is infinite dimensional, as has already
been noted by Fornasini-Marchesini and Wyman, Fornasini
and Marchesini (see [4]1) failed to obtain the structure {A.1.5)
for the staicspace and consequently, as we remarked in Sec-
tion 1V, they introduced only a “partial” statespace model.

However, they made the interesting observation that while
H,o{z, w) of {A.1.5) preserves all the past information, only a
finite number of states are necessary to perform the recursions
of the 2-D filrer.

Indeed, since the 2-D system considered is causal, if we want
to compute the output y at time (1, 1), we need only a finite
number of the statt.s x;; taken at time (0, (), namely those
such that 7, j} & ﬁl,,m, where

9 = (G, ):0,0SEHS@m-1,m-1)
ori=-1, 0<j<<m=-lorj=-1 0<i<n-1}

{see Fig. 13).

Following the terminology of Fornasini and Marchesini, we
shall call X, = {xu (i,/)E D, } the global state associated
with Nerode equivalence, while 2

)H {xq (l,]}Eﬂ](l) } will

U
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be called 1he Jocal statesspace. The local statespace is of di-
mension #o1 + 7 + 1 and can be decomposed into a horizontal
slate xy, acorner state X¢ and a vertical state x,,

Xy = {xijif="1, O0<i<n-1}isof dimension n
Xe = {xiﬁ(O, V<A< -1, m - 1}} is of dimension nm
xy = {xz:i=-1, 0 7= mt - 1} is of dimension mr.

The local state-space model associated with ?(5‘2 1s oblained,
as in the 1-D case, by studying the effect of the operations

Zxp6lz, ) + 1™ () madulo a(z, w) ?p

where %) = Zuufof"
1

WXeolz, ) + 1™ (x) modulo a(z, ) Zp

where 1™ (z) = Zu.mz - (A16)
1

not only on the global space, but also on the tocal space 4 (2)

The operations (A 1.6} correspond to shifting the past :g
quence of input either horizontally or vertically and con-
catenaling some new inputs either along the vertical axisi =0
or along the hordzontal axis F=0.

Let
a ;om :
alz, )= 3 @i (w) "= Y 2 (z) ™7
i=Q i=0
where

v . n
afi) =3 g i aj’(z) = D", a1
f=0 e

{we Nave assumed that a{z, w} is monic),

Now, Iet
x wo
. 4 (&) dz -
Hie) =28 AR
aplw) [
sa that Irf,i)z =apo and also
7
a; {z) = .
Hi7(z)= s a3 Do, —s
ag (z) 50

with A§ =4,
modulo afz, w) 9,

Thea in order o rerform the reduction
of the operations {A.1.6) we use the

‘1dentitics
z .
2T i ‘EJ"E"JI g
1 au(w)

n
- ): Hf(m) 2 modulo oz, w) §p (A 1.74)
1

w2
mo_ IR 4 ()

m .
- Z 1177(2) " modulo wlz, Y Pp. (A17Y)
1 .

Then Fig, 14 deseribes the effect of the shifts z and w7 on Uie
local state,

959

*h g Vo0

3 Xe I

- _j_w_
P g
»

-

Effect of z shift Effect of o

shifc

Fig. 14. Full line represents the old state and dotted line represents
the new state. Arrows represent the reductions

Thus the horizontal state X can only be propagated hori-
zonially, the vertical state Xy can only be propagated verti-
cally, and the corner state X can be propagated in both
dircetions. *

Now, if we index the states of Fig 14 from right to left and
top to botlom and if xi is the ith row of x., we obtain the fol-
Towing stute space model which is in 2-D controliahility form

. 7 |
[ 61,0 A i Ak oo AP0
L _,___AL,_.___,,,,,__._,.,,__I.,,,,__
xelit1,7) P Apy Ape A LS,
. o : Lo
_ 0 ! . . y .
— ! . [
. ! Alzc :
., - R t . Ir v
X:jl(f +1,7) : Auy ! ‘Sm
xu(ia/' 1) 0 al 0 Ay E AUUJ
. _J —
x (i, 1)
G0 57
X3, 1)
v + 0 uli,j} (A1.8)
xp (i, )
T T e ]
T N B A
- R | e P
Y, fy=1c, O o OO G X))
where
b
f.,fﬁ_JL_-M
0 (FD ‘]?E\,”L
Ann = 1_ i . n
_() B /:(()l}'
Ht
R,
e
o h(m)m

A, = 1 () m
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n
_h(n}z ‘|
A;fc) = O : n 1=1<n
l(l)z
n
_A
4 ™
h(m)w . *h(m)w
A:E = E ) E m
(o __hﬁl)w
!
— i -
t
t
]
1
i
S;=1j-——- ! 1< i< m
1] 1]
0 0
B?,n = n BEO = m
0 h.—04
T =l el Gy =lher o Aom]
Co = [hll """" hm‘]

The hy’s are the Markov parameters of the 2-D filter, Le.,

e S ayrte
afz, &)

The state-space model {(A1.8) is clearly in Roesser’s form
However, we could have propagated the corner state vertically
instead of horizontally.

Remark: This suppests another type of model which would
have threc types of states: horizontal of size n, vertical of size
m, corner of size nm. These staics could be propagated re-
spectively horizontally, vertically, and in both directions
Physically such a model would correspond to a prid constituted
of delay elements 27! and 7', However these models are not
minimal from the point of view of Roesser’s model and the
number of states: n +m + nm s very large.

The 2-D observebifiry form can be derived in a similar way,
indced X op 15 the space of the

_y(Z,&J) = Z

(1, 0)=(Lf}

yyz W

such that wgalz,w)yiz,w)=0. But these v’s can be pa-
rameterized by the pj;’s such that 1=i<n, j=1orizl,
1< j<<m. Indeed, since the cocfficient of z et in
alz, ) (z, tYis O

—

i ¥t~ imel—~j {A1.9)

Yopet m+1 77

(0.0)<(i.5='-1(r1.m)

similarly all the p;'s such that i n + 1 and § = m + 1 can be
computed.
As a consequence X, = {}',-,-:! Sisn, j>=l ori=l,

1<j<Im} is the observability global space. Also, since
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y,,ﬂ m+s depends only on the y;;’s such that (,n=enp<

(n+1, m+1), the local space is :(( ) = {VU a,n<sen<
(n+1,m+1)} and is of (hmenmon nm +n+m. This local
state can also be decomposed into a horizontal state of dimen-
sion n, 2 vertical state of dimension m and a corner state of
dimension nm.

The corresponding matrices (4, B, C) can be obtained easily.
Also, some other canonical forms can be derived: for example,
the controller form anses by factoring

F: s b(z, Cd) X T .
al(z, w)

and by realizing
1

¥ afz, )

in observability form and then composing with mgb(z, w).

Moreover, althouph the previous models are of size
nm +n+ m and hence arc not minimal from the point of view
of Roesser’s model, their size can be reduced easily. A special
reduciion procedure on the controller form yields the imple-
mentation of size n + 2m obtained in Section 111

APPENDIX A2
SOME NOTATIONS FOR THE 2-1) Z-TRANSFORM

We consider the sequence x{i,7), i = 0,572 0. Then

Z{x(@, N} =x(z ) & D)

x(i, )z

irojro
and
Zix(i+1,1)} = Z x(r+ 1,5) PR
im0 jEo
=z{x(z, W)~ xbu(w)) (A2.1)
where
x‘;—,u(w) == z: x(0, 0 w™
izo
» = {40, 5), j €7} is the vertical axis.
Similarly
2ix, i+ DY =wlxiz, w) - x5,(2) (A2.2)
where
) xp )= 3 x(, 0777
ivo
and &, = {(,0),i € n}is the horizontal axis,
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