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1 Structural Rules

Our formulation of a natural deduction system for general logic is due to
Read [Rea88, pp. 51–71] and Slaney [Sla90].

Definition 1.1. The collection of dependencies is defined inductively.

1. The following are dependencies: T, t.

2. The following are dependencies: 0, 1, 2, 3, 4, . . .

3. If x and y are dependencies then (x, y) is a dependency.

4. If x and y are dependencies then (x; y) is a dependency.

As usual, we allow ourselves to drop the outermost parentheses. So, the
following is a dependency:

7; ((4; 3), 2)

The following is also a dependency:

(7; (t, 7)), T
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Henceforth, we never allow empty dependency sets (as is permitted in
Lemmon’s system [Lem78]). Instead, the dependencies t and T will play
the role that is played by the empty set in the traditional formulation.1 So,
the line

t (n) A

is what we need to get in order to show that A is derivable from no as-
sumptions. We will explain shortly how one can obtain t as a dependency
by itself, even though one always begins with 1 as the first dependency.

What is the meaning of the comma and semicolon? That’s not so clear.
For now, we use some suggestive terminology: comma corresponds to ag-
gregation, and semicolon corresponds to fusion. Intuitively, a fusion of
sentences does necessarily strengthen the sentences.

We now give some meaning to the two constants t and T. Intuitively speak-
ing, t is the set of all tautologies, and T is the emptyset. Formally, the two
basic rules for using T and t are:

t Identity

t; X = X

In natural deduction format:

t; X (i) A
X (j) A i, t=

T Identity

T, X = X
1Those who know some category theory will quickly realize what is going on here: T is

a zero element the category of dependencies, and when “;” is associative, t is a monoidal
unit.
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In natural deduction format:

T, X (i) A
X (j) A i, T =

Given the structural rules for the comma (given below), we can always
simply omit T. Just treat it as you are wont to treat the empty set!

Comma Semicolon System
X ∗ (Y ∗ Z) = (X ∗Y) ∗ Z SR1 Associativity
X ∗Y = Y ∗ X SR2 Commutativity RW
X ∗ X ⇐ X SR3 Contraction R
X ⇐ X ∗ X SR3 Mingle RM
X ⇐ X ∗Y SR4 Expansion CPL

The top two rows (associativity, commutativity) are two-sided replacement
rules. That means, that given either side of an equality as a dependency, we
can replace it on a subsequent line with the other side of that equality. For
example, SR2 tells us that we can replace X, Y with Y, X.

Postulate: We assume all structural rules for the comma SR1–SR5. Hence,
we are permitted to make the following moves in a proof.

1 (1) A A
1, T (2) A 1, T =
T, 1 (3) A 2, SR2
(T, 1), (8, 1) (4) A 3, SR4
T, (1, (8, 1)) (5) A 4, SR1

The comma rules follow automatically for Lemmon’s system, because it is
implicitly assumed that dependencies aggregate by set union. (Verify for
yourself that set union obeys SR1–SR3, and that SR4 is a consequence of the
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fact that we can use the conjunction trick to add arbitrary dependencies.)
If you think about it, you will realize that this is definitely a non-trivial as-
sumption that we made (without realizing it) about how deduction works.
That’s why we introduce the semicolon, because it’s not completely obvi-
ous that all relevant operations on dependencies obey the same structural
rules as the set theoretic operations.

2 Inference Rules

Rule of Assumptions (A)

i (i) A A

We apologize for the confusing notation: A (italicized) is a sentence, whereas
A (roman) is a citation.

In words:

On any line, you are permitted to write any sentence, so long as
you write the number of the line as the dependency and cite the
rule “A”.

2.1 Copying Rules

Double Negation (DN)

X (i) A
X (j) −−A i, DN

X (i) −−A
X (j) A i, DN
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∨ Introduction

X (i) A
X (j) A ∨ B i, ∨Intro

X (i) A
X (j) B ∨ A i, ∨Intro

∧ Elimination

X (i) A ∧ B
X (j) A i, ∧Elim

X (i) A ∧ B
X (j) B i, ∧Elim

2.2 Aggregation Rules

∧ Introduction

X (i) A
Y (j) B
X, Y (k) A ∧ B i, j, ∧Intro

2.3 Fusion Rules

We have to be careful now in the statement of these rules, because they
depend crucially on the structure of the dependency set.
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Conditional Proof (CP)

i (i) A A
X; i (j) B
X (k) A → B i, j, CP

In words:

We can remove dependencies that are fusioned to the right by
placing the corresponding sentence as the antecedent of a con-
ditional.

In practice, the modified CP rules renders useless any making of irrelevant
assumptions. Because, if we already have a derivation of B from X (i.e. a
line with dependency X and B on the right), there is no guarantee that we
will be able to get a derivation of B from the dependency X; A. Roughly
speaking, the fusion of X and A might be logically weaker than X.

Note: CP only applies to dependencies that are attached to the right. For
example, the following step is not warranted by CP:

i (i) A
i; X (j) B
X (k) A → B

However, when the semicolon is commutative, then one additional step
will transform this into a valid inference.

Modus Ponendo Ponens (MPP)

X (i) A → B
Y (j) A
X; Y (k) B i, j MPP
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Modus Tolendo Tollens (MTT)

X (i) A → B
Y (j) − B
X; Y (k) − A i, j MTT

∨ Elimination

X (i) A ∨ B
j (j) A A
Y; j (k) C
l (l) B A
Z; l (m) C
X; (Y; Z) (n) C i, j, k, l, m ∨ Elim

3 Some Systems of Relevance Logic

Definition 3.1. Consider some set of the structural and inference rules. Let
A1, . . . , An, B be sentences. Then we say that

A1, . . . , An ` B,

just in case there is a correctly written proof with final line

1, 2, . . . , n (m) B

where Ai is assumed on line i, for i = 1, . . . , n.

Postulate: All systems obey all structural rules for comma.

Postulate: All systems have the full set of inference rules.
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3.1 DW

DW is the system that assumes no structural rules for “;” other than t Iden-
tity. However, t Identity yields some tautologies.

We now show that ` P → P in DW.

1 (1) P A
t; 1 (2) P 1, t =
t (3) P → P 1, 2, CP

In fact, it can be shown that the only tautologies in DW are of the form
A → A.

3.2 Associative, Commutative Logic (RW)

The system RW assumes associativity and commutativity for semicolon.

Things that can be proven in RW:

Permutation ` [P → (Q → R)] → [Q → (P → R)]

Prefixing ` [P → Q] → [(R → P) → (R → Q)]

Suffixing ` [P → Q] → [(Q → R) → (P → R)]

Contrapositive ` (P → Q) → (−Q → −P)
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3.2.1 Fusion

Definition 3.2. Consider a logic with connectives → and ◦. We say that ◦ is
a fusion connective just in case the following holds for all formulas A, B, C:

A → (B → C) is logically equivalent to (A ◦ B) → C.

In logics with Associative and Commutative “;”, we can show that the con-
nective ◦ defined in terms of:

A ◦ B = −(A → −B),

is a fusion connective.

3.3 R

The system R (= RW + Contraction) is the most important “relevance logic”;
it is the favorite of the pioneers, Anderson and Belnap [AB75]. It adds the
structural rule Contraction:

X; X ⇐ X

to the structural rules of Associative, Commutative Logic. In natural de-
duction format:

X; X (i) A
X (j) A i, Contract

Things that can be proven in R but not in RW:
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Contraction ` (P → (P → Q)) → (P → Q)

Disjunctive Consequence P → Q ` −P ∨ Q

Proof by Contradiction ` (P → Q) → [(P → −Q) → −P]

Weak Reductio ` (P → −P) → −P

Reductio ` (−P → P) → P

Mixing {P → R,−Q → R} ` (Q → P) → R

Dichotomy ` (−P → Q) → [(P → Q) → Q]

Excluded Middle ` P ∨ −P

Conjecture: Suppose that A, B are formulas that do not contain “→”. Then
A ` B in R iff B is a first degree entailment (FDE) of A. If so, this means
that R is a conservative extension of FDE.

This conjecture is false.

3.4 RM

The system RM (= R + Mingle) is slightly irrelevant. Its structural rule is
Mingle

X ⇐ X; X,

which is the reverse of Contraction. The natural deduction format of Min-
gle is stated below.

X (i) A
X; X (j) A i, Mingle
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Things that can be proven in RM but not in R:

Mingle ` P → (P → P)

Chain ` (P → Q) ∨ (Q → P)

Here’s a proof of the sentence Mingle using the structural rule Mingle.

1 (1) P A
1; 1 (2) P 1, Mingle
t; (1; 1) (3) P 2, t =
(t; 1); 1 (4) P 3, Assoc
t; 1 (5) P → P 1, 4, CP
t (6) P → (P → P) 1, 5, CP

3.4.1 Semantics for RM

The natural deduction system RM is sound and complete relative to Sugi-
hara’s semantics, as described below.

Definition 3.3. A Sugihara valuation f is a function from sentences to inte-
gers {. . . ,−2,−1, 0, 1, 2, . . .} such that:

1. f (A ∧ B) = min{ f (A), f (B)}.

2. f (A ∨ B) = max{ f (A), f (B)}.

3. f (−A) = − f (A). (The “−” serves double duty here as the negation
symbol in our language and as the subtraction operator on numbers.)

4. f (A → B) = sign[ f (B)− f (A)]×max{| f (A)|, | f (B)|}, where sign(z) =
+1 when z ≥ 0, and sign(z) = −1 when z < 0.

Definition 3.4 (Designated Values). We say that a Sugihara valuation f
satisfies a sentence A just in case f (A) ≥ 0.
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3.5 CPL

The structural rule of CPL is Expansion:

X ⇐ X; Y.

In natural deduction format:

X (i) A
X; Y (j) A i, Expansion

Things that can be proven in CPL but not in RM:

Positive Paradox ` P → (Q → P)

Negative Paradox ` −P → (P → Q)

` P → (Q → Q)

` (P ∧ −P) → Q

` P → (Q ∨ −Q)

To see that these things cannot be proven in RM, we can use the Sugihara
semantics. For example, for the third thing, Q → Q always gets assigned
value |Q|. But then we can assign P any value that we wish, for example
f (P) = |Q|+ 1. Similarly, for Negative Paradox, for any fixed value of −P,
we can adjust the value of Q to be as low or as high as we want. By doing
so, we can adjust the value of P → Q as low as we want. And since the
value of −P is already fixed, we can make −P → (P → Q) take a negative
value. Hence −P → (P → Q) is not a tautology of RM.
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