PHI 340: Midterm Exam Practice Problems

Note: We use the symbols $\land, \lor, \rightarrow, -$ for the classical propositional connectives.

- 1. Show that the modal propositional logic K is an extension of classical propositional logic. Use the definition of "extension" given in lecture. Discuss: Is K a proper extension of CPL?
- 2. Let ⊨ be the semantic consequence relation of CPL. We make the following definitions:

Definition 1: If \mathcal{X} is a set of sentences then $Cn(\mathcal{X}) = \{A : \mathcal{X} \models A\}$.

Definition 2: A set \mathcal{X} of sentences is a *deductive system* iff $\mathcal{X} = Cn(\mathcal{X})$.

Definition 3: If \mathcal{X} and \mathcal{Y} are sets of sentences then

$$\mathcal{X} \cup \mathcal{Y} = Cn(\mathcal{X} \cup \mathcal{Y}), \qquad \qquad \mathcal{X} \cap \mathcal{Y} = Cn(\mathcal{X} \cap \mathcal{Y}).$$

Definition 4: If *A* is a sentence then $[A] = Cn(\{A\})$.

- (a) Prove that $\mathcal{X} \cup \mathcal{Y}$ is a deductive system.
- (b) Prove that if \mathcal{X} and \mathcal{Y} are deductive systems then so is $\mathcal{X} \cap \mathcal{Y}$.
- (c) Prove that if \mathcal{X}, \mathcal{Y} and \mathcal{Z} are deductive systems such that $\mathcal{X} \subseteq \mathcal{Z}$ and $\mathcal{Y} \subseteq \mathcal{Z}$, then $\mathcal{X} \cup \mathcal{Y} \subseteq \mathcal{Z}$.
- (d) Let *A* be an arbitrary sentence. What is contained in $[A] \cup [-A]$?
- (e) What is contained in $[A] \cap [-A]$?
- (f) Given: Set \mathcal{X} contains either A or -A for each sentence A. Question: Does it follow that \mathcal{X} is a deductive system?
- (g) Show: $[A] \subseteq [B]$ iff $B \models A$.
- (h) Find a set theoretic equation with [A ∨ B] on one side, and [A], [B], plus one of ∩ or U on the other side. Prove that your equation holds for all sentences A, B.
- 3. Concerning the normal modal logics. Recall that a T model is a triple $\langle W, \mathcal{R}, v \rangle$ where \mathcal{R} is a reflexive relation on \mathcal{W} .
 - (a) Construct a T model in which $P \to \Box \Diamond P$ is true in every world, but $\Diamond P \to \Box \Diamond P$ is not true in every world.

(b) Assume for now that the syntax for K has only two atomic sentences, *P* and *Q*. We define a K model $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, v \rangle$ as follows:

 $\mathcal{W} = \{w_1, w_2, w_3\}, \qquad \mathcal{R} = \{\langle w_1, w_1 \rangle, \langle w_2, w_3 \rangle\}.$

- i. Define a valuation *v* based on this model such that: for any two of these worlds, there is at least one sentence which does not have the same truth value in both of them.
- ii. Define: $v_{\mathcal{M}}(A) = \{w \in \mathcal{W} : v(w, A) = 1\}$. We say that $v_{\mathcal{M}}(A)$ is the proposition expressed by A (in the model \mathcal{M}). Using the valuation you defined in the previous problem, identify the following propositions in the model \mathcal{M} :

$$\begin{array}{lll} v_{\mathcal{M}}(P) & v_{\mathcal{M}}(Q) & v_{\mathcal{M}}(-P) & v_{\mathcal{M}}(P \lor Q) \\ v_{\mathcal{M}}(\Box P) & v_{\mathcal{M}}(\Diamond P) & v_{\mathcal{M}}(\Diamond \Box P) & v_{\mathcal{M}}(\Box \Diamond P) \end{array}$$

iii. Define what can be meant by:

"Sentence *A* implies sentence *B* in model \mathcal{M} ." Note well: This is a new notion that you are asked to define here — it is not the same as \vdash or \models .

iv. Relying on this definition, identify which of the following sentences imply which in the model *M*:

 $\Box P$, $\Diamond P$, $\Diamond \Box P$, $\Box \Diamond P$.

- 4. We define the language KW as follows: KW has the same syntax as K, and a model of KW is a triple ⟨W, R, v⟩ subject to the following two conditions:
 - (a) W is finite.
 - (b) \mathcal{R} is transitive and irreflexive (i.e. there is no w such that $\langle w, w \rangle \in \mathcal{R}$).

Show that in this language:

- (a) $\Box(\Box A \rightarrow A) \models \Box A$.
- (b) $\Box A \models \Box \Box A$.

Also: construct a K tableau attempting to find a counterexample to:

 $\Box(\Box A \to A) \to \Box A, \Box A \models \Box \Box A.$

Comment on the outcome of your tableau.

5. Show that S5 and UA are equivalent languages — i.e. each is an extension of the other. Use the definition of "extension" given in lecture, with *F* the identity function. [Hint: Given an S5 valuation $v(w_0, \cdot)$, let $I(w_0) = \{w \in W : Rw_0w\}$, use $I(w_0)$ to build a UA model and valuation.]