PHI 340 Handout

October 25, 2005

Conjecture 1. Let \mathcal{L}_1 and \mathcal{L}_2 be languages with respective semantic consequence relations \models_1 and \models_2 . If \models_2 is an extension of \models_1 , then \mathcal{L}_2 is an extension of \mathcal{L}_1 .

Consider first using the definition from *Possibilities and Paradox*: \mathcal{L}_2 is an extension of \mathcal{L}_1 just in case all models of \mathcal{L}_2 are models of \mathcal{L}_1 . Then the conjecture is *clearly* false: \models_{S5} is an extension of \models_{UA} , and vice versa. But the models of S5 cannot be a subset of the models of UA, because they are different sorts of things: S5 models are triples $\langle \mathcal{W}, \mathcal{R}, v \rangle$, whereas UA models are doubles $\langle \mathcal{W}, v \rangle$. So what could we mean by saying that S5 models are a subset of UA models? One could consider a UA model to be a triple, where the accessibility relation \mathcal{R} is just the universal relation $\mathcal{W} \times \mathcal{W}$. But in that case, not all S5 models are UA models, because not all S5 models have a universal accessibility relation. (However, your intuition is still correct: there is a natural correspondence between S5 valuations and UA valuations, and that is sufficient to show that \models_{S5} coincides with \models_{UA} . *Homework*: Prove the previous sentence.)

Consider now using the definition from the handout. Then the conjecture is **False**. We show that it is false by providing a counterexample.

Counterexample. We define the language \mathcal{L}_1 to have one atomic sentence P, and no connectives. The language \mathcal{L}_2 has exactly the same syntax.

We define the set of valuations of \mathcal{L}_1 to be a singleton set $\{\alpha\}$. We stipulate that α satisfies *no sentences*. In other words, the relation "x satisfies A" is just the empty relation: $\emptyset \times \emptyset$.

We define the set of valuations of \mathcal{L}_2 to be a singleton set $\{\omega\}$. We stipulate that ω satisfies *all sentences*. In other words, the relation "x satisfies A" is $\{\omega\} \times S$, where S is the set of all sentences.

We now establish that \models_2 is an extension of \models_1 . This, in fact, is obvious: Since \mathcal{L}_2 has only one valuation, and it satisfies all sentences, it follows that $\mathcal{X} \models_2 A$ for any set \mathcal{X} of sentences, and for any sentence A. In other words, \models_2 is just the relation $\mathcal{P}(\mathcal{S}) \times \mathcal{S}$. So, any consequence relation (on this syntax) is a subset of \models_2 .

We now establish that \mathcal{L}_2 is not an extension of \mathcal{L}_1 . Suppose for reduction that \mathcal{L}_2 is an extension of \mathcal{L}_1 . Then there are functions $F : \mathcal{S}_1 \to \mathcal{S}_2$ and $F^* : \mathcal{V}_2 \to \mathcal{V}_1$ such that

 $F^*(x)$ satisfies $A \iff x$ satisfies F(A).

Now, there is only one sentence P of each language, so we must have F(P) = P. Furthermore, there is only one valuation of each language, so we must have $F^*(\omega) = \alpha$. Thus, we must have

 $\alpha \text{ satisfies } P \iff \omega \text{ satisfies } P.$

But ω satisfies P, whereas α does not satisfy P, a contradiction. Therefore, \mathcal{L}_2 is not an extension of \mathcal{L}_1 .

Suppose that we change the example so that the languages each have one unary connective \neg . Does the proof still go through?

Yes: Let $F : S_1 \to S_2$. Then $F(P) = \neg \cdots \neg P$, with some number (possibly zero) of negation symbols on the front of P. But now our biconditional says:

 $\alpha \text{ satisfies } P \iff \omega \text{ satisfies } \neg \cdots \neg P.$

But ω satisfies $\neg \cdots \neg P$, whereas α does not satisfy P, a contradiction.

What if we give each language the full syntax of CPL? The result still goes through.

For Further Thought: The languages defined above are "pathological" in some obvious ways. For example, it seems odd to have a language with no valuations that satisfy any sentences. But our definition of a language allows such pathologies.

So maybe we should rule out languages such as those above. What do you think would be natural further requirements to impose on a language? What could we require in the way of there being "enough" valuations? Are there further conditions that would guarantee that the above Conjecture is validated?