Homework 10

- 1. Let A(c) be a predicate logic sentence containing the constant "c", and suppose that $\vdash A(c) \leftrightarrow B$, where B is in prenex normal form. Show that: there is a sentence B' in prenex normal form such that $\vdash \forall v A(v) \leftrightarrow B'$.
- 2. Let A be a prenex sentence with the following form:

$$A = \exists x_1 \dots \exists x_n \forall y_1 \dots \forall y_m R(x_1, \dots, x_n, y_1, \dots, y_m).$$

That is, A begins with n > 0 existential quantifiers, followed by $m \ge 0$ universal quantifiers. Show that if A is consistent, then there is an interpretation \mathcal{I} such that the domain of \mathcal{I} has n elements, and A is true in \mathcal{I} .

- 3. Find a sentence A that is consistent, but which is true only in interpretations whose domain is larger than the number of quantifiers in A.
- 4. Let \mathcal{A} be the set of propositional logic sentences built with just the two atomic sentences P and Q. Show that there is a finite subset \mathcal{B} of \mathcal{A} such that for every sentence A in \mathcal{A} , there is a sentence B in \mathcal{B} such that $\vdash A \leftrightarrow B$. How small can \mathcal{B} be?