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Abstract

We study a two person bargaining problem in which the buyer may invest and increase
his valuation of the object before bargaining. We show that if all offers are made by the
seller and the time between offers is small, then the buyer invests efficiently and the seller
extracts all of the surplus. Hence, bargaining with frequently repeated offers remedies the
hold-up problem even when the agent who makes the relation-specific investment has no
bargaining power and contracting is not possible. We consider alternative formulations
with uncertain gains from trade or two-sided investment.
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1. Introduction

Consider the following simple model of specific investment. One agent, the buyer,

takes an observable action that determines his own utility of later consumption. After-

wards, the buyer and the other agent, the seller, bargain. Such a situation is studied in

a number of recent papers on the hold-up problem, contract theory and the theory of the

firm. If the bargaining process is such that the seller can extract all surplus and there is

no contractual commitment then, in equilibrium, the buyer will not invest at all. This is

due to the fact that the investment of the buyer is sunk-cost at the bargaining stage and

will not be compensated for by the seller. This result is a very extreme form of the hold-up

problem and holds regardless of whether the seller makes a single take-it-or-leave-it offer

or is able to make repeated offers.

Next, consider the same problem, only this time assume that the buyer’s investment

decision cannot be observed by the seller. In Proposition 1, we show that if the bargaining

consists of a single take-it-or-leave-it-offer then in equilibrium, the buyer and the seller still

obtain the same payoffs as in the case of observable investment. Thus, as suggested by

Gibbons (1992), in a one-shot interaction, the hold-up problem continues to be extremely

costly even with unobservable investment. However, Proposition 5 establishes that if the

investment decision is unobservable and the seller makes repeated offers then as the time

between offers becomes arbitrarily small, the equilibrium investment decision of the buyer

converges to the efficient (i.e., surplus maximizing) level. Moreover, the expected delay

converges to zero. Hence, all inefficiency disappears. Regardless of the time between offers,

the buyer’s equilibrium payoff is zero. Therefore, the seller extracts full surplus. Neither

unobservable investment nor frequently repeated offers alleviates the hold-up problem; yet,

the two together completely resolve it.

The purpose of this paper is twofold. First, we wish to note the tendency toward

efficient investment created by this interaction between unobservable investment and dy-

namic bargaining. When investment is unobservable, self-selection constraints imply that

the price confronted by the buyer is independent of his type. Then, any setting where

efficient trade (i.e., immediate agreement) is guaranteed, unobservable investment implies

that the buyer is the residual claimant on his investment and hence, leads to the first
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best outcome. In the one-sided offer bargaining setting efficient trade is guaranteed by the

Coasian effect. Thus, we would expect our results to extend to other settings provided the

underlying bargaining model yields immediate agreement.

The second objective of this paper is to emphasize the role of allocation of informa-

tion as a tool in dealing with the hold-up problem. Audits, disclosure rules or privacy

rights could be used to optimize the allocation of rents and guarantee the desired level of

investment. Controlling the flow of information may prove to be a worthy alternative to

controlling bargaining power in designing optimal organizations. That private information

rents might substitute for bargaining power and ameliorate the hold-up problem has been

noted by Rogerson (1992) and others. Our purpose is to demonstrate the importance of

this effect by noting that in a Coasian setting, incomplete information may completely

remedy the hold-up problem even when the investing agent has no bargaining power.

There are two central assumptions in this paper. First, we assume that commitment

is not possible. Undoubtedly, there are many applications were some commitment either

implicit or through long term contracts, is feasible. Nevertheless, this extreme form of

incomplete contracting may be useful both as a benchmark and for understanding the

disagreement payoffs associated with any contracting game.

The second main assumption is unobservable investment. Again, we recognize that

there are situations where investment decisions will be observable. Nevertheless, in many

settings, it will be possible for one agent to have less than perfect information about her

opponent’s earlier decision.1 For the argument of Proposition 5 to apply, a small amount of

asymmetric information between the buyer and the seller regarding the buyer’s investment

level may be sufficient.2 Consequently, we would expect our analysis to be relevant in many

situations, even when the seller cannot be kept totally uninformed about the decision of

the buyer.

With one major difference, the setting of Proposition 5 is closely related to the work on

one-sided offer, one-sided incomplete information bargaining (see for example Fudenberg,

Levine and Tirole (1985)) and the Coase conjecture (see Gul, Sonnenschein and Wilson

1 This is likely to be the case if for example, the hidden investment is investment in intangible assets
or some other type of unobservable effort.

2 See the example with a random buyer valuation, in Section 6.
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(1986), henceforth GSW, and Ausubel and Deneckere (1989)). In the earlier papers, the

distribution of the buyer’s valuations is exogenously given whereas in the current paper

the buyer’s valuation is determined by a strategic choice and uncertainty arises from the

unobservability of that choice and the buyer’s use of a mixed strategy. Nevertheless,

understanding the Coase conjecture is important for understanding Proposition 5.

Assume, as is done in the literature on the Coase conjecture, that the distribution

of the buyer’s valuation is fixed. Then, if the lowest valuation in the support of this

distribution is greater than the cost of production, the equilibrium strategy of the buyer

will be described by an acceptance function that determines the willingness to pay of each

buyer type independent of history. The seller’s problem is to find the optimal level of

price discrimination given her own impatience and the “demand” function defined by the

buyer’s strategy. As the time between offers becomes arbitrarily small, the seller will be

able to move down this demand function in an arbitrarily small amount of real time. But

with a fixed distribution of valuations the fact that expected time until trade is converging

to zero implies that the buyer with valuation arbitrarily close to the lowest in the support

of the distribution is buying almost immediately, which means that the price charged by

the seller must fall to the lowest possible valuation almost immediately. This is the Coase

conjecture.

The conclusion that expected delay converges to zero as the time between offers con-

verges to zero carries over to the current setting. However, since the distribution of the

buyer’s valuation is no longer fixed, this does not mean that the buyer with valuation arbi-

trarily close to the lower end of possible valuations is buying almost immediately. As the

time between offers becomes small, the probability that the buyer invests at the efficient

level approaches 1. Hence, only a buyer with a high valuation is buying early, in spite of

the fact that investing zero is always in the support of the buyer’s strategy. In equilibrium,

the expected delay is small but there is positive probability that delay will occur. At each

moment in time, the seller believes that there is a high probability of making a sale at

a high price in the near future. This keeps the seller from decreasing prices too quickly.

The fact that the distribution of the buyer’s valuation is endogenously determined enables

one part of the Coase conjecture to survive without the other; no delay is expected in

equilibrium but the market price does not collapse immediately.
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This analysis explains why the Coase conjecture is compatible with Proposition 5,

that is, why Proposition 5 might be true. To see why it must be true, observe that if v

is the lowest buyer valuation in the support of the distribution, then a price below v will

never be charged by the seller. Hence, investing zero must be in the support of the buyer’s

strategy and his equilibrium payoff must be zero. (If the lowest level investment in the

support of buyer’s strategy were strictly above zero, the buyer’s equilibrium payoff would

be negative.) The Coasian effect guarantees no delay in expectation. But if the buyer

expects to trade immediately, it is optimal for him to invest at the efficient level. Hence,

the outcome is efficient and the seller extracts all the surplus.

We consider two extensions of our model. First, we assume that the constant marginal

cost of production is random and not known at the time the buyer undertakes his invest-

ment but is commonly known before the bargaining begins. Hence, gains from trade are

no longer certain. This new setting brings our framework closer to many models studied

in the incomplete contracting literature. We assume that the expected gains from trade

are strictly quasi-concave in the buyer’s level of investment and that the probability of

positive gains from trade given zero investment is not zero. Then, we prove that if offers

can be made frequently, sequential equilibrium outcomes with stationary buyer strategies

are efficient. Again, the seller extracts all surplus. The restriction to stationary strategies

was used by GSW for proving the Coase conjecture for the “no-gap” case (i.e., when a

strictly positive lower bound on the gains from trade is not assumed). We impose the same

restriction in order to extend the “no expected delay” result to the case where gains from

trade are uncertain.

In our second extension, we investigate the consequences of the seller having an in-

vestment decision as well. We assume that the seller makes observable, cost reducing

investment prior to the bargaining stage. We continue to assume that the buyer’s invest-

ment is unobservable. We show that the earlier efficiency result holds if the buyer is able to

observe the seller’s investment prior to making his own. However, if the two agents make

their investment decisions simultaneously, then there will be a tendency for the seller to

underinvest but the buyer will still invest efficiently.

As noted above, a number of recent papers on incomplete contracting also deal with

the hold-up problem and the its impact on relation specific investment. Grout (1984)
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studies the relationship between shareholders and workers. In his setting, the shareholders

make the relation specific investment. He compares the case where binding contracts can

be made prior to investment with the case where no binding contracts can be made and

the ex post distribution of surplus is determined exogenously, according to a generalized

Nash bargaining solution. He notes that without binding contracts, unless the bargaining

solution gives all of the power to the shareholders, there will be underinvestment.

Grossman and Hart (1986) also model the ex post bargaining stage in closed form (i.e.,

as a cooperative game), where the ex ante specified distribution of control determines the

disagreement payoffs. They observe that greater control, like greater bargaining power in

Grout’s model, tends to create greater incentives to invest. The optimal organizational

form is determined by the relative benefits of giving control to one agent versus the other.

Aghion, Dewatripont and Rey (1994) have investigated the possibility of designing the

negotiation process optimally so as to overcome the hold-up problem. Thus, unlike the two

papers above, they do not take the renegotiation or bargaining stage as exogenous. They

show that first best outcomes can be obtained by the optimal renegotiation procedure (i.e.,

noncooperative bargaining game), in a wide range of settings.

The papers discussed above and much of the contracting literature assume observ-

able investment. Observable investment in a relation-specific asset may cause a hold-up

problem which creates underinvestment. The focus of the literature is to investigate pos-

sible contractual resolutions and other remedies to the hold-up problem and to interpret

existing institutions as expressions of these remedies. Our main result establishes that

unobservability of investment may be an alternative remedy to the hold-up problem. The

important role played by unobservability in the context of the extensive form games stud-

ied in this paper suggests that the hold-up problem may not be so severe in many contexts.

Therefore, in certain applications, the relevant benchmarks for the analysis of contractual

resolutions may need to be reconsidered.

A common feature of many of the models studied in the literature on moral hazard and

renegotiation (see for example, Che and Chung (1995), Che and Hausch (1996), Fudenberg

and Tirole (1990), Hermalin and Katz (1991), Ma (1991), (1994), and Matthews (1995))

is that a pure strategy by the agent generates too severe a response by the principal.

Therefore, in equilibrium, the agent randomizes, generating asymmetric information. This

phenomenon also plays an important role in our analysis.
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2. The Simple Models

In the simple bargaining game with perfect information, the buyer chooses a level of

investment x, then this choice is observed by the seller who chooses a price p. The buyer

either accepts this price (σb(x, p) = 1) or he rejects it (σb(x, p) = 0). In either case, the

game ends. If the buyer invests x and gets the good at price p, then the seller’s utility

is p and the buyer’s utility is v(x) − x − p. If the buyer does not end-up with the good,

that is; if he rejects the seller’s offer, then the payoffs for the seller and buyer are zero and

−x respectively. The formal description below of the simple bargaining game with perfect

information mentions only the set of pure strategies. However, we permit the use of mixed

strategies throughout this paper. Hence, statements regarding the uniqueness of equilibria

never entail a restriction to pure strategies.

Let [0, M ], M > 0, be the set of possible investment choices for the buyer. The non-

decreasing function v : [0, M ]→ R defines the valuation of the buyer as a function of the

level of investment he has undertaken. We will assume that v(M) ≤M, v(0) > 0.

Definition: B0 = (Σb,Σs) is called a simple bargaining game with perfect information,

where Σb := [0, M ]× {σb : [0, M ]×R+ → {0, 1}} and Σs := {σs : [0, M ]→ R+}.

It is well-known and easily verified that in the simple bargaining game the hold-up

problem rules out any possibility of investment. At the bargaining stage, the buyer’s

investment is sunk-cost and is not taken into account by the seller. Since the seller makes

a take-it-or-leave-it offer, he extracts all surplus. Knowing this, the buyer cannot afford to

undertake any investment. We record this observation as Proposition 0 below.

Proposition 0: There is a unique subgame perfect Nash equilibrium of the game B0. In

this equilibrium the buyer invests zero, the seller charges p = v(0) and the buyer accepts.

In equilibrium the seller and buyer obtain utility v(0) and 0 respectively.

It follows from Proposition 0 that the hold-up problem causes inefficiency whenever

0 is not an efficient investment level. Next, we will show that if the investment decision is

not observed by the seller then the nature of equilibrium is changed but the equilibrium

payoffs remain the same. Hence, the unobservability of the investment decision by itself

does not remedy the hold-up problem.
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Definition: B = (Σb,Σs) is called a simple bargaining game, where Σb := [0, M ]×{σb :

[0, M ]×R→ {0, 1}},Σs := R+.

Note that the only difference between B0 and B is that in B the price charged by the

seller does not depend on the investment decision of the buyer. This difference accommo-

dates the fact that the investment choice is no longer observable to the seller.

In this paper, a sequential equilibrium is a behavioral strategy profile σ and an assess-

ment µ that satisfy the following: (i) σ is sequentially rational given µ, (ii) if information

set h′ can be reached by σ given that h is reached, then, the assessment at h′ is obtained

from the assessment at h by Bayes’ Law. This is the solution concept used throughout the

bargaining literature.

Proposition 1: In any sequential equilibrium of B the seller and buyer achieve utility

v(0) and 0 respectively. The buyer accepts any offer p < v(x) and rejects any p > v(x). If

v is strictly concave and continuous then:

Equilibrium exists and is unique. In equilibrium, the seller randomizes according to

the cumulative F , where F (p) = 0 if p < v(0), F (p) = 1
v′+(v−1(p)) for p ∈ [v(0), v(x∗)),

F (p) = 1 for p ≥ v(x∗), v′+ denotes the right-derivative of v and x∗ is the unique maximizer

of v(x)− x. In his investment decision, the buyer randomizes according to the cumulative

G, where G(x) = 0 for x < 0, G(x) = 1− v(0)
v(x) for x ∈ [0, x∗) and G(x) = 1 for x ≥ x∗.

Proof: See Appendix.

Proposition 1 establishes that in equilibrium, the payoffs to the players are the same as

the equilibrium payoffs when the investment choice is observable. Problem 2.23 of Gibbons

(1992) makes the same point in a game with only two investment levels.

For the case in which v is strictly concave and continuous, Proposition 1 also yields ex-

istence and uniqueness of the equilibrium and describes the equilibrium strategies.3 While

the unobservability of the investment decision alters the nature of equilibrium behavior,

it does not change the equilibrium payoffs (i.e., the extent of inefficiency). The source of

the inefficiency changes (underinvestment is reduced but the possibility of disagreement

3 In fact, existence does not require any assumptions other than continuity of v. Note that if v′(0) <∞,
F has a discontinuity at v(0). G has a discontinuity at x∗.
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is added) but the amount of inefficiency is not decreased by the ability of the buyer to

conceal his investment decision.

Next, we consider the following modifications of the games B0 and B: Instead of

a single take-it-or-leave-it offer, we permit the seller to make a new offer each time her

offer is rejected. Hence, after the investment stage, the seller and buyer are engaged in

an infinite horizon bargaining game with one-sided offers. The payoffs of the players are

computed in the standard way: If an agreement is reached at price p, in period k = 0, 1, 2...

of the bargaining stage, then the payoff of the buyer is [v(x)− p]e−k∆−x while the payoff

of the seller is pe−k∆, where ∆ is the time interval between successive offers. Hence, we

normalize the time units so that the interest rate describing the players’ impatience is 1.

We will denote the infinite horizon versions of B0 and B, B0(∆) and B(∆) respectively.

If no agreement is reached, the seller’s and buyer’s payoffs are 0 and −x, respectively.

The problem of bargaining with one-sided uncertainty and one-sided offers has been

studied extensively. The only difference between the game B(∆) and the game studied by

Fudenberg, Levine and Tirole (1985) and GSW is the initial investment stage. In the earlier

models asymmetric information is assumed while in B(∆) it arises endogenously, due to the

unobservable investment decision of the buyer. In the game B0(∆) the investment decision

is observable. Therefore, there is complete information at the bargaining stage. It is easy

to show and well-known in the bargaining literature that if one side makes all the offers

in a complete information setting, then she gets all the surplus. To see this, suppose that

p, the infimum of all prices ever offered in any equilibrium is strictly below v, the buyer’s

valuation. Then, any price strictly less than (1 − e−∆)v + pe−∆ would be immediately

accepted by the buyer. Which means no price strictly less than (1− e−∆)v + pe−∆ will be

offered. So, p ≥ (1 − e−∆)v + pe−∆ which implies p ≥ v, a contradiction. Since no price

below v is ever charged, such a price would always be accepted if it were offered. This

establishes that the equilibria of B0 and B0(∆) are essentially identical. Hence, we have:

Proposition 2: There is a unique subgame perfect equilibrium of B0(∆). This equilib-

rium yields the same outcome as the unique equilibrium of B0; the buyer invests 0, the

seller offers v(0) in the initial period and the buyer accepts.
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Thus, neither the unobservability of investment nor the possibility of repeated offers

alleviates the hold-up problem. In either case the equilibrium payoffs for the buyer and

seller remain 0 and v(0) respectively. However, in the next section we will show that the

unobservability of the investment decision together with the possibility of repeated offers

does remedy the hold-up problem.

3. A Resolution to the Hold-Up Problem

In this section we will study the game B(∆) and provide the following result: Unob-

servable investment together with repeated bargaining yields efficiency when offers can be

made arbitrarily frequently. Hence, the ultimatum game and the one-sided repeated offers

game yield identical payoffs with complete information but the corresponding games lead

to very different payoffs when the investment decision is unobservable. Propositions 4 and

5 rely on the analysis of the problem of one-sided bargaining with one-sided uncertainty

due to GSW. The relevant results from that paper are summarized in Proposition 3 be-

low. Let H be any distribution over valuations such that H(0) = 0, H(v) = 1 for some

v < ∞ and let BH denote the corresponding one-sided bargaining game with one-sided

uncertainty.

GSW characterize all stationary equilibria of the game BH . They show that stationary

equilibria can be described by two functions, a function which determines the behavior of

the buyer on and off the equilibrium path and a function that determines the behavior of

the seller along the equilibrium path and after some off-equilibrium path histories. GSW

also provide conditions under which all equilibria are stationary. Ausubel and Deneckere

(1989) use a similar construction to study stationary equilibria. The definition below is

closely related to their approach. The function q describes the buyer behavior, the function

r describes the seller behavior after certain histories (in particular, along the equilibrium

path) and the function Π describes the seller’s expected payoff after those histories.

Definition: The non-increasing, left-continuous functions q : R+ → [0, 1], r : q(R+) →
R+ and the non-increasing, continuous function Π : q(R+) ∪ {0} → R+ are called a

consistent collection if

(i) Π(q0) :=
∑∞
k=0[q

k+1 − qk]pke−k∆, for all q0 ∈ q(R+) ∪ {0}, where pk := r(qk),
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qk+1 := q(pk) for k ≥ 0.

(ii) p = r(q0) maximizes [q(p)− q0]p + e−∆Π(q(p)) for all q0 ∈ q(R+).

(iii) v − p = e−∆[v − r(q(p))] whenever p maximizes [q(p) − q0]p + e−∆Π(q(p)) for

some q0 ∈ q(R+) ∪ {0} and v = sup{v′ |H(v′) ≤ 1− q(p)}.

Definition: A sequential equilibrium of BH is stationary if there exists a consistent

collection q, r, Π such that

(i) If p0 is in the support of prices charged in the initial period then p = p0 maximizes

q(p)p + e−∆Π(q(p)).

(ii) If pl is the lowest price charged in some (possibly off-equilibrium path) k−1 period

history and pl = r(q0) for some q0 ∈ [0, 1], then in period k, the price r(q(pl)) is charged

and the probability of agreement is q(r(q(pl)))−q(pl)
1−q(pl) .

It follows from the two definitions above that in a stationary sequential equilibrium,

along the equilibrium path the seller does not randomize after the initial period.4 The

function r describes the seller’s behavior along the equilibrium path and the function q

describes the buyer’s behavior on and off the equilibrium path. To see how q defines the

behavoir of each type of the buyer, consider any p such that H is strictly incresing and

continuous at v such that H(v) = 1− q(p). If the seller charges the price p, all buyer types

v′ ≥ v accept the current offer. All other types reject p.5 The seller’s payoff conditional

on q0 is Π(q0)
1−q0 .

GSW show that given a consistent collection q, r,Π any pricing strategy that satisfies

(i) in the definition of a stationary equilibrium and subsequently chooses prices according

to r is a best response to the buyer strategy implied by q. Conversely, given a consistent

collection, the buyer strategy implied by q is a best response to any seller strategy that

satisfies (i) in the definition of a stationary sequential equilibrium and subsequently chooses

prices according to r. Finally, GSW establish that given any consistent collection q, r, Π

4 Ausubel and Deneckere (1989) call stationary equilibria, weak-Markov equilibria. If the function q
is strictly increasing then they say that the equilibrium is a strong-Markov equilibrium. Both GSW and
Ausubel and Deneckere (1989) use a slightly different description of stationary sequential equilibrium. The
translation from the latter authors’ definition to the one presented above is straightforward.

5 Deriving the buyer’s strategy from q is slightly more complicated (see the proof of Proposition 4) if
H is not invertable in a neighborhood of 1− q(p).
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and an initial period pricing rule F satisfying (i), a stationary sequential equilibrium can

be constructed by specifying off-equilibrium behavior appropriately. Hence, we sometimes

refer to such F, q, r,Π as a stationary sequential equilibrium of BH .

Proposition 3 (GSW): Let vl > 0 denote the lower boundary of the support of H

(i.e., vl = sup {v |H(v) = 0}) in the game BH .

(0) In any sequential equilibrium a price below vl is never charged and the probability

that agreement will never be reached is 0. After any history, if a buyer with valuation v

accepts price p then all types with higher valuation also accept p.

If for every sequence vt > vl, vt converges to vl and lim H(vt)
vt−vl = α implies α > 0, then:

(1) For some K <∞, the probability that the game ends by period K is 1.

(2) There is a unique consistent collection q, r,Π.

(3) A sequential equilibrium exists and every sequential equilibrium is stationary.

If there exists a sequence vt > vl, converging to vl such that lim H(vt)
vt−vl = 0, then:

(4) A price p ≤ vl will not be charged after any history. Hence, for any K < ∞ the

probability that the game ends after period K is strictly positive.

The claims (0)-(3) above are established in the proof of Theorem 1 in GSW. The proof

of (4) is in the Appendix.

We would like to use Proposition 3 in our subsequent analysis. In particular, we would

like to conclude that a sequential equilibrium of B(∆) induces a sequential equilibrium of

the game BH where H = G ◦ v−1 and G is the equilibrium investment strategy of the

buyer. This is not an immediate consequence of the definition of a sequential equilibrium.

A deviation by the buyer, during the bargaining stage of B(∆) may cause the seller to

assign positive probability to a set of valuations not in the support of H. Such a situation

cannot arise in a sequential equilibrium of BH . Nevertheless, possible deviations by the

buyer play no significant role in the analysis of either game and the buyer is the only player

that has a strategic choice prior to the bargaining stage. Hence, it is fairly easy to show

that Proposition 3 applies to the bargaining stage of the game B(∆).

We refer to the collection G, F, q, r,Π as a strategy profile for B(∆), where G is a

probability distribution over investment levels, F is a probability distribution over initial

11



period prices and q, r, Π is a consistent collection. Obviously, these are not the only strategy

profiles one could have for the game B(∆). However, in the proof of Proposition 5 it

is shown that in any sequential equilibrium of B(∆), vt > vl, vt converges to vl and

lim H(vt)/(vt − vl) = α implies α > 0, where H is the distribution of valuations at the

bargaining stage and vl = sup {v |H(v) = 0}. Hence, by Proposition 3, every sequential

equilibrium of B(∆) will indeed be of the form G, F, q, r,Π. Proposition 4 below establishes

the existence of a sequential equilibrium for the game B(∆).

Throughout the remainder of this section and in Section 4, we assume that v is

increasing, strictly concave and continuously differentiable on (0, M). Define v′(0) :=

limx→0+ v′(x). We also require that v′(0) <∞.

Proposition 4: The set of sequential equilibria of the game B(∆) is non-empty. In any

sequential equilibrium, the seller’s payoff is least v(0), the buyer’s payoff is 0 and 0 is in

the support of the buyer’s investment strategy.

Proof: The proof of existence of a sequential equilibrium is in the Appendix. Here we

prove that the seller’s equilibrium payoff is at least v(0), the buyer’s equilibrium payoff is

0 and 0 is in the support of the buyer’s investment strategy.

Let xl := sup{x |G(x) = 0}. Clearly, xl ≥ 0. By an analogous argument to the one

used in establishing Proposition 2, no price below v(xl) is charged in equilibrium and hence

any such price would be accepted with probability 1 if it were offered. This establishes

that the seller’s payoff is at least v(xl) ≥ v(0). Since xl is in the support of G, it is an

optimal choice of investment (see (2) in the proof of Proposition 1). Then, since no price

below v(xl) is ever charged the equilibrium payoff to the buyer is at most −xl. But 0 is

an attainable payoff. Hence, xl = 0.

The proof of existence of a sequential equilibrium for the game B(∆) is constructive.

When v is twice continuously differentiable and v′′ < 0, the equilibrium constructed has

the following features: The buyer randomizes in his investment decision according to the

continuous distribution G, where G has support [0, x∗], is strictly increasing throughout

its support and is piecewise differentiable. The efficient investment level x∗ is the only
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point of discontinuity of G. The seller randomizes according to the distribution F , where

F is continuous and strictly increasing throughout its support. Given the distribution

of valuations H induced by the investment strategy G, the subsequent behavior of the

agents constitute a stationary equilibrium of the resulting bargaining game BH . The main

task in the proof is to choose G and F so that the stationary equilibrium yields 0 utility

for every investment decision in the support of G. When v is not twice continuously

differentiable (or v′′(x) = 0 for some x ∈ (0, M)), we construct a sequence of vn that

satisfies these properties that converge to v. Then, we show that the sequential equilibria

for vn converge to a sequential equilibrium for v.

Proposition 5 below states that as the time between offers becomes arbitrarily small,

the equilibrium outcome converges to efficient investment and immediate agreement at a

price that compensates the buyer fully for his investment (p = v(x∗)−x∗). To understand

the result better, consider the following incorrect argument: As we know from Proposition

4, 0 must be in the support of the buyer’s investment decision. Then, the Coase conjecture

for the gap case (i.e., vl = v(0) > 0) states that as the time between offers becomes

arbitrarily small the first price charged in equilibrium must fall to v(0). But this implies

that the buyer should maximize v(x)− v(0)−x, that is; choose x = x∗ with probability 1.

Hence, 0 is not in the support of the buyer’s investment decision, a contradiction. Where

is the flaw in this argument? We have already proven the first assertion, that 0 must be

in the support of the buyers investment decision (Proposition 4). The final step is also

correct; if the price were to fall to v(0) instantaneously, then it would indeed be uniquely

optimal for the buyer to invest x∗. What is incorrect is the appeal to the Coase conjecture

which establishes that for a given distribution of buyers valuations, the price must fall to

the lowest valuation in the support of the distribution, as the time between offers becomes

arbitrarily small. But in the current setting, the distribution of buyer’s valuations is not

given exogenously but is determined in equilibrium. The Coase conjecture is not uniformly

true over all distributions with the same lowest valuation in their support.

Proposition 5: For every ε > 0 there exists ∆∗ > 0 such that ∆ < ∆∗ implies that

in any sequential equilibrium of B(∆) the probability of agreement by time ε (i.e., period

ε/∆) is at least 1 − ε and the probability that the buyer’s investment is in [x∗ − ε, x∗] is
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at least 1− ε. That is, as the time between offers becomes arbitrarily small the sequential

equilibrium outcomes become efficient and the seller extracts all of the surplus.

Proof: Let Gn be the cumulative distribution describing the buyer’s investment behavior

in some sequential equilibrium σn of B(∆n). Thus, after the investment stage, the seller

and buyer are engaged in a one-sided offer bargaining game with one-sided uncertainty as

described in Proposition 3, where Hn = Gn ◦v−1. By Proposition 4, v(0) > 0, is the lowest

value in the support of Hn.

First, we show that for all ∆ > 0, in any sequential equilibrium of B(∆), vt > v(0)

converges to v(0) and lim H(vt)
vt−v(0) = α implies α > 0. Suppose this condition is not satisfied.

Let σ a sequential equilibrium of B(∆). By (0) and (4) of Proposition 3, there exist a

sequence kj converging to infinity such that v(xkj ) > v(0), v(xkj ) converges to v(0), each

v(xkj ) is in the support of H (i.e., xkj is in the support of G) and the buyer with valuation

v(xkj ) buys in period kj . By Proposition 4, the buyer’s equilibrium payoff is 0 and since a

price below v(0) is never charged (Proposition 3), we have, [v(xkj )− v(0)]e−kj∆ − xkj ≥ 0

for all kj . Re-arranging terms in the above inequality yields limj→∞
v(xkj )−v(0)

xkj
e−kj∆ ≥ 1.

But the first term on the left-hand side goes to v′(0) < ∞ and the second term goes to

zero; hence the product goes to zero, a contradiction.

It follows from the above argument that (0) − (3) of Proposition 3 applies. Suppose

that the first assertion of the Proposition is false. Then, there exists ε > 0, a sequence ∆n

converging to 0 and a corresponding sequence of equilibria σn of B(∆n), such that in all

of these equilibria, the probability of agreement by time ε is no greater than 1 − ε. Let

qn, rn,Πn denote the consistent collection associated with σn.

Re-define qn at its discontinuity points so that it is right-continuous. Then, each

1−qn is a probability distribution and these distributions have uniformly bounded supports

(each support is contained in [0, M ]), by Helly’s Selection Theorem (see Billingsley (1986)

Theorem 25.9 and Theorem 25.10), there exists a function q and a subsequence nj such that

the subsequence q∆nj
converges to q weakly (i.e., 1−qnj converges to 1−q in distribution).

Again, without loss of generality, we take this subsequence to be the sequence itself. We

now show that the maximized value of Πqn converges to
∫

[v(0),∞)

pd(1− q)(p). To see this,
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first assume that q∆n = q for all n. Then, as the time between offers becomes arbitrarily

small, the seller can price-discriminate arbitrarily finely in an arbitrarily small interval of

real time. Hence, she is able to, in the limit, extract all of the area under the “demand”.

When qn is not equal to q but converges to it, the argument is still the same: For any ε′

the seller can find a finite sequence of k prices such that if these prices were to be charged

in the first k periods and the buyer behaves according to q the expected revenue of the

seller (ignoring discounting) would be within ε′ of
∫

[v(0),∞)

pd(1− q)(p). Then, by lowering

each price by ε′, for n sufficiently large, the probability of sale in the first k periods can

be kept at least as high as against qn as it was against q with the original sequence of

prices. In the limit, the effect of discounting goes away and expected revenue is at least∫
[v(0),∞)

pd(1− q)(p)− ε′. Since this is true for all ε′, the result follows.

But under our hypothesis that the probability of agreement by time ε is at most 1− ε,

the limiting equilibrium payoff of the seller is at most
∫

[v(0),∞)

pd(1− q)(p)− εv(0)(1− e−ε).

Thus, the equilibrium strategy that results in an ε probability of disagreement until time ε

yields a payoff bounded above by
∫

[v(0),∞)

pd(1− q)(p)− εv(0)(1− e−ε) when an alternative

strategy that can extract all surplus and achieve a payoff arbitrarily close to
∫

[v(0),∞)

pd(1−

q)(p) exists, a contradiction. So the first assertion is established.

A buyer who plans to purchase at time t will choose his investment level to maximize

E[(v(x)−p(t))e−t]−x, where p(t) is the price charged at time t and the expectation is over

the possible randomization of the seller in period 0. As t approaches 0, the maximizing

level of investment x approaches x∗. It follows from the first part of the proof that in

the limit, the equilibrium investment behavior of the buyer must converge to the optimal

investment level conditional on buying at time 0 (i.e., x∗). By Proposition 4, the buyer’s

payoff is 0. Hence, the final assertion of the Proposition follows.

To understand why Proposition 5 holds, consider the simpler case in which the buyer

has only two options: He can either invest 0 or x∗ > 0. As noted in Proposition 4, in

equilibrium, the buyer must choose 0 with positive probability and his utility must be 0.

As the time between offers goes to 0, the Coasian effect precludes delay and would force

the initial price to v(0) if the probability of investing 0 did not go to zero. But, this would
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mean that investing x∗ with probability 1 yields strictly positive utility to the buyer which

we argued cannot be. Consequently, the probability of investing 0 must go to 0 as the

time between offers goes to 0. The key observation is that when the time between offers

goes to zero, it may take a positive amount of time to ensure that trade takes place with

probability 1, but the Coasian effect still guarantees that the expected time until trade

approaches zero.

It is of some interest to figure out what the behavior of the buyer (i.e., q) is like and

in particular, how this behavior prevents the seller from succumbing to the temptation of

running down the buyer’s demand curve in the “blink of an eye”. As the time between

offers becomes arbitrarily small, the probability of the buyer purchasing the good at the

price to be charged at time t becomes arbitrarily large compared to the probability of

purchasing at the price to be charged at time t + ε. This is true in spite of the fact that

prior probability of purchase at or after time t is going to zero for all t greater than 0.

Thus, conditional on not reaching agreement prior to time t, the probability of the game

ending almost immediately after t is arbitrarily close to 1. This makes it not worthwhile

for the seller to try to speed up the process.

Proposition 5 has a peculiar observational implication: In situations satisfying the

assumptions of the Proposition, in equilibrium, nearly always the buyer will invest nearly

efficiently and nearly always trade will take place almost immediately at a price that

covers the (sunk) cost of investment. An observer might be inclined to conclude that

the compensation of the buyer’s investment by the seller is due to some extra-strategic

notion of fairness or a possible repeated game effect supporting such a norm. However,

in our model, a purely strategic one-shot relationship is able to support this apparently

paradoxical outcome.
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4. Uncertain Gains From Trade

A crucial assumption in the preceding analysis was v(0) > c where c, the constant

marginal cost of production was normalized to 0. Hence, we had assumed strictly positive

gains from trade, even with 0 investment. Relaxing this assumption is important not only

because the case of uncertain gains from trade is of some interest but also to facilitate

comparisons between the current work and the incomplete contracts literature since much

of this literature focuses on this case of uncertain gains from trade.

To allow for uncertain gains from trade, we modify the model of Section 3 by assuming

that the cost of production C, is random. We assume that the random variable C is non-

negative and has finite support. We also assume that the cost of production is incurred by

the seller at the time of agreement. When the realization of C is above v(x) there are no

gains from trade. The realization of C is observed by both agents prior to the bargaining

stage. Let BC(∆) denote the game with uncertain gains from trade.

Let S denote the expected gains from trade as a function of the buyer’s level of

investment. That is, S(x) =
∑
c<v(x)(v(x) − c)Prob{C = c} − x. Note that since v is

continuously differentiable, S is continuously differentiable at all x such that Prob{C =

v(x)} = 0. It is easy to verify that the left-derivative of S at x is v′(x)Prob{C < v(x)}−1.

Let XC := {x |Prob{C = v(x)} > 0} and X∗ := {x | v′(x)Prob{C < v(x)} = 1}. We make

the following assumption:

Assumption A: (i) XC ∩ (X∗ ∪ {0}) = ∅. (ii) S is strictly quasi-concave.

Part (i) of Assumption A is a genericity requirement. For any S that fails (i) there

exist ε > 0 such that replacing C with C − ζ for any ζ ∈ (0, ε) ensures that (i) is satisfied.

Moreover, if C satisfies (ii) then ε can be chosen sufficiently small so that C − ζ satisfies

both (i) and (ii). By (ii), there is a unique maximizer x∗, of S. Since S′(x) < 0 for all

x < minXC and 0 /∈ XC , (ii) of Assumption A implies that either x∗ = 0 or Prob{C <

v(0)} > 0. The other important consequence of Assumption A is that it ensures that the

left-derivative of S is strictly positive on (0, x∗)

We prove below, a result analogous to Proposition 5 and show that as the the time

between offers becomes arbitrarily small, the buyer’s investment strategy converges to
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x∗ and the probability of agreement by time ε converges to Prob{C < v(x∗)}. That is,

investment and trade become efficient as the time between offers converges to 0.

In the current setting, it could be that at the bargaining stage, the probability that

the buyer’s valuation is in the interval (c, c+ ε) is strictly positive for all positive ε. Hence,

we are in what is called the “no-gap” case of the bargaining problem.6 It is well-known

that the Coase conjecture is not valid in the no-gap case without further assumptions. For

the gap case, Proposition 3 guarantees that sequential equilibria are stationary. To prove

the Coase conjecture in the no-gap case, GSW restrict attention to stationary sequential

equilibria of BH . The existence of stationary sequential equilibria of BH , for the no-gap

case is established by Ausubel and Deneckere (1989). We take the same approach as

GSW and restrict attention to sequential equilibria of BC(∆) that specify a stationary

equilibrium for the bargaining stage.

A sequential equilibrium σ of BC(∆) is stationary if for each c in the support of

C, σ specifies a strategy profile that constitutes a stationary sequential equilibrium of

the bargaining stage given cost c. In the no-gap case, the consistent collection qc, rc, Πc

associated with a given investment decision and cost c need not be unique.

Proposition 6: Suppose the game BC(∆) satisfies Assumption A. Then, for every ε > 0,

there exists ∆∗ > 0 such that ∆ < ∆∗ implies that in any stationary sequential equilibrium

of BC(∆), the probability that the buyer’s investment is in [x∗ − ε, x∗] is at least 1 − ε.

Moreover, conditional on C < v(x∗), the probability of agreement by time ε is at least 1−ε.

That is, as the time between offers becomes arbitrarily small the stationary sequential

equilibrium outcomes become efficient and the seller extracts all of the surplus.

Proof: See Appendix.

To see why the restriction to stationary sequential equilibria is necessary, note that

the later the buyer expects to trade, the lower will be his optimal level of investment. But

when there is no-gap, it is known that many equilibria can be sustained, including ones in

which there is substantial delay.7

6 See GSW and Ausubel and Deneckere (1989).
7 Ausubel and Deneckere (1989) prove that in the no-gap case, virtually any level of inefficiency and

any division of surplus can be sustained with non-stationary sequential equilibria.
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To see why assumption A is necessary, suppose that C has two elements in its support

c1 > c0. Let x∗ be the unique maximizer of S and x∗∗ maximize Prob{C = c0}(v(x)−c0)−
x. Hence, x∗ is the efficient investment level while x∗∗ is the efficient level of investment in

the game BĈ(∆) where Prob{Ĉ = c0} = Prob{C = c0} and Prob{Ĉ = M} = Prob{C =

c1}. The game BĈ(∆) is just like the game BC(∆) except that instead of c1, Ĉ takes on

a value that precludes gains from trade. In general, it is possible for x∗∗ to be strictly less

than x∗. Moreover, if assumption A is not satisfied then it is possible that v(x∗∗) ≤ c1.

Assume that the buyer invests according to some stationary sequential equilibrium σ̂ of

BĈ(∆). Suppose that if C = c1 the seller charges M in every period and the buyer

never accepts and if C = c0 then both the seller and the buyer play as they would in σ̂

after observing c0. It is easy to see that this strategy profile is a stationary sequential

equilibrium of BC(∆). As ∆ goes to zero, investment in this type of equilibrium converges

to x∗∗ which is an inefficient local maximizer of S. Assumption A rules out this situation

by ensuring that v(x∗∗) > c1.

To prove Proposition 6, we consider a convergent sequence of equilibrium outcomes

as ∆ approaches zero. The finiteness of the support of C ensures the existence such a

sequence. To see how the proof of Proposition 6 works, let G be the limiting distribution of

the buyer’s investment decision. If x is in the support of G, the buyer who invests x should

not be able to increase his payoff with a small change in his investment without changing

his buying strategy. In a stationary sequential equilibrium, the analysis of Proposition 5

suffices to show that the expected time until agreement is reached conditional on strictly

positive gains from trade converges to 0. With unobservable investment the buyer invests

efficiently given the probability and timing of trade. Hence, if S′(x) is well-defined and x

in the support of G then S′(x) = 0. If S′(x) is not well-defined and x is in the support of

G then the left-derivative of S at x must be 0. Given Assumption A, the only G consistent

with this requirement is the distribution with unit mass at x∗. Finally, the argument used

in Proposition 4 establishes that in any stationary sequential equilibrium of BC(∆) the

buyer’s payoff is zero and hence the seller extracts all surplus.

Proposition 6 enables us to replace the requirement v(0) > 0 used in Proposition 5

with the weaker requirement that there should be some chance that C is less than v(0).

Proposition 7 below shows that this condition is essential.
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Proposition 7: If Prob{C ≥ v(0)} = 1 then in any sequential equilibrium of BC(∆)

the buyer invests 0 and both players receive 0 utility.

Proof: See Appendix.

5. Two-Sided Investment

In this section we consider a game in which both the buyer and the seller invest prior

to the bargaining stage. For simplicity, we assume that the buyer invests either 0 or x∗ > 0,

while the seller invests either 0 or y∗ > 0. As in the previous sections, the investment of

the buyer x, determines his valuation v. Now, the investment of the seller y, determines

her constant marginal cost of production c. In order to avoid trivial cases, we assume that

0 investment is inefficient for both agents. Hence v∗ − v0 − x∗ > 0 and c0 − c∗ − y∗ > 0

where v0, c0 denote the valuation and cost associated with 0 investment and v∗, c∗ denote

the corresponding values for positive investment. Also, we assume v0 > c0. Hence, it is

common knowledge that there are strictly positive gains from trade.

We consider two different extensive form games. In the first game, the buyer makes

his unobservable investment after learning the investment decision of the seller. Then,

the bargaining stage begins. The bargaining stage is the same repeated offer, infinite

horizon game studied in Sections 3 and 4. In the second game, the seller and buyer invest

simultaneously, prior to the bargaining stage. The investment of the seller is observable.

Hence, only the buyer has private information during the bargaining stage. The first game

enables the seller to commit to a particular level of investment while the second does not.

Let Bsb(∆) denote the bargaining game with two-sided investment where the seller

invests first and let B2(∆) denote the game in which investment decisions are made simul-

taneously. Proposition 8 below, establishes that the reasoning of Proposition 5 carries over

to the case of two-sided investment if the seller can commit to her investment level. By

Proposition 5, no matter what the seller invests, the buyer’s investment will be efficient

and the seller will extract all surplus as ∆ approaches 1. This implies that the unique

optimal action of the seller is to invest y∗. Formally, Proposition 5 considers only the case

in which the set of investment decisions for the buyer is an interval. However, neither the
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proof of Proposition 5 nor Proposition 3 from GSW require a continuum of types. Given

Proposition 5, the proof of Proposition 8 below is straightforward and omitted.

Proposition 8: For every ε > 0 there exists ∆∗ > 0 such that ∆ < ∆∗ implies that

in any sequential equilibrium of Bsb(∆) the probability of agreement by time ε is at least

1 − ε, the probability that the seller invests y∗ is 1 and the probability that the buyer

invests x∗ is at least 1− ε. That is, as the time between offers becomes arbitrarily small,

the sequential equilibrium outcomes are efficient and the seller extracts all the surplus.

In contrast to Proposition 8, there is a potential source of inefficiency when investment

decisions are made simultaneously. To see this, note that a higher constant marginal cost

of production renders the seller less impatient to run down the buyer’s demand curve (i.e.,

qc). Thus, for a fixed investment strategy of the buyer, a higher c results in a higher initial

price and hence, higher expected revenue in equilibrium. But this means that some of the

cost of the inefficient choice of y is passed on to the buyer. Consequently, the seller has an

incentive to underinvest. Therefore, when the efficiency gain from the seller’s investment,

c0 − c∗ − y∗ is sufficiently small, she will not invest at all.

Proposition 9: Fix v0, v∗, x∗, c0, c∗. Then, there exists δ > 0 such that for all y∗ >

c0− c∗− δ and ε > 0, there exists ∆∗ > 0 such that ∆ < ∆∗ implies that in any sequential

equilibrium of B2(∆), the probability of agreement by time ε is at least 1−ε, the probability

that the seller invests 0 is 1 and the probability that the buyer invests x∗ is at least 1− ε.

Proof: See Appendix.

In Proposition 9, the need for the efficiency gain to be small is an artifact of the discrete

investment choice. Presumably, if v were a differentiable function of y, the equilibrium

investment level would be bounded away from the efficient investment y∗. However, the

proof of Proposition 9 entails constructing the consistent collection associated with any

possible investment strategy of the buyer. This task is not feasible when the investment

choice is a continuous variable.
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6. Conclusion

The result that unobservable investment and the information rents it creates may

provide sufficient incentives for optimal investment, even when the agent investing has no

bargaining power, appears to be robust to a number of extensions or modifications of our

basic model.8 We conclude by discussing a few other possible extensions and speculate

on the implications of our results for the problem of organization design under incomplete

contracting.

If the buyer’s valuation given his investment is random, then it could be possible for

the buyer to enjoy strictly positive surplus in equilibrium. For example, suppose that

the cost c = 0 is known. Assume that there are two possible investment levels, 0 and

the efficient level x∗ > 0. Let v0 > 0 be the deterministic valuation that results from 0

investment. However, assume that x∗ leads to the random valuation V ∗ with support [a, b].

Suppose that only the buyer observes the realization of V ∗ (prior to the bargaining stage)

and v0 < a < x∗. Then, as the time between offers goes to 0, every sequential equilibrium

outcome will be efficient and yield the buyer expected utility equal to the entire surplus

minus a (i.e., E[V ∗]− x∗ − a). Hence, the salient feature of Proposition 5 is the tendency

towards immediate agreement and efficient investment, not the fact that the buyer achieves

0 surplus.

Next, consider the possibility of the buyer making offers. The literature on bargaining

provides much fewer general results when privately informed agents make repeated offers.

It is often assumed that many outcomes can be sustained in such situations. Nevertheless

if, as is sometimes done in the bargaining literature, a refinement criterion that guarantees

immediate agreement is imposed, then the conclusions of Proposition 5 would carry over

to this setting.9 More generally, whenever the framework precludes “a folk theorem” in the

spirit of Ausubel and Deneckere (1989), unobservable investment will tend to guarantee

some rents to the investor. The first objective of this paper has been to demonstrate how

such rents can be sustained in equilibrium, and even lead to efficient investment.

The literature on incomplete contracting considers the allocation of ex post bargaining

power, either through the allocation of property rights or through the detailed specification

8 Note that in Proposition 9, it is the player with the observable decision that is investing inefficiently.
9 See for example, Gul and Sonnenschein (1988).
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of the non-cooperative renegotiation game, as the proper tool for controlling the ex ante

incentives to invest. Our second objective has been to suggest the possible use of infor-

mation regarding investment as an alternative tool for organizational design and remedy

for the hold-up problem. This approach may be particularly useful when contracting and

enforcement is difficult and re-allocating bargaining power through organizational design

is costly. In general, when more than one agent has to undertake specific investment, a

given institutional arrangement may give some agents too little incentive to invest while

it gives others too much. Changing the flow of information by increasing monitoring and

hence forcing one agent to disclose, perhaps partially, what she knows or granting her the

right to withhold such information, will influence the rents enjoyed by all agents and hence

their incentives to invest. Comparing the example with a random buyer valuation above,

with the model of Section 3 suggests that by altering the flow of information both efficiency

and a wide range of distributions of surplus may be achieved.

7. Appendix

Proof of Proposition 1: Let pl = sup {p |F (p) = 0} and ph = inf {p |F (p) = 1}.
Define xl and xh for G in an analogous fashion. Let z be called a point of increase

of a cumulative distribution function if either z is point of discontinuity or if for every

ε > 0, H(z + ε) > H(z). First, we will make a number of simple observations:

(1) In equilibrium, the buyer will always accept any offer below his valuation and

reject any offer above his valuation. The seller will not charge a price below v(xl) or above

v(xh).

(2) If z is a point of increase of F (G) then z is an optimal strategy for the seller

(buyer).

(3) xl = 0 and pl = v(0).

Moreover, if v is strictly concave and continuous, then,

(4) xh = x∗ and if x ∈ [0, x∗) then x is a point of increase of G.

The proofs of (1)-(4) are straightforward and are omitted. Since xl and pl are points

of increase, the first sentence of the Proposition follows from (2) and (3). (1) establishes

the second sentence.
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To conclude the proof, note that since the equilibrium payoff of the buyer is 0, (2)

and (4) imply
v(x)∫
v(0)

(v(x) − p)dF (p) − x = 0 for all x ∈ [0, x∗) establishing that F is the

desired function. But this implies, again by (2), that every p ∈ [v(0), v(x∗)) is optimal for

the seller. Hence (1−G(x))v(x) = v(0), yielding the desired G.

Proof of Part (4) of Proposition 3: Let ν(p) = [p− v(0)e−∆]/[1− e−∆] and note

that since a price below v(0) is never charged, in any equilibrium, a buyer with valuation

v > ν(p) will accept price p immediately. Let H̄ be the distribution of valuations after

some history h. By part (0) of Proposition 3, a buyer type v′ < v will never purchase

before a buyer type v. Therefore, after history h, there is a valuation v̄ and α, such that

H−(v̄) ≤ α ≤ H(v̄), H̄(v) = 1 for all v ≥ v̄ and H̄(v) = H(v)/α for all v < v̄, where

H−(v̄) is the left-limit of H at v̄. We will refer to h as a history with state v̄. Suppose

that the price v(0) has not been charged in the past. Hence, H−(v̄) > 0. The payoff to

the seller, after a history with state v̄ is at least

πl(v̄, p) = [1− H̄(ν(p))]p

Straightforward calculations yield,

πl(v̄, p)− v(0)
p− v(0)

= 1− pH̄(ν(p))
p− v(0)

≥ 1− pH(ν(p))
H−(v̄)[p− v(0)]

Note that since ν′ = 1/(1 − e−∆) and by assumption, limH(vt)/[vt − v(0)] = 0 for some

sequence vt, we can find p > v(0) such that 1− pH(ν(p))
H−(v̄)[p−v(0)] > 0. Then, πl(v, p)−v(0) > 0.

So, after any history in which v(0) has never been charged, there exists some p > 0 that

yields a higher payoff to the seller than v(0).

Proof of Proposition 4 (Existence of a Sequential Equilibrium):

Since v is concave, if v′(0) ≤ 1 then the buyer investing 0 with probability 1 and

accepting any offer less than or equal to v(0) and the seller asking p = v(0) after every

history is clearly an equilibrium strategy profile. Henceforth, we assume v′(0) > 1.

A stationary equilibrium of the game B∆ consists of G a distribution of investment

decisions which yields a distribution of valuations H, an initial period pricing strategy F

and a consistent collection (given H) q, r, Π. To ensure that G, F, q, r,Π is a stationary
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equilibrium of B∆ we need to verify that q, r,Π is a consistent collection given the distri-

bution of valuations induced by G, the sellers first period pricing strategy F is optimal

given q, r, Π and G is optimal given F, q, r,Π. In our proof, we assume that G is piece-

wise differentiable and strictly increasing. Then, we construct F, q, r,Π with the desired

properties which determines an equation defining the equilibrium G. Finally, we provide

a solution to this equation.

Let δ := e−∆. For any v satisfying the hypothesis of the Proposition, let T = min{k ≥
1 | δk ≤ 1

v′(0)}. Since v′(0) > 1, T ≥ 1 is well-defined. In the equilibrium we construct,

bargaining will continue for at most T + 1 periods. In constructing the equilibrium we

consider two cases: First, we assume that v is twice continuously differentiable. This makes

it possible to characterize a particular equilibrium investment strategy by T differential

equations. Then, we use the fact that twice continuously differentiable functions are dense

within the set of v’s covered by the Theorem to construct an equilibrium for all such v.

In Theorem 3 and the related definition of a consistent collection, q0, the probability

of acceptance until the current period, is the state variable. In constructing an equilibrium

for the entire game (i.e. including the investment stage) it is more convenient to use

as the state variable the investment decision x rather than q0. Hence, instead of H the

distribution of valuations, we utilize G, the distribution of investment decision. Similarly,

instead of r which determines the price charged in the current period given state q0, we use

ρ which determines state in the next period as a function of the current state x. Finally,

instead of F we use F̂ and instead of q we use P to complete the translation from the state

space of q0’s to x’s.

Define ρ, η : [0, M ]→ [0, M ] as follows: ρ(x) = 0 if v
′(x)
δ ≥ v′(0) and ρ(x) = v′−1(v

′(x)
δ )

otherwise. Let x̄ := max{z | ρ(z) = 0}, η(0) = x̄, η(x) = ρ−1(x) for all x ∈ (0, ρ(x∗)) and

η(x) := x∗ for all x ∈ [ρ(x∗), M ]. Since ρ is continuous everywhere and strictly increasing

on [x̄, M ], η is well-defined. Moreover, η is continuous everywhere and is strictly increasing

on [0, ρ(x∗)]. At any state less than x̄, the seller makes an offer that is accepted with

probability 1, (i.e. p = v(0)).

Let ρ0(x) := x for all x ∈ [0, M ] and for t ≥ 1, let ρt(x) := ρ(ρt−1(x)). Define ηt in a

similar fashion. The function P : [0, M ]→ IR describes the highest price the buyer accepts
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if he has invested x. This function is defined as follows: P (x) = (1 − δ)
∑∞
t=0 v(ρt(x))δt.

The function P is continuous and strictly increasing everywhere. Next, we describe the

the seller’s pricing strategy in period 1. The distribution F̂ has support [ρ(x∗), x∗] and

1− F̂ (x) is the probability that x will be the state at the end of period 1. F̂ is defined as

follows: F̂ (x) = 0 if x < ρ(x∗), F̂ (x) = 1
(1−δ)v′(x) − δ

1−δ if x ∈ [ρ(x∗), x∗] and F̂ (x) = 1 if

x > x∗.

For any G that is continuous and strictly increasing in the interval [0, x∗) such that

G(0) = 0, G(x∗) = 1, define Π̂(x), the expected present value of profit conditional on x

as follows: Π̂(x) := 1
G−(x)

∑∞
t=0[G

−(ρt(x)) − G(ρt+1(x))]P (ρt+1(x))δt for x ∈ (0, x∗] and

Π̂(0) = v(0) where G− denotes the left-limit of the function G. Note that G−(x) = G(x)

whenever x 6= x∗. The expected present value of profit at the start of the bargaining stage

is denoted Π̂(M) := [1−G−(x∗)]P (x∗) + δΠ(x∗).

Next, we describe how F, q, r,Π can be derived from F̂ , P, ρ, Π̂: For p ≤ P (ρ(x∗)),

F (p) := 0; for p ∈ (P (ρ(x∗)), P (x∗)), F (p) := F̂ (P−1(p)) and for p ≥ P (x∗), F (p) :=

1. For p > P (x∗), q(p) := 0; q(P (x∗)) = 1 − G−(x∗); for p ∈ (v(0), P (x∗)), q(p) :=

1 − G(P−1(p)) and for p ≤ v(0), q(p) := 1. Let r(1 − G−(x∗)) := P (ρ(x∗)); for q0 ∈
(1 − G−(x∗), 1), r(q0) := P (ρ(G−1(1 − q0))) and r(1) := v(0). Define Π(0) := Π̂(M);

Π(1−G−(x∗)) = Π̂(x∗); for q0 ∈ (1−G−(x∗), 1), Π(q0) := Π̂(G−1(1−q0)) and Π(1) := v(0).

We seek a G that ensures that the resulting G, F, q, r,Π is a sequential equilibrium of

B(∆). In Step 1 below, we identify the conditions that define the equilibrium G. In Step

2, we prove the existence of G satisfying these conditions when v is twice continuously

differentiable and v′′ < 0. In Steps 3 − 5 we take care of the case in which v is merely

strictly concave and continuously differentiable.

Step 1: Suppose,

A) G is strictly increasing and continuous on the interval [0, x∗), G(0) = 0, G(x∗) = 1.

B) For all x ∈ (0, x∗), Π̂(x) ≥ G(x)−G(y)
G(x) P (y) + δG(y)

G(x) Π̂(y) for all y ∈ [0, x].

C) [1−G(x)]P (x) + δG(x)Π̂(x) is constant for all x ∈ [ρ(x∗), x∗).

Then, G, F, q, r,Π is a sequential equilibrium of B(∆).

Proof: Note that (B) above is necessary for the optimality of the seller behavior after the

initial period while (C) is necessary for the optimality of the initial period randomization.
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Clearly, if (A) is satisfied q, r, Π are well-defined, q, r are left-continuous, Π is continuous

except at 0 and q is non-increasing. Since ρ is non-decreasing, r is non-increasing. For

y ≥ x,

Π̂(x) =
[
G(x)−G(ρ(x))

G(x)
P (ρ(x)) + δ

G(ρ(x))
G(x)

Π̂(ρ(x))
]

≤
[
G(y)−G(ρ(x))

G(y)
P (ρ(x)) + δ

G(ρ(x))
G(y)

Π̂(ρ(x))
]

≤ Π̂(y)

The first line above holds by definition, the second line follows from the fact that P is

increasing so P (z) ≥ Π̂(z) for all z and the last inequality follows from (B). Hence, Π̂ is

non-decreasing, so Π is non-increasing. By construction (i) and (iii) in the definition of a

consistent collection are satisfied.

To conclude Step 1, it remains to show that the buyer’s investment strategy is optimal

given the specified behavior afterward. Note that given the specified behavior of the seller,

V (x, y), the expected utility of investing x and accepting any offer at or below P (y) is

V (x, y) :=
∫
ρt(z)≤y

[v(x)− P (ρt−1(z))]δt−1dF̂ (z) +
∫
ρt(z)>y

[v(x)− P (ρt(z))]δtdF̂ (z)− x

whenever y ∈ (ρt+1(x∗), ρt(x∗)]. Let W (x) be the equilibrium payoff of a buyer who

invests x. That is, W (x) := V (x, x). Both V and W are continuous. The definitions of P

and ρ ensure that for any realization of x0 in the initial period, along the price sequence

P (ρt(x0)), we have

v(ρt(x0))− P (ρt(x0)) = δ[v((ρt(x0))− P (ρt+1(x0))]

Hence conditional on any investment level x ∈ [0, x∗] it is optimal to buy in period t − 1

if x ∈ [ρt(x0), x∗] and in period t if x ∈ [ρt(x∗), ρt−1(x0)). That is;

V (x, x)− V (x, y) ≥ 0 (1)

Take any y ∈ (ρt+1(x∗), ρt(x∗)) for t < T . Let x ∈ [0, M ] and ρt(y1) = y for some

y1 ∈ (ρ(x∗), x∗). Simple manipulations of the above expression for V yield

V (y, y)− V (x, y) = [v(y)− v(x)]δt[F̂ (y1) + (1− F̂ (y1))δ]− y + x
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Since y = ρt(y1), v′(y) = v′(ρt(y1)) = v′(y1)
δt and v is concave with v′ ≥ 1, we have

v(y)−v(x)
y−x ≥ 1. Hence, the above expression implies that V (y, y) − V (x, y) ≥ 0 for all

y ∈ (0, x∗], x ∈ [0, M ] and limx→y
V (y,x)−V (x,x)

y−x = limx→y
V (y,y)−V (x,y)

y−x = 0 whenever

x ∈ (0, x∗]. Then, by (1)

V (y, x)− V (x, x) ≤W (y)−W (x) ≤ V (y, y)− V (x, y)

Dividing all terms by y − x and taking a limit as x goes to y establishes that W ′(y) = 0.

Since W is continuous and has zero derivative outside of a finite set, W is constant on

[0, x∗]. Note that conditional on investing more than x∗, the optimal behavior in the

bargaining stage is to buy in the initial period at whatever price the seller offers. Recall

that given G, the bargaining behavior is optimal. Hence, the optimality of G follows from

W (x) = W (x∗) ≥ V (y, x∗) for all x ∈ [0, x∗], y ∈ (x∗, M ] and the fact that [0, x∗] is the

support of G.

Given Step 1, the task of establishing existence is reduced to finding a probability

distribution G satisfying (A), (B) and (C) above. For the case of a twice continuously

differentiable v, we will ensure that (B) and (C) are satisfied by finding G that solves the

corresponding differential equations (B∗) and (C∗) below.

Call v neoclassical if v is twice continuously differentiable, v′′ < 0 on (0, M) and

limx→0+ v′′(x) < 0. Let Z0 := {z ∈ [0, M ] | v′(z) = δtv′(0) for some t ≥ 0}, Z∗ := {z ∈
[0, x∗] | δtv′(z) = v′(x∗) for some t ≥ 0} and X0 := (0, M)\[Z0 ∪ Z∗]. Clearly, Z0 ∪ Z∗

is a finite set and x ∈ X0 implies η(x) ∈ X0 and either ρ(x) = 0 or ρ(x) ∈ X0. Note

that when v is neoclassical, ρ and P are differentiable at every x ∈ (0, M)\Z0 ⊃ X0 and

ρ′(x) > 0, P ′(x) > 0 for all x ∈ (0, M)\Z0. Moreover, P ′ can be continuously extended to

any interval [ηt(0), ηt+1(0)] for any t = 0, . . . , T − 1.

Step 2: If v is neoclassical then G satisfying the hypothesis of Step 1 exists.

Proof: Consider the following differential equations on [0, x∗]:

[G(x)−G(ρ(x))]P ′(ρ(x))− g(ρ(x))[P (ρ(x))− δP (ρ2(x))] = 0 (B∗)

[1−G(x)]P ′(x)− g(x)[P (x)− δP (ρ(x))] = 0 (C∗)
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where g := dG
dx . To prove Step 2, we first show that if G satisfies (A) of Step 1, (B∗) at all

x ∈ X0 and (C∗) at all x ∈ (ρ(x∗), x∗) ∩X0 then G satisfies (B), (C) of Step 1. Then, we

conclude the proof by constructing such a G.

Let G be a distribution function that satisfies (A) of Step 1, (B∗) at all x ∈ X0 and

(C∗) at all x ∈ (ρ(x∗), x∗) ∩ X0. For all x ∈ (0, x∗) and y ∈ [0, x], define π(x, y) :=
G(x)−G(y)

G(x) P (y) + δG(y)
G(x) Π̂(y). Since G and Π̂ are continuous on [0, x∗) so is π. Moreover,

since (B∗) is satisfied and v is neoclassical π(x, ·) is differentiable at every y ∈ X0. If (B∗)

is satisfied at every x ∈ X0 then at every such x we have

dG(x)Π̂(x)
dx

= g(x)P (ρ(x)) +
δdG(ρ(x))Π̂(ρ(x))

dx
− δg(ρ(x))P (ρ2(x))ρ′(x)

Hence, an inductive argument establishes that dG(x)Π̂(x)
dx = g(x)P (ρ(x)) for all x ∈ X0.

Since [G(η(y))−G(y)]P ′(y)− g(y)[P (y)− δP (ρ(y))] = 0 for all y ∈ X0,

dπ(x, y)
dy

=
G(x)−G(η(y))

G(x)
P ′(y)

whenever y ∈ X0. The term on the right-hand side above is strictly greater than 0

whenever x > η(y) or equivalently, ρ(x) > y. Similarly, this term is less than 0 whenever

ρ(x) < y. Hence, for all x, y ∈ X0, π(x, ρ(x)) ≥ π(x, y). By continuity π(x, ρ(x)) ≥ π(x, y)

for all x ∈ (0, x∗), y ∈ [0, x] and therefore (B) of Step 1 holds.

Since dG(x)Π̂(x)
dx = g(x)P (ρ(x)), the equation (C∗) implies

d[[1−G(x)]P (x)+δG(x)Π̂(x)]
dx = 0

for all x ∈ (ρ(x∗), x∗)\Z0. Then, (C) of Step 1 follows.

Let A(x) := P ′(x)
P (x)−δP (ρ(x)) and B(x) :=

∫ x
0

A(ξ)dξ. Recall that A is well-defined at

x ∈ (0, M)\Z0 and that for any interval [ηt(0), ηt+1(0)], there is a unique continuous

function At on this interval that agrees with A at every x ∈ (ηt(0), ηt+1(0)). Clearly,

At > 0 for all t = 0, . . . , T −1. Let F denote the space of all continuous functions on [0, x∗]

endowed with the sup norm. Consider the class of first order linear differential equations

of the form

A(x)[f(x)− L(x)] = L′(x)

Note that (B∗) has this form. We say that L is a solution to this differential equation if

L is a continuous function on [0, x∗] and satisfies the equation at every x ∈ (0, M)\Z0.
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Clearly, for any initial condition L(y) = a and f ∈ F , there is a unique solution to this

equation and this solution has a right-derivative at every x ∈ [0, M). Let Ly(f, a) denote

this unique solution. Since P has a right-derivative at every x < M so does Ly(f, a).

Claim 1: f(x) > f̂(x) for all x ∈ [0, y], L := Ly(f, a) and L̂ := Ly(f̂ , a) implies L(x) <

L̂(x) for all x ∈ [0, y).

Proof: Clearly, L(x) < L̂(x) for all x ∈ [y − ε, y) for sufficiently small ε. If the claim

is false, x := max{x′ |L(x′) ≥ L̂(x′)} is well-defined and L(x) = L̂(x). If x 6∈ Z0, we

have L(x) = L̂(x), L′(x) > L̂′(x) and L(z) < L̂(z) for all z ∈ (x, y) a contradiction. If

x ∈ Z0 replace the derivative of L, L̂ with the corresponding right-derivatives to get a

similar contradiction.

Claim 2: For any x ∈ [0, y), Ly(·, ·)(x) is a continuous function from F × IR to IR and

Ly(·, ·) is a continuous function from F × IR to F .

Proof: Assume |f − f̂ | < ε and |a − â| < ε and let L := Ly(f, a) and L̂ := Ly(f̂ , â).

Let φ(x) = ε · (1 − eB(y)−B(x)). Then, φ = Ly(Iε, 0) and −φ = Ly(−Iε, 0) where Iε

denotes the constant function ε. Therefore, by Claim 1, εeB(M) > |Ly(f − f̂ , 0)(x)| =

|Ly(f, 0)(x) − Ly(f̂ , 0)(x)|. Also, note that εeB(M) > |Ly(I0, a − â)(x)| = |Ly(f̂ , a)(x) −
Ly(f̂ , â)(x)|. Hence, |Ly(f, a)(x)−Ly(f̂ , â)(x)| ≤ |Ly(f, a)(x)−Ly(f̂ , a)(x)|+|Ly(f̂ , a)(x)−
Ly(f̂ , â)(x)| < 2εeB(M) establishing both the continuity of Ly(·, ·)(x) and Ly(·, ·).

Let yt := ρt(x∗), G0
a := Ly0(I1, a) and for t = 1, . . . , T define Gt

a inductively as

Gt
a := Lyt(Gt−1

a ◦ η, Gt−1
a (yt)). Note that G0

a(x) = 1 − [1 − a]eB(x∗)−B(x) and hence

Gt
1(x) = 1 for all t ≥ 0 and x ∈ [0, 1]. Since A(x) > 0 for all x ∈ X0, an inductive

argument establishes that Gt
a is stricly increasing on [yt, yt−1] whenever a ∈ (0, 1). Define

the distribution Ga as follows: for x ≥ x∗, Ga(x) := 1, for x ∈ [ρt(x∗), ρt−1(x∗)) and

t = 1, . . . , T , Ga(x) := Gt−1
a (x), for x ∈ [0, ρT−1(x∗)), and for x ≤ 0, Ga(x) = GT−1

a (0).

The construction above ensures that Ga solves (B∗). To conclude the proof we need to

find a < 1 such that Ga(0) = 0.

By Claim 2, GT−1
a (0) = Ga(0) is a continuous function of a. Since each Gt−1

a is

strictly increasing on [yt, yt−1], Ga is strictly increasing on [0, x∗]. Hence G0(0) < 0 and

G1(0) = 1. Therefore, there exists a∗ < 1 such that Ga∗(0) = 0. The function G := Ga∗

satisfies all the desired properties.
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Let X, Y, Z be arbitrary compact intervals in IR.

Step 3:

A) If fn : X → Y and gn : Y → Z converge uniformly to f and g respectively and fn, gn

are continuous, then gn ◦ fn converges uniformly to g ◦ f .

B) If each fn : X → Y is a continuous bijection and fn converges uniformly to the bijection

f then f−1
n converges uniformly to f−1.

C) If fn : X → Y is non-decreasing and fn converges to the continuous function f at every

point then fn converges to f uniformly.

Proof of A: Since uniform limits of continuous functions on compact sets are continuous,

f, g are continuous and hence uniformly continuous. Pick ε > 0. By assumption, there

exists ε1 > 0 such that |g(y)− g(y′)| < ε
2 whenever |y− y′| < ε1. Also, there exists N such

that |f − fn| < ε1 and |g − gn| < ε
2 whenever n ≥ N . Hence for n ≥ N ,

|g(f(x))− gn(fn(x))| ≤ |g(f(x))− g(fn(x))|+ |g(fn(x))− gn(fn(x))| < ε

Proof of B: Note that f is continuous therefore f−1 is continuous and hence uniformly

continuous. So, for all ε > 0 there exists ε1 > 0 such that |f−1(y)− f−1(y′)| < ε whenever

|y − y′| < ε1 . By assumption, there exists N such that n ≥ N implies |f − fn| < ε1. For

any n ≥ N and y ∈ Y , set xn = f−1
n (y) and yn = f(xn). By construction |y − yn| < ε1.

So, |f−1(y)− f−1
n (y)| = |f−1(y)− f−1(yn)| < ε.

Proof of C: Suppose fn is non-decreasing for all n (hence, f is non-decreasing). For any

ε > 0, pick a finite set Z ⊂ X such that for every x ∈ X there exists z1, z2 ∈ Z satisfying

z1 ≤ x ≤ z2 and f(z2)− f(z1) < ε
2 . Since f is non-decreasing and X is bounded this can

be done. Since Z is finite we can pick N large enough so that |f(z) − fn(z)| < ε
2 for all

n ≥ N and z ∈ Z. Then, for any x ∈ X, there are z1, z2 ∈ Z such that z1 ≤ x ≤ z2 and

0 ≤ f(z2)−f(z1) < ε
2 . Hence, f(x)−fn(x) ≤ f(x)−f(z1)+f(z1)−fn(z1) < ε. Similarly,

f(x)− fn(x) ≥ f(x)− f(z2) + f(z2)− fn(z2) > −ε. Hence, |f(x)− fn(x)| < ε as desired.

The proof for the case of non-increasing fn is similiar and omitted.

For any v that is not neoclassical, define ρ, η, P, F̂ as above. We construct a sequence

vn such that each vn is neoclassical and vn, v
′
n converge uniformly to v, v′ respectively. Let

v′n(x) := v′(x) for all x ∈ [0, M ] such that v′(x) = v′(0)+ k
n [v′(M)−v′(0)] for some integer
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k ≤ n. This defines v′n as a strictly decreasing function at n + 1 different points. This

function can be extended to the entire intverval [0, M ] in a manner that ensures that the

resulting function v′n is strictly decreasing, continuously differentiable with a derivative

that is bounded below by some α > 0. Clearly, vn defined by v(x) =
∫ x

0
v′n(y)dy is

neoclassical and the sequence vn converges uniformly to v. Define ρn, ηn, Pn, F̂n as above,

after replacing v with vn, ρ with ρn etc. in the corresponding definitions. Let Gn be

the equilibrium distribution of investment decisions guaranteed by Step 2. By Helley’s

Selection Theorem, there exists a subsequence along which Gn converges in distribution

to some G. Without loss of generality we assume that this subsequence is the sequence

itself. Define Π̂n as above by replacing ρ with ρn and G with Gn.

Step 4: The functions ρn, ηn, Pn converge uniformly to ρ, η, P respectively.

Proof: Parts (A) and (B) of Step 3 suffice to show that ρn converges to ρ uniformly.

Define ρ̂ on [−1, M ] as follows: ρ̂(x) := x
1+x̄ − x̄

1+x̄ for all x ∈ [−1, x̄) and ρ̂(x) := ρ(x) for

all x ∈ [x̄, M ]. Define ρ̂n by replacing ρ with ρn and x̄ with x̄n. Note that x̄n converges

to x̄ and ρn converges uniformly to ρ. Therefore, ρ̂n converges uniformly to ρ̂. By (B) of

Step 3, ρ̂−1
n converges uniformly to ρ̂−1. Hence, ηn converges uniformly to η.

Pick an integer K such that δK < v′(M)
v′(0) . Then, for all x ∈ [0, M ], ρK(x) = 0

and ρKn (x) = 0 for all n. Hence, Pn(x) = (1 − δ)
∑K−1
t=0 vn(ρtn(x))δt + δKvn(0) and

P (x) = (1 − δ)
∑K−1
t=0 v(ρt(x))δt + δKv(0). Since ρn, vn converge uniformly to ρ, v, part

(A) of Step 3 implies vn(ρtn(x)) converges uniformly to v(ρt(x)) and hence Pn converges

uniformly to P .

Step 5: G satisfies (A) of Step 1.

Proof of Step 5: First, we prove that G is continuous at every ȳ < x∗. Suppose not

and let ȳ > 0 be a point of discontinuity and J be the size of the jump at ȳ. Pick x, y

continuity points G sufficiently close so that 0 < |P (y) − P (x)| < J[P (y)−δP (ρ(y))]
3+2[J+P (y)−δP (ρ(y))]

and ρ(y) < x < ȳ < y. Then, choose ε > 0 such that ε < J[P (y)−δP (ρ(y))]
3+2[J+P (y)−δP (ρ(y))] and

ε < P (y)−δP (ρ(y))
2 . Also, choose N such that n ≥ N implies |Pn−P | < ε, |Pn◦ρn−P ◦ρ| < ε,
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(Steps 3 and 4 ensure that this can be done), |Gn(x)−G(x)| < ε and |Gn(y)−G(y)| < ε.

Since Gn satisfies (B) of Step 1, for wn := ηn(y), we have

Gn(wn)−Gn(y)
Gn(wn)

Pn(y) + δ
Gn(y)−Gn(ρn(y))

Gn(wn)
Pn(ρn(y)) + δ2 Gn(ρn(y))

Gn(wn)
Π̂n(ρn(y))

≥ Gn(wn)−Gn(x)
Gn(wn)

Pn(x) + δ
Gn(x)−Gn(ρn(y))

Gn(wn)
Pn(ρn(y)) + δ2 Gn(ρn(y))

Gn(wn)
Π̂n(ρn(y))

Hence,

0 ≤ Gn(wn)[Pn(y)− P (y) + P (y)− P (x) + P (x)− Pn(x)]

−Gn(y)[Pn(y)− δPn(ρn(y))] + Gn(x)[Pn(x)− δPn(ρn(y))]

< 3ε−Gn(y)[Pn(y)− δPn(ρn(y))] + Gn(x)[Pn(y)− δPn(ρn(y))]

< 3ε− [Gn(y)−G(y) + G(y)−G(x) + G(x)−Gn(x)][P (y)− δP (ρ(y))− 2ε]

< 3ε− [J − 2ε][P (y)− δP (ρ(y))− 2ε] < 0

a contradiction.

Since Gn(x) = 0 for all x < 0 and G is right-continuous, to conclude the proof of

continuity we need to show that G(0) = 0. Assume not and pick ε ∈ (0, G(0)
2 ), ε < G(0)v(0)

6

and y ∈ (0, x̄) such that v(y) − v(0) < ε. Again, let wn := ηn(y) and note that since

Gn satisfies (B) of Step 1, we have Π̂n(wn) ≥ Gn(wn)−Gn(x)
Gn(wn) Pn(x) + δ Gn(x)

Gn(wn) Π̂n(x) for all

x ∈ [0, y]. In particular, the above inequality holds for x = 0. Recall that ρ(x̄) = 0. Then,

since y < x̄, for n sufficiently large Π̂n(wn) = Gn(wn)−Gn(y)
Gn(wn) Pn(y) + δ Gn(y)

Gn(wn)vn(0). Hence,

we have

Gn(wn)−Gn(y)
Gn(wn)

Pn(y) + δ
Gn(y)

Gn(wn)
vn(0) ≥ vn(0)

Since Pn(y) = (1− δ)vn(y) + δvn(0) the above expression yields

Gn(wn)[vn(y)− vn(0)] ≥ Gn(y)vn(y)

Since G is continuous at y, for n large enough |G(y) − Gn(y)| < ε. Similarly, for n

large enough we have |vn(y) − v(y)| < ε, |v(0) − vn(0)| < ε. So, for n large enough,

3ε > [vn(y)− v(y) + v(y)− v(0) + v(0)− vn(0)] ≥ Gn(wn)[vn(y)− vn(0)] ≥ Gn(y)vn(y) ≥
[G(y)− ε]v(0) ≥ [G(0)− ε]v(0) > G(0)v(0)

2 , a contradiction.
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By construction, Gn(x) = 1 for all x > x∗n and n, x∗n converges to x∗. Moreover, G is

right-continuous. Hence, G(x∗) = 1.

Since G is continuous at every x < x∗, so is Π̂ . Therefore, by part (C) of Step 3, Gn

and Π̂n converge uniformly to G and Π̂ respectively on [0, α] for any α < x∗. Suppose G

is not strictly increasing. Then, we can find 0 < x < y < x∗ such that ρt(x∗) 6∈ [x, y] for

all t and G(x) = G(y). Hence, y < η(x). Suppose x < ρ(x∗). Since Gn satisfies (B) of

Step 1 and Π̂n, ρn are non-decreasing, we have

Π̂n(ηn(x)) =
Gn(ηn(x))−Gn(x)

Gn(ηn(x))
Pn(x) + δ

Gn(x)
Gn(ηn(x))

Π̂n(x)

≥Gn(ηn(x))−Gn(y)
Gn(ηn(x))

Pn(y) + δ
Gn(y)

Gn(ηn(x))
Π̂n(y)

≥Gn(ηn(x))−Gn(y)
Gn(ηn(x))

Pn(y) + δ
Gn(x)

Gn(ηn(x))
Π̂n(x)

(2)

After some manipulation and taking limits using Step 4, the above expression yields G(x) =

G(η(x)). Hence G(z) = G(x) for all z ∈ [x, η(y)). If η(x) < ρ(x∗), repeating the above

argument with η(x) in place of x and z ∈ (η(x), η(y)) in place of y yields G(η2(x)) =

G(η(x)) = G(x). Continuing in this fashion, we will eventually obtain ρ(x∗) < x <

y < x∗ such that G(x) = G(y). For ρ(x∗) < x < y < x∗, by (C) of Step 1, we can

replace Gn(ηn(x)) in (2) above, with 1, repeat the previous argument and get Gn(x) =

Gn(ηn(x)) = 1. Letting n go to infinity yields G(x) = 1. But then (C) of Step 1 and Step

4 yield

Π̂(x) = lim
[
Gn(x)−Gn(ρn(x))

Gn(x)
Pn(ρn(x)) + δ

Gn(ρn(x))
Gn(x)

Π̂n(ρn(x))
]

≤ lim
[
[1−Gn(ρn(x))]Pn(ρn(x)) + δGn(ρn(x))Π̂n(ρn(x))

]
≤ lim Π̂n(M)

= lim
[
[1−Gn(x)]Pn(x) + δGn(x)Π̂n(x)

]
= δΠ̂(x)

So, Π̂(x) ≥ v(0) > 0 and Π̂(x) = δΠ̂(x), a contradiction.

To conclude the proof of existence we will show that G satisfies (B), (C) of Step 1 as

well. Recall that Gn and Π̂n converge uniformly to G and Π̂ respectively on [0, α] for any

α < x∗. By Step 4 and (A) of Step 3, for every ε > 0 and x < x∗ there exists N such

that n ≥ N implies G(x)−G(ρ(x))
G(x) P (ρ(x)) + δG(ρ(x))

G(x) Π̂(ρ(x)) > Gn(x)−Gn(ρn(x))
Gn(x) Pn(ρn(x)) +
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δGn(ρn(x))
Gn(x) Π̂n(ρn(x)) − ε for all 0 ≤ y ≤ x. But since Gn satisfies (B) of Step 1, we have

Gn(x)−Gn(ρn(x))
Gn(x) Pn(ρn(x)) + δGn(ρn(x))

Gn(x) Π̂n(ρn(x)) ≥ Gn(x)−Gn(y)
Gn(x) Pn(y) + δGn(y)

Gn(x) Π̂n(y), for

all 0 ≤ y ≤ x. Again, we can choose n large enough so that the last term above is greater

than G(x)−G(y)
G(x) P (y)+δG(y)

G(x) Π̂(y)−ε. Hence, Π̂(x) > G(x)−G(y)
G(x) P (y)+δG(y)

G(x) Π̂(y)−2ε. Since

ε is arbitrary, it follows that G satisfies (B). Verifying (C) requires a similar argument.

Proof of Proposition 6: Since C has a finite support, if the Proposition is false,

we can find an ε > 0, a sequence ∆n > 0 converging to 0, and a sequence of stationary

sequential equilibria σn, of the games BC(∆n) such that either Gn(x∗)−Gn(x∗−ε) < 1−ε

for all n or for some c < v(x∗), the probability of agreement conditional on C = c < v(x∗)

by time ε is less than 1−ε for all n. By Helly’s Selection Theorem, we can assume, without

loss of generality that Gn converges in distribution to some distribution G. Call x an active

point of G if G(x + α) − G(x − α) > 0 for all α > 0. Let x0 denote the minimum of the

support of G.

Step 1: For all ε > 0 conditional on C = c < v(x0), the probability of agreement by time

ε converges to 1 as ∆n converges to 0.

Proof of Step 1: If the statement above is false, then there exists ε′ > 0, c < v(x0), a

subsequence of games BC(∆nj ) and equilibria σnj of BC(∆nj ) satisfying the following

properties: In the equilibrium σnj , conditional on observing c and the price p0
nj in the

support of the seller’s initial period pricing strategy F c
nj , the buyer buys at time t ≥ ε′ with

probability greater than ε′. Recall that in a stationary sequential equilibrium, the seller

can only randomize in the initial period. Hence, the buyer knows the entire sequence after

observing the first price p0
nj . Therefore, his decision is conditioned on both the realization

of c and the entire price sequence pknj . Without loss of generality we will assume that the

subsequence of stationary sequential equilibria is the sequence itself and that ε′ is small

enough so that v(x0) > c + ε′.

Let Qc
n(t) denote the probability of sale by period k(t) := min{l | l∆n > t}, in the

equilibrium σn, conditional on c and the price sequence pkn. Define P c
n(t) := p

k(t)
n . Since

σn is a stationary sequential equilibrium, for each n, pkn is a non-increasing sequence.

Hence, Qc
n(t) and P c

n(t) are right-continuous and monotone functions. Assume that Qc
n

and P c
n converge weakly; to some monotone Qc and P c respectively. Observe that this
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assumption is without loss of generality since we can use Helly’s Selection Theorem to find

some convergent subsequence with the desired properties and apply the analysis below to

that subsequence. By assumption Qc
n(ε
′) ≤ 1− ε′ for all n and hence, Qc(ε′/2) ≤ 1− ε′/2.

Let ε = ε′/2. Hence, Qc(ε) ≤ 1− ε.

We note that P c(ε) > c. To see this, recall that the buyer’s behavior is optimal, given

the sequence of prices chosen by the seller. A price below c is never charged in equilibrium

and by assumption, the buyer waits until time ε′ = 2ε, with probability greater than ε′.

Since G(v−1(c + ε′)) = 0, with probability approaching 1, the buyer’s valuation is above

c + ε. For such a buyer, it would not be optimal to wait an extra ε if the price were

approaching c near time ε.

We consider two cases: First, we assume Qc(ε/3) − Qc(ε/4) > 0. In this case, we

show that the seller can do better by moving down the demand curve (i.e., qcn) faster, prior

time t = ε/5. This will save on the expected delay and still get arbitrarily close to the

equilibrium expected profit on buyer types that would have purchases prior to ε/5. On the

other hand, if Qc(ε/3)−Qc(ε/4) = 0, then we show that the seller can do better by moving

faster through the prices charged during the time interval (ε/4, ε/3) and reaching the buyer

types that purchase after time ε/3 sooner. Since the function P c and Qc are continuous

almost everywhere, there are points arbitrarily close to ε/3, ε/4 and ε/5 at which both of

these functions are continuous. Therefore, without loss of generality, we assume that both

of these functions are continuous at all three of these points.

Case 1: Qc(ε/3)−Qc(ε/4) > 0

Proof of Case 1:

We establish a contradiction by showing that an alternative sequence of prices rkn

would yield a higher expected profit for the seller then the sequence pkn which is charged

with positive probability.

Let pn = max{pkn ≤ P c(ε/5)} and construct a new sequence of prices rkn from pkn

as follows: Set r0
n = p0

n. Then, divide the interval [pn, p0
n) into (p0

n − pn)/∆1/2
n equal

sized, left-closed, right-open intervals (an obvious adjustment needs to be made when

(p0
n − pn)/∆1/2

n is not an integer). Remove all but the lowest price in each interval. Since

the new price sequence rkn has at most one price in any interval of size ∆1/2
n , it will take

36



at most (p0
n − pn)/∆1/2

n periods before the pn is charged and rkn reverts to the equilibrium

price sequence. If the seller were to switch to the sequence rkn instead of the equilibrium

sequence pkn, this would have two effects. In equilibrium, if the buyer were a type that buys

prior to time ε/5, then the alternative price path rkn may achieve less price discrimination

than the equilibrium sequence. On the other hand, if the buyer were planning to purchase

after time ε/5, the new strategy would decrease the amount of delay until such a buyer

purchases.

Note that for sufficiently large n, the equilibrium strategy takes close to ε/5 units

of time until it reaches a price lower than pn, while the alternative strategy takes no

more than (p0
n − pn)∆

1/2
n . Moreover, the alternative strategy sells to each type of the

buyer at a price at most ∆1/2
n lower than the equilibrium purchase price. Hence, the

potential loss with the alternative strategy (compared to the equilibrium strategy) on

these buyer types is at most ∆1/2
n . The gain associated with the alternative strategy is at

least A := [Qc(ε/3)−Qc(ε/4)][e−(ε/3−ε/5)−e−ε/3]e−ε/2[P c(ε/2)−c] as n goes to∞. To see

why A is a lower bound on the gain and is strictly greater than 0, note that the time saved

on types that would have purchased between ε/4 and ε/3, approaches ε/5. These sales

are made no later than time ε/2. Also, the probability that agreement is reached between

time ε/4 and ε/3, is no less than Qc(ε/3)−Qc(ε/4) > 0, for n sufficiently large. Since P c

is non-increasing, these sales are made at a price no less than P c(ε/2) ≥ P c(ε) > c. Hence,

the net effect is no less than A. On the other hand, the loss associated with the alternative

sequence rkn converges to 0, and hence the net effect is A > 0, contradicting the optimality

of the equilibrium strategy.

Case 2: Qc(ε/3)−Qc(ε/4) = 0

Proof of Case 2:

Again, we define an alternative sequence of prices rkn and show that for large enough n,

the expected profit associated with this sequence is larger than the profit associated with

the equilibrium price sequence pkn. Let pn(α) := min{pkn > P c(ε/3)}, pn(β) := max{pkn ≤
P c(ε/4)}.

This time, rkn is constructed from pkn as follows: Divide the interval [pn(α), pn(β))

into 1/B∆n equal sized, left-closed, right-open intervals (choose B such that 1/B∆n is
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an integer). Remove all but the lowest price in each interval. The new price sequence rkn

contains at most 1/B∆n prices between pn(α) and pn(β). After these prices are charged

the sequence reverts to the equilibrium price sequence.

As in case 1, there are two effects associated with the seller switching to the sequence

rkn instead of the equilibrium sequence pkn. If in equilibrium, the buyer were planning

to purchase between ε/4 and ε/3, then the alternative price path rkn may achieve less

price discrimination than the equilibrium sequence. On the other hand, if the buyer were

planning to purchase after time ε/3, the new strategy may decrease the amount of delay

until such a buyer purchases.

Let Π(αβ) denote the expected profit associated with the equilibrium strategy, con-

ditional on the buyer being a type that would have purchased between ε/4 and ε/3 in the

original equilibrium. Let Π(β) be the equilibrium expected profit conditional on the buyer

purchasing after time β. Compared to the equilibrium price sequence, the price sequence

rkn loses at most MB∆n on each type of buyer that purchases between α and β. (Recall

that M is the largest feasible value of v.) Moreover, with rkn, it takes at most 1/B∆n

many periods and hence 1/B units of time to sell to these types of the buyer. Hence,

the expected the expected gain with the new strategy conditional on the buyer being a

type that would not have purchased by time ε/3 with the equilibrium strategy approaches

(e−[ε/4+1/B] − e−ε/3)Π(β) as n gets large. This is the saving in delay multiplied by the

expected profit conditional on the delay. Therefore, a lower bound on the net expected

change in profit by switching to the alternative strategy approaches

[1−Qc(ε/3)](e−[ε/4+1/B] − e−ε/3)Π(β)− [Qc(ε/3)−Qc(ε/4)]MB∆n

as n goes to infinity. A price below c will never be charged. Consequently, a buyer with

valuation at least v(x0) will purchase immediately at any price less than (1− e−∆n)v(x)+

e−∆nc. Hence, Π(β) ≥ [1 − e−∆n ][v(x0) − c] > 0 for n sufficiently large. Recall that

Qc(ε/3) − Qc(ε/4) = 0. Therefore, the net effect of switching to the alternative strategy

divided by ∆n is bounded below by a term converging to [1 − Qc(ε/3)][e−[ε/4+1/B] −
e−ε/3][v(x0)− c]. Since Qc(ε/3) ≤ Qc(ε) < 1 and v(x0)− c > 0, for B > 12/ε, this term is

strictly positive, contradicting the optimality of the equilibrium strategy.

38



Step 2: x0 = x∗ and G(x∗) = 1.

Proof of Step 2: Assume x0 < x∗.

To get a contradiction first assume that Prob{C = v(x0)} = 0. Since S is strictly

quasi-concave, S(x) > S(x0) for any x ∈ (x0, x∗]. Let c′ be the maximum of the set of c’s

such that c < v(x0) and Prob{C = c} > 0. By Assumption A, c′ is well defined. Also, let

c∗ be the lowest element in the set of c’s such that c > c′ and Prob{C = c} > 0. (If this

set is empty, let c∗ = ∞). Note that for any x such that x0 < x < x∗ and v(x) < c∗, we

have S(x)−S(x0) = [v(x)− v(x0)]Prob{C ≤ c′}−x+x0 > 0. Pick any such x and choose

α small enough so that S(x)− S(x′) > 0 whenever x′ is in the set [x0 − α, x0 + α]. Then,

pick ε < α such that S(x)e−ε − (1− e−ε)x− S(x′) > 0 for all x′ ∈ [x0 −α, x0 + α]. This is

possible since S is continuous.

Pick xn in the support of Gn such that |xn − x0| < α. This is possible since x0

is in the support of G. Next, assume that instead of investing xn the buyer invests x

and follows exactly the same buying strategy as he would have had he invested xn in

the game BC(∆n). The expected payoff associated with investing xn is
∑
c≤c′ Prob{C =

c}E{[v(xn) − pn(c)]e−tn(c)} − xn, where tn(c) and pn(c) are respectively the time and

price at which at which the buyer reaches agreement conditional on x, c and the price

sequence. The expectation is over the possible randomization of the seller in the initial

period, given c, which in a stationary equilibrium determine the entire price sequence.

Similarly, the expected payoff associated with the alternative strategy is
∑
c≤c′ Prob{C =

c}E{[v(x) − pn(c)]e−tn(c)} − x. By Step 1, for n sufficiently large, E[e−tn(c)] > e−ε for

all c ≤ c′. Hence the difference in utility between choosing x and xn is
∑
c≤c′ Prob{C =

c}[v(x)−v(xn)]E[e−tn(c)]−x+xn ≥ S(x)e−ε−(1−e−ε)x−S(xn) > 0. But this contradicts

the fact that xn is in the support of Gn and hence, is optimal.

If Prob{C = v(x0)} > 0, let c′ be the largest c such that c < v(x0) and Prob{C =

c} > 0. Let g(z) :=
∑
c<v(x0)[v(z) − c]Prob{C = c} − z. Note that the function g is

continuously differentiable on (0, M) and g(z) = S(z) for all z such that v(z) ∈ [c′, v(x0)].

By Assumption A, the left-derivative of S is strictly positive at x0 > 0 and therefore

the derivative of g at x0 must also be positive. (Here, we are also using the assumption

Prob{C = v(0)} = 0; otherwise we cannot rule out the possibility that x0 = 0 and hence,
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the left-derivative of S is not defined at x0). Pick any x > x0 such that g(x)− g(x0) > 0.

Choose α small enough so that the interval [v(x0 − α), v(x0 + α)] contains no c such that

Prob{C = c} > 0 other than c = v(x0). Then, choose ε < α small enough so that

g(x)e−ε − (1− e−ε)x− g(x′)− |v(x′)− v(x0)| > 0 for all x′ such that |x′ − x0| < α. This

is possible since g and v are continuous.

Again, pick xn in the support of Gn such that |xn − x0| < α. Let u be the equi-

librium utility of the buyer in the game BC(∆n), if he invests xn. Let ux be the util-

ity the buyer would enjoy if he had invested x and used the following strategy in the

bargaining stage: For any c ≤ c′ buy whenever the buyer with valuation v(xn) would

have bought. For c > c′, never buy. Since no price below cost v(x0) is ever charged in

equilibrium, u <
∑
c≤c′ Prob{C = c}E{[v(xn) − pn(c)]e−tn(c)} + |v(xn) − v(x0)| − xn,

where the expectation is over the possible random choice of the seller in period 0, given

c, tn(c) is the time at which the buyer reaches agreement and pn(c) is the price at

which agreement is reached conditional on x, c and the price sequence. Similarly, ux =∑
c≤c′ Prob{C = c}E{[v(x)− pn(c)]e−tn(c)}−x. Therefore, for n sufficiently large, Step 1

yields, ux − u >
∑
c≤c′ Prob{C = c}E{[v(x)− v(xn)]e−tn(c)}− |v(xn)− v(x0)| − x + xn >

g(x)e−ε − (1 − e−ε)x − g(xn) − |v(xn) − v(x0)|. Since |x0 − xn| < α, we conclude that

ux− u > 0. But this contradicts the fact that investing xn is in the support of the buyer’s

strategy and hence, is optimal.

Thus x0 ≥ x∗. To prove x0 = x∗ and G(x∗) = 1 and conclude the proof of Step 2,

it suffices to show that the buyer will never invest more than x∗. The payoff to investing

some x > x∗ is ux =
∑
c≤c′ Prob{C = c}E{[v(x)−pn(c)]e−tn(c)}−x, where c′ is the largest

c such that c < v(x) and Prob{C = c} > 0. Again, the expectation is over the possible

random choice of the seller in period 0, given c, tn(c) is the time at which the buyer reaches

agreement and pn(c) is the price at which agreement is reached conditional on x, c and

the price sequence. Suppose instead the buyer invests some x′ such that c′ < v(x′) < v(x)

but follows the same buying strategy as the buyer who invests x. The expected utility

associated with that decision is ux′ =
∑
c≤c′ Prob{C = c}E{[v(x′) − pn(c)]e−tn(c)} − x′.

Hence, ux′−ux = [v(x′)−v(x)]
∑
c≤c′ Prob{C = c}E[e−tn(c)]−x′+x. Since v(x′)−v(x) < 0

and E[e−tn(c)] < 1, the last expression yields ux′ − ux ≥ [v(x′) − v(x)]
∑
c≤c′ Prob{C =
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c}− x′ + x = S(x′)− S(x) > 0. The last inequality follows from the strict quasi-concavity

of S. Hence, investing x′ yields a higher utility than investing x. Which proves that the

buyer will never invest x > x∗. This concludes the proof of Step 2.

By Step 2, G(x∗) = 1, x0 = x∗ and hence G(x∗−ε) = 0. Given Step 1, this contradicts

our assumption that the Proposition is false. In Proposition 4 we showed that the buyer’s

equilibrium payoff in B(∆) is 0. The same argument yields the same conclusion for BC(∆).

Hence, the outcome is efficient and the seller extracts all surplus.

Proof of Proposition 7: Let c0 denote min{c |Prob{C = c} > 0} and G denote

the buyer’s equilibrium investment strategy. Let v(x) be the infimum of buyer valuations

that purchase with positive probability, in equilibrium. If v(x) is not well-defined, i.e., no

buyer type purchases in equilibrium, we are done. Otherwise, v(x) ≥ c0 and a price below

v(x) is never charged.

If c0 > v(0), then, the expected payoff of the buyer, conditional on investing x is neg-

ative, a contradiction. Hence, no buyer type buys with positive probability in equilibrium

and therefore the buyer invests 0 with probability 1.

So, suppose c0 = v(0). First, assume that there exist no y > 0 such that G(y) = G(0).

Then, in any sequential equilibrium, for any k > 0, conditional on C = c0, with strictly

positive probability the bargaining stage continues beyond period k. This follows from

the fact that as long as there is some probability that the buyer has a valuation strictly

greater than c0, the seller can earn strictly positive profit by charging some price p > c0

that is not accepted with probability 1, while charging a price p ≤ c0 earns her 0 profit.

Hence, for any k there exists some set I of strictly positive buyer investment levels such

that, I has strictly positive probability according to G and conditional on investing y ∈ I,

the buyer purchases in period k if C = c0 and does not purchase otherwise. Pick k so

that e−k∆v′(0) < 1. Then, any buyer type in I gains strictly higher payoff by investing 0

than by following his equilibrium purchasing strategy, a contradiction. So, there exists y

such that G(y) = G(0). Let z be the supremum of such y. If z is finite then, the seller

will never charge a price below v(z) until all buyer types with valuation at least v(z) have

purchased. This implies that any buyer with valuation close to z will obtain a strictly
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negative expected utility. Therefore, z = ∞; that is G(0) = 1 and hence both players

receive 0 utility in equilibrium.

Proof of Proposition 9: Let p∗n and p0
n denote prices in the support of the seller’s

initial period strategy, in some sequential equilibrium of B2(∆n), conditional on the seller

investing y∗ and 0 respectively.

Let a∗ := [v∗ − c∗]/[v∗ − v0], a0 := [v∗ − c0]/[v∗ − v0], K(s) := s(s− 1)/2 and define

H(a,∆, S) :=
∑S
s=1 ase∆K(s). Let Ω be the set of all sequences (∆n, S

∗
n, S

0
n) satisfying

(i)− (iii) below:

(i) ∆n, S
∗
n, S

0
n > 0, and limn ∆n = 0.

(ii) T ∗ := lim ∆nS
∗
n ≤ log[v

∗−v0

x∗ ] and T 0 := lim ∆nS
0
n (T 0 =∞ is allowed).

(iii) lim sup H(a∗,∆n,S
∗
n)

H(a0,∆n,S0
n) ≤ v0−c0

v0−c∗ .

Define δ = [v∗ − v0] infΩ limn→∞ |e−∆nS
0
n − e−∆nS

∗
n |. To establish that δ > 0, it

is enough to show that for any sequence satisfying (i) − (iii) above, limn→∞[e−∆nS
0
n −

e−∆nS
∗
n ] 6= 0. If δ were equal to 0, we could construct a sequence satisfying (i)− (iii) such

that lim[e−∆nS
0
n−e−∆nS

∗
n ] = 0. Thus, it suffices to show that for any sequence satisfying (i)

and (ii) above such that lim ∆nS
0
n = lim ∆nS

∗
n = T ∗ < ∞, H(a∗,∆n, S

∗
n)/H(a0,∆n, S

0
n)

converges to ∞. To prove the latter, define ηn := S∗n
S0
n

and note that since a∗ > 1 and

a0 > 1,

H(a∗,∆n, S
∗
n)

H(a0,∆n, S0
n)
≥ (a∗)S

∗
ne∆K(S∗n)

S0
n(a0)S

0
ne∆K(S0

n)

=
(A∗n/A

0
n)
S0
n

S0
n

where A∗n = (a∗)ηne
1
2 ∆nηn(ηnS

0
n−1) and A0

n = (a0)e
1
2 ∆n(S0

n−1). Since ηn converges to 1,

∆n converges to 0 and ∆nS
∗
n, ∆nS

0
n converge to T ∗ < ∞, A∗n/A

0
n converges to a∗/a0 =

[v∗−c∗]/[v∗−c0] > 1. Therefore, H(a∗,∆n, S
∗
n)/H(a0,∆n, S

0
n) converges to∞, as desired.

Assume that y∗ > c0−c∗−δ. Next, for each investment level of the seller, we construct

the unique consistent collection associated with the bargaining stage.

By Proposition 3, for any ∆ > 0, with probability 1, the game ends in finite time and

p′0 = v0 is the last price charged. A price below v0 is never charged and in equilibrium the

buyer accepts this v0 whenever it is offered. Moreover, the low valuation buyer will only
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buy in the last period. Hence, the buyer with valuation v∗ randomizes and is indifferent

over the outcome of this randomization. Let the prices p′s be indexed backward from the

last period. The buyer’s indifference implies v∗ − p′s+1 = [v∗ − p′s]e
−∆. This equation

together with the initial condition p′0 = v0 yields

p′s = v∗ − [v∗ − v0]e−∆s (1)

Let ms denote the mass of buyers that purchase in period s. That is, ms is the uncondi-

tional probability that the buyer purchases in period s. For s ≥ 0, the profit of the seller

conditional on period s + 1 being reached, evaluted in period s + 1 units is,

πs+1 = ms+1(p′s+1 − c) + e−∆πs (2)

where c is the cost of the seller and m0 denotes the probability that the buyer invests

0. The equilibrium levels of ms are determined by making the seller indifferent between

charging this period’s price and charging next period’s price. That is:

πs+1 = ms+1(p′s − c) + πs (3)

Charging p′s has the disadvantage that less profit is made on the mass ms+1 who would

have purchased now at the higher price p′s+1, but has the advantage that it avoids the

time lost on the continuation profit. The ms+1 that solves (3) makes the seller indifferent

between charging p′s+1 and p′s. Solving (1), (2) and (3) yields, for s > 1,

ms = ase∆K(s)m1 (4)

where a = [v∗−c]/[v∗−v0] and K(s) := s(s−1)/2. Note that π0 = m0(p0−c) = m0(v0−c).

Hence, solving for m1 using (2) and (3) yields m1 = bm0 where b := v0−c
v∗−v0 . Let S be the

smallest integer such that
∑S

0 ms ≥ 1. Then,

[bH(a,∆, S − 1) + 1]m0 =
S−1∑
s=0

ms < 1 ≤
S∑
s=0

ms = [bH(a,∆, S) + 1]m0 (5)

The mass of buyer’s who do not buy at price p is
∑
s′≤s(p) ms′ , where s(p) is the

largest value of s for which p > p′s. We define s(p) to be −1 if p ≤ p′0. Then, q∆(p) =
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max{0, 1 −
∑s(p)

0 ms}, where
∑−1

0 ms := 0. Define r∆ and Π∆ as follows: for all q0 ∈
q(IR+), r∆(q0) = p′s−1 and Π∆(q0) = πs whenever q0 = 1 −

∑s
k=0 mk and Π∆(0) =

[1−
∑S−1
k=0 mk][p′S−1 − c] + πS−1.

It follows from (1) (2) and (3) that q∆, r∆,Π∆ is a consistent collection for the bar-

gaining stage and that p′S−1 (and also p′S if
∑S
k=0 ms = 1) is the only price that maximizes

[1− q∆(p)]p + e−∆Π(q(p)). Hence, it follows from Proposition 3 that Π∆(0) is the sequen-

tial equilibrium payoff for the seller and that only the prices p′S−1 or p′S can be charged in

the initial period. But, as ∆ approaches 0, p′S will approach p′S−1 and ∆S will converge

to ∆(S − 1). Hence, the outcome will be the same no matter how the seller randomizes

over his two possible optimal strategies. Therefore, we will refer to pS as the equilibrium

price in for the initial period.

To conclude the proof, we will show that there exists no sequence ∆n converging to

0 and a corresponding sequence of sequential equilibria of B2(∆n) where the probability

of the seller investing y∗ is strictly positive along the entire sequence. Assume that such

a sequence of equilibria σn, exists. Let m0,n denote the probability that the buyer invests

0, in the equilibrium σn and γ∗n > 0 denote the probability that the seller invests y∗

in the equilibrium σn. Using (1) − (5), solve for ms, Sn, p
′
s after setting a = a∗, c = c∗

and m0 = m0,n. Let m∗s,n, S
∗
n, p
′∗
n,s denote the corresponding values. Similarly, solve for

m0
s,n, S

0
n, p
′0
n,s after setting a = a0, c = c0 and m0 = m0,n. Again, without loss of generality,

assume that ∆nS
∗
n, ∆nS

0
n, p′∗n,S∗n and p′0n,S0

n
converge to T ∗, T 0, p∗ and p0 respectively, as

n goes to infinity. This involves no loss of generality since all prices belong to the compact

set [0, v∗] and T ∗ = ∞ and/or T 0 = ∞ are permitted and therefore, a subsequence with

the desired property can be found. Then, (1)− (5) and straightforward calculations yield

the following:

p∗ = v∗ − [v∗ − v0]e−T
∗
, p0 = v∗ − [v∗ − v0]e−T

0

T ∗ ≤ T 0, p∗ ≤ p0
(6)

Since the payoff of the buyer is 0 and the probability of the buyer investing x∗ is strictly

positive, we have

γ∗n[v
∗ − p∗n] + (1− γ∗n)[v

∗ − p0
n] = x∗ (7)
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From (6) and (7) we obtain,

T ∗ ≤ log[
v∗ − v0

x∗
] (8)

By the argument used in proving Proposition 5, for any ε > 0, the probability of agreement

being reached by time ε is at least 1 − ε for sufficiently large n. Therefore, as n goes to

infinity, the initial price minus cost will equal the seller’s profit. Since investing y∗ is an

optimal action for the seller, we have,

p∗ − c∗ − y∗ ≥ p0 − c0 (9)

From (4) and (5) we know that

[b∗H(a∗,∆n, S
∗
n − 1) + 1]m0,n < 1

1 ≤ [b0H(a0,∆n, S
0
n) + 1]m0,n

(10)

where b∗ = v0−c∗
v∗−v0 and b0 = v0−c0

v∗−v0 . Then, (10) implies,

lim supH(a∗,∆n, S
∗
n − 1)/H(a0,∆n, S

0
n) ≤ b0/b∗ (11)

Thus, we have shown that the sequence (∆n, S
∗
n − 1, S0

n) is in Ω. Hence, |p0 − p∗| ≥ δ.

Since p0 − p∗ ≥ 0 by (6), we conclude that p0 − p∗ ≥ δ. But this contradicts (9), since

y∗ > c0 − c∗ − δ.
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