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data. We consider test statistics formed using nonparametric covariance matrix estimators that
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commonly used test statistics under “fixed-b” asymptotics, in which HAC smoothing parameters are

proportional to the sample size. Under this sequence, spatial HAC estimators are not consistent

but converge to non-degenerate limiting random variables that depend on the HAC smoothing

parameters and kernel. We show that the limit distributions of commonly used test statistics are

pivotal but non-standard, so critical values must be obtained by simulation. We provide a simple

and general simulation procedure based on the i.i.d. bootstrap that can be used to obtain critical

values. We illustrate the potential gains of the new approximation through simulations and an

empirical example that examines the effect of unjust dismissal doctrine on temporary help services

employment.
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1. Introduction

Many economic analyses rely on dependent data. To conduct inference with time series data,

researchers often employ heteroskedasticity and autocorrelation consistent (HAC) inference

procedures. The essence of HAC procedures is the use of a nonparametric estimator for the

variance of model parameters, which provides consistent standard errors in the presence of

intertemporal correlation.1 The use of standard error estimators that account for temporal

dependence has also become common in microeconomic applications involving panel data,

where researchers employ clustered covariance estimators with clusters given by the cross-

sectional units of observation.2

An oft neglected feature of cross-sectional and panel data is cross-sectional or spatial

correlation: Data or residuals from one observation may be statistically related to data

or residuals from other neighboring observations. As is the case with temporal correlation,

inference procedures that do not account for such spatial correlation will usually be incorrect

when it exists in the data. To account for this problem, spatial HAC procedures have been

developed.3 These spatial HAC estimators allow for processes with dependence indexed in

more than one dimension. This setup includes time series (where dependence is indexed

in one dimension) and panel data (where dependence is indexed spatially and over time)

as special cases in addition to covering the purely cross-sectional case. In this paper, we

present a novel way to use spatial HAC estimators. Our approach is based on an alternate

1The most popular implementation is in Newey and West (1987). See also Andrews (1991) for a thorough

treatment of time series HAC estimation.
2See Wooldridge (2003) for a concise review of this literature. See also Liang and Zeger (1986), Arellano

(1987), Bertrand, Duflo, and Mullainathan (2004), Hansen (2007), and Bester, Conley, and Hansen (2008).

3See Conley (1996, 1999) for early examples.
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asymptotic approximation to the behavior of associated test statistics, referred to in time

series contexts as “fixed-b” asymptotics following Kiefer and Vogelsang (2002, 2005).

Fixed-b approximations differ from the usual approximation in the treatment of the HAC

covariance matrix estimator and the resulting reference distributions of test statistics. Re-

searchers typically employ a limiting normal approximation that depends on an unknown

variance-covariance matrix. The covariance matrix is then estimated using a HAC estimator

which requires the choice of a kernel and smoothing parameters. This HAC estimator is then

“plugged in” for the unknown covariance matrix in the asymptotic approximation, resulting

in a Gaussian approximation to the sampling distribution of the model parameters which is

then used to construct confidence intervals and perform statistical tests. These procedures

are justified by a promise that kernel and smoothing parameters are chosen so that the

HAC covariance matrix estimator is consistent. They implicitly treat the estimator as if it

perfectly estimates the underlying covariance matrix. This procedure ignores sampling un-

certainty and other issues such as small sample bias that are known to arise in nonparametric

covariance estimation.

In contrast, the time series fixed-b approach of Kiefer and Vogelsang (2002, 2005) (KV)

considers the behavior of statistics under an asymptotic sequence in which the HAC smooth-

ing parameter is proportional to the sample size (this fixed proportion is the source of the

label “fixed-b”). This contrasts with the conventional sequence where the smoothing param-

eter grows more slowly than the sample size. Under the KV sequence, the HAC estimator

is not consistent but converges in distribution to a non-degenerate random variable that de-

pends on both the kernel and smoothing parameter used in forming the HAC estimator. KV

calculate an approximate distribution for commonly-used test statistics accounting for this
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random limit of the HAC covariance estimator. The resulting limit distribution for t and

Wald statistics are pivotal but nonstandard, so critical values are obtained by simulation.

However, because they explicitly treat the HAC estimator as random, these approximations

account for both sampling uncertainty and bias in the HAC estimator. Through simulations,

KV provide convincing evidence that their approximation outperforms the plug-in approach.4

In this paper, we extend the analysis of KV to allow for spatially dependent data where

dependence is indexed in more than one dimension. This framework is very general and

allows for general forms of cross-sectional correlation, time series dependence, and panel

or other multilevel data. We consider the behavior of spatial HAC estimators as in Conley

(1996, 1999) under asymptotic sequences in which smoothing parameters are proportional to

the sample size. We follow KV and refer to this asymptotic sequence as fixed-b asymptotics.

As in KV, this analysis produces a random variable limit for the HAC estimator that depends

on both the HAC smoothing parameters and kernel. We provide the limiting behavior of

t and Wald statistics and show that, as in the time series case, they have pivotal limiting

distributions but that these distributions are nonstandard.

Extension of these results from the time series to the spatial context is both important

and nontrivial. Nonparametric estimation of covariances can be challenging in the time series

case, and is even more so when the data exhibits dependence in more than one dimension.

The resulting variance estimates exhibit pronounced sampling variability and small sample

biases, both of which can be captured to a large degree through the use of fixed-b asymp-

totics. However, application of fixed-b asymptotics to spatial HAC is nontrivial due to the

4Jansson (2004) and Sun, Phillips, and Jin (2008) also provide theoretical evidence that the fixed-b

approximation outperforms the standard approximation in Gaussian location models.
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importance of boundary effects in spatial data and the fact that any given point has many

more neighbors when dependence is indexed in multiple dimensions than when it is indexed

on the line (as in a time series). Resulting distributions for test statistics are considerably

more complicated than those obtained in the time series case. Critical values depend not only

on the kernel and chosen values of smoothing parameters for the HAC estimator, but also on

the distribution of observed locations. Therefore they must typically be recalculated for each

specific application. Direct calculation requires approximating functions of Brownian sheets

with non-trivial boundary conditions and are cumbersome at best. A major contribution of

this paper is to provide a simple simulation method to obtain critical values. We show that a

simple procedure based on an i.i.d. bootstrap is valid for the fixed-b asymptotic distribution

and can be used to obtain critical values quite generally.

To illustrate the potential improvements available from using this approach, we present

simulation results in a pure cross-sectional and a panel setting. In both cases, we see that

inference procedures that ignore spatial correlation are highly size-distorted when spatial

correlation is present. We also see that large size distortions persist when spatial HAC

estimators are employed with the usual asymptotic normal approximation. Across the sim-

ulations, correctly-sized tests are only obtained using the inference procedure developed in

our paper along with HAC estimators using large values of the smoothing parameter.

We also present results from a simple empirical example based on Autor (2003) that es-

timates the effect of restrictions on firing practices on temporary help services employment.

Conventional methods find statistically significant evidence that there is a positive associa-

tion between judicial recognition of restrictions of firing practices in a state and temporary

help services employment in that state. However, when cross-sectional correlation is taken
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into account via our method, the resulting confidence intervals are quite wide, encompassing

economically meaningful negative and positive values. Our findings suggest that inference

made in this example without accounting for spatial correlation substantially overstates the

true precision of the estimated treatment effects.

There are, of course, other ways to perform inference with spatially dependent cross

section or panel data. Kelejian and Prucha (1999, 2001) and Lee (2004, 2007a, 2007b)

consider inference based on specific models for the spatial dependence structure. Methods

that do not rely on parametric covariance structures are also available. The Fama and

MacBeth (1973) procedure consists of partitioning a panel data set into its time periods and

estimating the parameters of interest within each cross-section. Inference is then conducted

by taking this set of point estimates, one for each time series observation in the sample, and

forming a t-statistic. Since this effectively collapses the cross-sectional dimension out of the

problem, inference is robust to arbitrary cross-sectional dependence, though the procedure

needs adjustment in the presence of intertemporal dependence. A recent paper by Ibragimov

and Müller (2006) provides a formal and general treatment of inference procedures based on

partitioning data and estimating parameters within each partition, focusing upon properties

of t-tests using these sets of point estimates. Bester, Conley, and Hansen (2008) consider

a different, but related procedure based on using a clustered covariance estimator with

researcher defined clusters. In both Ibragimov and Müller (2006) and Bester, Conley, and

Hansen (2008), the key condition required for such tests’ validity is that averages of scores

within clusters be asymptotically uncorrelated, which may be achieved through appropriate

choice of partitions.5 Both papers are also in the spirit of fixed-b asymptotics, as both

5This is trivially achieved with time series data and may also be achieved with more general spatial

dependence under conditions given in Bester, Conley, and Hansen (2008).
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approaches advocate the use of large groups and provide asymptotic analysis that accounts

for uncertainty in estimating the covariance matrix. Driscoll and Kraay (1998) present a

different approach that uses a HAC estimator over the within-period averages of OLS scores.

Vogelsang (2008) provides a fixed-b asymptotic analysis of Driscoll and Kraay (1998) type

standard errors as well as standard errors estimated by averaging across time series HAC

covariance estimators formed for each individual series in the panel.

Our paper complements this literature. We obtain inference that is robust to general

forms of spatial correlation without functional form assumptions on the dependence struc-

ture. Unlike Fama and MacBeth (1973), Driscoll and Kraay (1998), and Vogelsang (2008),

the spatial HAC estimator we consider applies to cross-sectional data as well as time series

and long and short T panel data. Relative to Ibragimov and Müller (2006) and Bester,

Conley, and Hansen (2008), the procedure in this paper allows finer control over assumed

dependence structure through the use of downweighting via the kernel function and smooth-

ing parameters. By allowing for smooth decay of covariance across observational units, it is

less susceptible to boundary problems than the grouping schemes of Ibragimov and Müller

(2006) and Bester, Conley, and Hansen (2008) as these estimators by construction ignore

covariances between observations on the boundary of one group with observations in other

groups.

The remainder of this paper is organized as follows. In Section 2, we review spatial HAC

estimation. We present the main asymptotic results in Section 3, and show how the simple

i.i.d. bootstrap can be used as a simulation procedure to obtain critical values. Section

4 contains results from our simulation experiments, and an empirical example is given in

Section 5. Section 6 concludes.
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2. Spatial HAC Estimation

We propose a new approach to inference in models with spatial dependence. The approach

is based on the spatial HAC procedure proposed in Conley (1996, 1999) but follows Kiefer

and Vogelsang (2005) in that the bandwidth is taken as a constant fraction of the sample

size for the asymptotic analysis. We are interested in an estimator, θ̂N , of a p× 1 parameter

vector θ0 that satisfies

(2.1)
1

N

N∑
i=1

si(θ̂N) = 0

where N is the sample size, si(θ) is a p× 1 score vector such that

E(si(θ0)) = 0.

The score vector is a function of observable data indexed by i. In general we would like

to allow the data and score vector to exhibit general forms of spatial correlation where the

strength of the correlation depends on some observable distance measure between any two

observations.

For simplicity, we follow Conley (1999) and assume that, given the distance measure, it is

possible to map the data onto a two-dimensional integer lattice so that the distance between

pairs of observations can be expressed in terms of the lattice indices when presenting most of

our theoretical results. To be concrete, suppose a location d(i) is given for each observation

and that the range of d(i) is {1, . . . , L} × {1, . . . ,M} ⊂ Z2
+, i.e., the observations live on a

lattice in Z2
+. We can then rewrite the sample moment condition that defines θ̂N as

(2.2)
1

LM

L∑
l=1

M∑
m=1

1l,mŝl,m = 0,
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where ŝl,m = si

(
θ̂N

)
is associated with observation i for which d(i) = (l,m) and the indicator

function 1l,m denotes the presence of an observation at a particular lattice point. Note that

we do not assume the presence of an observation at every lattice point, and that equation (2.2)

gives the same estimate of θ as (2.1). Define the population analog to ŝl,m as sl,m = si(θ0),

again where d(i) = (l,m). Because asymptotic analysis is determined by the properties of

the random field 1l,msl,m, we conserve on notation by defining

s∗l,m = 1l,msl,m and ŝ∗l,m = 1l,mŝl,m.

We assume a rectangular lattice domain for several reasons, and also note that extension

to non-rectangular lattices is straightforward. As we shall see below, we present most of our

theoretical results using a functional central limit theorem of the form

1√
LM

[rL]∑
l=1

[sM ]∑
m=1

s∗l,m ⇒ ΛW (r, s)

where r, s ∈ (0, 1], [x] denotes the integer part of x, and W is a Wiener process. Functional

central limit theorems (FCLTs) of this form appear in Deo (1975) and Basu and Dorea (1979),

and are simply the spatial analog of the usual time series FCLTs that deliver convergence

of partial sums of the score process to Brownian motion on the unit interval. When the

domain is rectangular,6 W is a Brownian sheet, or Brownian motion on the unit rectangle,

which we discuss further in Section 3.1. The loss of generality is minimal because a slightly

more general FCLT in Goldie and Greenwood (1986) provides convergence of partial sums

of data indexed on a domain A to a Wiener process over a domain A ⊆ [0, 1]2. We focus

on the rectangular lattice case for the formal theoretical results as it simplifies notation and

6Intuitively, this occurs when the limiting sequence of indicators 1l,m in (2.2) is dense in Z2
+ when it is

normalized to the unit rectangle, so that observed locations “fill in” the unit rectangle.
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proofs considerably and allows us to explicitly characterize boundary terms in the asymptotic

distribution of test statistics that do not arise in time series results but are important in

the spatial context. In addition, an abstract discussion of Brownian processes over general

domains seems beyond the scope of the paper. Finally and most importantly, we argue in

Section 3.4 that the inference procedure we propose in practice, which uses an i.i.d. bootstrap

to produce approximate critical values for test statistics, will work the same way on a more

general domain as in the rectangular lattice case.

Under suitable regularity conditions given below, θ̂N will have an asymptotic normal

distribution with variance-covariance matrix of the sandwich form with middle matrix given

by

Ω = lim
L→∞,M→∞

1

LM
E

[(
L∑
l=1

M∑
m=1

s∗l,m

)(
L∑
l=1

M∑
m=1

s∗′l,m

)]
.

The nonparametric HAC estimator of Ω is given by

(2.3) Ω̂ =
1

LM

L∑
ll=1

M∑
m1=1

L∑
l2=1

M∑
m2=1

K(
l1
hL
,
l2
hL
,
m1

hM
,
m2

hM
)ŝ∗l1,m1

ŝ∗′l2,m2
,

where K(x1, x2, x3, x4) is a kernel weighting function and hL and hM are bandwidth tuning

parameters where typically hL ≤ L and hM ≤M .

3. Fixed-b Asymptotics

This section presents asymptotic theory for the spatial HAC covariance estimator described

in the previous section under a sequence where the smoothing parameters hL and hM grow at

a rate proportional to the sample size. Under this sequence, the HAC estimator converges to

a random variable whose distribution involves stochastic processes called Brownian sheets,

which are essentially Brownian motions indexed in more than one dimension (e.g., space and
10



time). Section 3.1 provides a brief overview and definitions of these processes. In Section 3.2,

we provide results on the limit distributions of the HAC estimator and related test statistics.

As mentioned above, the distributions of t and Wald tests are pivotal, but nonstandard,

and explicitly reflect both the kernel and chosen values of smoothing parameters. Because of

the many bandwidth and kernel choices available in practice and the multiple bandwidths in-

volved, it is impractical to tabulate all relevant critical values. Critical values must therefore

typically be calculated by simulation on a case-by-case basis, which unfortunately involves

integration of multi-indexed stochastic processes. However, we show in Section 3.3 that crit-

ical values may be approximated using an i.i.d. bootstrap, which is easily implemented in a

wide variety of applications.

3.1. Brownian Sheets and related processes

For u ∈ Rd, let W (u) be a Brownian sheet, a continuous Gaussian process with mean zero

and covariance function

Cov(W (u1),W (u2)) =
d∏

k=1

min(u
(k)
1 , u

(k)
2 ).

With d = 1, this is the usual Brownian motion. Again for simplicity we deal with the d = 2

case corresponding to a location space in R2
+. Below we think of W as being defined on the

unit rectangle. Denote by Wp a p-vector of independent Brownian sheets.

Define the “pinned” Brownian Sheet Bp(u, v) = Wp(u, v) − uvWp(1, 1), see e.g., McK-

eague and Sun (1996). Note that on the outer edges of the unit rectangle, Bp(1, v) =

Wp(1, v)− vWp(1, 1) behaves analogously to a one-dimensional Brownian bridge but may be

correlated with values of the sheet on the interior. Denote by K(x1, x2, x3, x4) the kernel
11



used above. We define the following functionals of the Brownian sheet:

Q∅p(b1, b2) =

∫
[0,1]4

∂4K

∂x1∂x2∂x3∂x4

(
u1

b1

,
u2

b1

,
v1

b2

,
v2

b2

)
Bp(u1, v1)Bp(u2, v2)d(u1 × v1 × u2 × v2)

Q{1}p (b1, b2) =

∫
[0,1]3

∂3K

∂x2∂x3∂x4

(
1

b1

,
u2

b1

,
v1

b2

,
v2

b2

)
Bp(1, v1)B(u2, v2)pd(v1 × u2 × v2)

Q{1,4}p (b1, b2) =

∫
[0,1]2

∂2K

∂x2∂x3

(
1

b1

,
u2

b1

,
v1

b2

,
1

b2

)
Bp(1, v1)Bp(u2, 1)d(v1 × u2).

Other functionals, e.g. Q
{2}
p , Q

{2,3}
p are similarly defined: For QE

p , all arguments in the set

E are omitted from the derivative, and evaluation in those arguments is at the boundary.

Finally, we define

(3.1) Qp(b1, b2) = Q∅p(b1, b2) +
4∑
i=1

Q{i}p (b1, b2) +
∑

E = {1, 2}, {3, 4},

{2, 3}, {1, 4}

QE
p (b1, b2).

At this point, we avoid any assumptions about the kernel K beyond the regularity con-

ditions given below. Note, however, that some widely used assumptions about the kernel

simplify (3.1) considerably. For example, K(x1, x2, x3, x4) = K(x1−x2, x3−x4) would imply

Q
{1}
p = Q

{2}
p , Q

{3}
p = Q

{4}
p , and Q

{1,4}
p = Q

{2,3}
p .

3.2. Main Theorems

Define Λ such that ΛΛ′ = Ω. The following set of assumptions are sufficient for obtaining

the main results of the paper.

ASSUMPTION 1. As N →∞, L→∞,M →∞, L
N
→ 0 and M

N
→ 0.

ASSUMPTION 2. θ̂N
p→ θ0.

ASSUMPTION 3. 1√
LM

∑[rL]
l=1

∑[sM ]
m=1 s

∗
l,m ⇒ ΛW (r, s) for all (r, s) ∈ [0, 1]2.
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ASSUMPTION 4.

Ĵ
[rL],[sM ]

θ̂N
= (LM)−1

[rL]∑
l=1

[sM ]∑
m=1

∂s∗l,m(θ̂N)

∂θ′
p−→ rsJ ,

where J is a nonsingular matrix.

Assumption 1 states that neither dimension is dominant, in which case the problem would

reduce to one involving a scalar-indexed process (e.g., a time series). Note that Assumption

3 requires a FCLT hold for the random field s∗l,m. For simplicity we assume that the locations

at which data are observed are dense in Z2
+, e.g. as in Deo (1975) or Basu and Dorea (1979),

so that the limiting process W is the Brownian sheet discussed in the previous section.7

Assumption 4 is a fairly standard assumption. Note that Assumption 2 and 4 imply that

Ĵ
[rL],[sM ]

θ
= (LM)−1

[rL]∑
l=1

[sM ]∑
m=1

∂s∗l,m(θ)

∂θ′
p−→ rsJ ,

where θ is between (in the vector sense) θ̂N and θ0. When r = s = 1 (i.e., the sum is taken

over all observations in the sample), we will simply write ĴL,M
θ

= Ĵθ.

LEMMA 1. Suppose Assumptions 1-4 hold. Then, as N →∞,

√
LM

(
θ̂T − θ0

)
⇒ −J −1ΛWp(1, 1) ∼ N(0, V )

The following theorem is analogous to Kiefer and Vogelsang (2005) and establishes con-

vergence of Ω̂ to a functional of pinned Brownian sheets.

7As discussed above, this assumption simplifies notation and proofs considerably and avoids an abstract

discussion of Wiener processes over more general domains. In Section 3.4, we argue our results extend to

the non-rectangular lattice case due to the FCLT in Goldie and Greenwood (1986). Most importantly, the

inference procedure we propose in practice works the same way in either case.
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THEOREM 1. Suppose the four argument kernel K with domain U×U , with U ⊆ R2, has

bandwidths (hL, hM) = (b1L, b2M) where (b1, b2) ∈ (0, 1]2, and that the derivative ∂4K
∂x1∂x2∂x3∂x4

is everywhere continuous. Then, under Assumptions 1-4,

Ω̂⇒ ΛQp(b1, b2)Λ′.

We obtain a typical fixed-b result where the limit of Ω̂ is proportional to Ω through ΛΛ′ but

depends on a the random matrixQp(b1, b2) which reflects the choice of kernel and bandwidths.

Qp(b1, b2) approximates the finite sample randomness in Ω̂ in contrast to a consistency result

for Ω̂ where Qp(b1, b2) is replaced with an identity matrix in which case randomness in Ω̂ is

ignored.

An important kernel without fourth derivatives not covered by Theorem 1 is the Bartlett

kernel. In time series settings the Bartlett kernel is widely used because of its relative

simplicity and the fact that the Bartlett kernel guarantees a positive definite HAC estimate.

These benefits extend to the spatial context as argued by Conley (1999) and we include it

in our analysis. We use a Bartlett kernel in product form defined as

K(x1, x2, x3, x4) = (1− |x1 − x3|)+(1− |x2 − x4|)+

where z+ = z1(z > 0), which leads to the HAC estimator

(3.2) Ω̂ =
1

LM

L∑
ll=1

M∑
m1=1

L∑
l2=1

M∑
m2=1

KhL
l1,l2

KhM
m1,m2

ŝ∗l1,m1
ŝ∗′l2,m2

,

where

KhL
l1,l2

=

(
1−

∣∣∣∣ l1 − l2hL

∣∣∣∣)+

, and KhM
m1,m2

=

(
1−

∣∣∣∣m1 −m2

hM

∣∣∣∣)+

.
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The next theorem gives the fixed-b result for the Bartlett kernel. The result is stated in

terms of the functional

Q̃p(u, v, b) =
2

b

∫ 1

0

Bp(u, s)Bp(v, s)
′ds− 1

b

∫ 1−b

0

[Bp(u, s+ b)Bp(v, s)
′ +Bp(u, s)Bp(v, s+ b)′] ds

−1

b

∫ 1

1−b
[Bp(u, s)Bp(v, 1)′ +Bp(u, 1)Bp(v, s)

′] ds+Bp(u, 1)Bp(v, 1)′.

Note that Q̃p(v, u, b)
′ = Q̃p(u, v, b).

THEOREM 2. Suppose K is the Bartlett kernel given by (3.3) with bandwidths (hL, hM) =

(b1L, b2M) where (b1, b2) ∈ (0, 1]2. Then, under Assumptions 1-4,

Ω̂⇒ ΛQbart
p (b1, b2)Λ′,

where

Qbart
p (b1, b2) =

2

b1

∫ 1

0

Q̃p(r, r, b2)dr − 1

b1

∫ 1−b1

0

[
Q̃p(r + b1, r, b2) + Q̃p(r, r + b1, b2)

]
dr

− 1

b1

∫ 1

1−b1

[
Q̃p(r, 1, b2) + Q̃p(1, r, b2)

]
dr + Q̃p(1, 1, b2).

Consider a test of the null hypothesis H0 : r(θ0) = 0 against the alternative Ha : r(θ0) 6= 0

where r is an q-vector of C1 functions, q ≤ p, and R(θ) = ∂r(θ)
∂θ′

is a q × p matrix of first

derivatives. By Lemma 1 and the continuous mapping theorem, we have that

(3.3)
√
LMr(θ̂N)⇒ −R(θ0)J −1ΛWp(1, 1).

Note that the right hand side follows a q-variate Gaussian distribution. Define the Wald

statistic

F = LMr(θ̂N)′
(
R(θ̂N)

(
Ĵθ̂N

)−1

Ω̂
(
Ĵθ̂N

)−1

R(θ̂N)′
)−1

r(θ̂N)
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and when q = 1, the t- statistic,

t =

√
LMr(θ̂N)√

R(θ̂N)
(
Ĵθ̂N

)−1

Ω̂
(
Ĵθ̂N

)−1

R(θ̂N)′
.

The null distributions of F and t are given in the following theorem.

THEOREM 3. Suppose the conditions of Theorem 1 are satisfied. Then

F ⇒ Bq(1, 1)Qq(b1, b2)−1Bq(1, 1) and t⇒ B1(1, 1)√
Q1(b1, b2)

.

Suppose the conditions of Theorem 2 are satisfied. Then

F ⇒ Bq(1, 1)Qbart
q (b1, b2)−1Bq(1, 1) and t⇒ B1(1, 1)√

Qbart
1 (b1, b2)

.

As in the time series fixed-b approximations of KV, the t- and Wald tests are asymptotically

pivotal. However, the resulting reference distributions are nonstandard and are influenced

by the choice of kernel and bandwidth(s), as well as the shape of the sampling region (in this

case a rectangular lattice). In the next section, we show that critical values may be obtained

via an i.i.d. bootstrap that is both general and simple to carry out in practice.

3.3. Critical Values and the Bootstrap

The limiting distributions given by Theorems 2 and 3 can be simulated given a choice of

kernel and bandwidths. Because of the myriad of bandwidth and kernel choices available in

practice, it is impractical to tabulate all relevant critical values especially if joint hypothesis

are of interest. Even focusing on a single kernel, the two dimensional nature of the band-

width makes tabulation of critical values tedious. In addition, the limiting behavior of test

statistics depends on the shape of the sampling region as discussed in Section 3.4 below.
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This dependence makes it virtually impossible to tabulate critical values given the myriad

of potential shapes that could be encountered in practice. Given this, we present a simple

bootstrap procedure that will be generally applicable.

Since the fixed-b limiting behavior of test statistics depends of the shape of the sampling

region, it is important that one uses critical values that capture this shape. We consider two

simple bootstrap procedures that do this in different ways. In the first, one assumes that

the shape of the locations observed in the sample is representative of the shape of locations

in the population and performs a bootstrap conditional on this shape. In the second, one

assumes a hypothetical shape for the population region where locations in the hypothetical

population region without data in the sample are assumed to be missing at random and/or

data would fill the hypothetical region asymptotically. The first procedure will be valid when

the observed locations are representative of the population locations, and the second will be

valid when the hypothesized region has the same shape as the population region. We present

formal results for the latter on a rectangular lattice since it is notationally more convenient,

but results generalize to the bootstrap conditional on locations as discussed in Section 3.4.

We consider a bootstrap approach that is first order valid with respect to the fixed-b

asymptotic distribution. Consider the following resampling scheme. Create a bootstrap

realization of the sample by i.i.d. resampling with replacement using the observed locations.

That is, at each observed location, place a value drawn by i.i.d. sampling with replacement

from the observed data. This procedure conditions on the locations in the observed sample

and will be valid when the sampled locations mimic the population locations. We refer to

this bootstrap resampling scheme as the i.i.d. “conditional on locations” bootstrap.
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A slightly different variant of the i.i.d. bootstrap for a rectangular lattice structure with

potentially randomly missing locations is to resample from all locations of the lattice. At

each point in the rectangle, an i.i.d. draw with replacement is made from the full set of

lattice locations unconditional on whether a location has an observation. If the draw is a

location with a data point, that data point is placed on the bootstrap lattice. If the draw

is a location without a data point, that point on the bootstrap lattice is left empty and is

treated as missing. This bootstrap is appropriate for rectangular lattices with missing data

if the missing locations are viewed as randomly assigned. We refer to this variant of the

bootstrap as the i.i.d. “unconditional on locations” bootstrap.

It is worth noting that validity of this bootstrap procedure is very much related to how

we are using the bootstrap. We use a ‘naive’ bootstrap, where the denominator of our test

statistic is calculated using the same formula used with the original data, purely as a Monte

Carlo device, as an alternative to simulating from the reference distributions in Theorem

3 numerically. In particular we are not asking the bootstrap to reproduce the dependence

structure in the original data, which would almost certainly require stronger assumptions

and a blocking scheme for resampling.

Once a bootstrap sample is drawn using either resampling scheme, the bootstrap statistics

are computed as follows. Let s∗∗l,m(θ) denote the bootstrap score at coordinate (l,m). Define

the bootstrap estimator θ̂∗ such that

1

LM

L∑
l=1

M∑
m=1

s∗∗l,m(θ̂∗) = 0.

Because of i.i.d. resampling, the mean of the bootstrap score is given by

E∗(s∗∗l,m(θ)) =
1

LM

L∑
l=1

M∑
m=1

s∗l,m(θ).
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Recalling (2.2), it immediately follows that

E∗(s∗∗l,m(θ̂N)) = 0.

Therefore, in the bootstrap world, the population value of θ is θ̂N and θ̂∗ is an estimator of

θ̂N . We adopt the following short hand notation that mimics the notation used for the true

data. Let ŝ∗∗l,m denote s∗∗l,m(θ̂∗).

Define the bootstrap versions of the t and Wald statistics as

F ∗ = LM
(
r(θ̂∗)− r(θ̂N)

)′(
R(θ̂∗)

(
Ĵ∗
θ̂

)−1

Ω̂∗
(
Ĵ∗
θ̂∗

)−1

R(θ̂∗)′
)−1 (

r(θ̂∗)− r(θ̂N)
)
,

t∗ =

√
LM

(
r(θ̂∗)− r(θ̂N)

)
√
R(θ̂∗)

(
Ĵ∗
θ̂∗

)−1

Ω̂∗
(
Ĵ∗
θ̂∗

)−1

R(θ̂∗)′
,

where

Ω̂∗ =
1

LM

L∑
ll=1

M∑
m1=1

L∑
l2=1

M∑
m2=1

K(
l1
hL
,
l2
hL
,
m1

hM
,
m2

hM
)ŝ∗∗l1,m1

ŝ∗∗′l2,m2
,

Ĵ∗
θ̂∗

= (LM)−1
L∑
l=1

M∑
m=1

∂s∗∗l,m(θ̂∗)

∂θ′
.

Other than the recentering around r(θ̂N), the bootstrap versions of the statistics are com-

puted in the same way that the original statistics are computed.

As shown by Gonçalves and Vogelsang (2006) in a time series regression setting, the

i.i.d. bootstrap is first order equivalent to the fixed-b asymptotic distribution of t and Wald

statistics even when the data has dependence. The i.i.d. bootstrap remains valid when the

data is dependent because partial sums of the bootstrap data satisfy a FCLT. Because the

asymptotic variance covariance matrix in the FCLT cancels from the fixed-b distribution,

the bootstrap does not have to mimic the correct variance covariance matrix. The results
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of Gonçalves and Vogelsang (2006) for the i.i.d. bootstrap naturally extend to the spatial

context as the next theorem shows.

THEOREM 4. Suppose the i.i.d. “unconditional on locations” bootstrap is used to compute

F ∗ and t∗. Suppose the conditions of Theorem 1 are satisfied and assume that θ̂∗ − θ̂N
p→ 0.

Then

F ∗ ⇒ Bq(1, 1)Qq(b1, b2)−1Bq(1, 1) and t∗ ⇒ B1(1, 1)√
Q1(b1, b2)

.

Suppose the conditions of Theorem 2 are satisfied. Then

F ∗ ⇒ Bq(1, 1)Qbart
q (b1, b2)−1Bq(1, 1) and t∗ ⇒ B1(1, 1)√

Qbart
1 (b1, b2)

.

Theorem 4 establishes that i.i.d. “unconditional on locations” bootstrap critical values

for spatial HAC robust tests are first order asymptotic equivalent to fixed-b critical values

on either a full rectangular lattice or a rectangular lattice with randomly assigned missing

locations. Note that the assumption that θ̂∗ − θ̂N
p→ 0 holds under essentially the same

regularity conditions as does Assumption 2.8

3.4. Non-Rectangular Lattice Domains

In this section, we sketch an extension of our main theorems to non-rectangular domains and

lattice domains with missing locations where inference is carried out conditional on observed

locations. Most importantly, we argue that the “conditional bootstrap” procedure discussed

in the previous section can be used regardless of the shape of the sampling region.

We make use of the rectangular lattice assumption at three points, the first of which is

stating that the limiting process W (r, s) in Assumption 3 is the Brownian Sheet described

8See Gonçalves and White (2004).
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in Section 3.1. In this case Assumption 3 could be justified by FCLTs for random fields, e.g.

Deo (1975) and Basu and Dorea (1979). The rectangular domain also simplifies notation

and the proofs of Theorems 1 and 2. Finally, we are able to explicitly characterize ‘boundary

terms’ Q
{·}
p in the rectangular lattice case as integrals of the pinned Brownian sheet on the

boundaries of the unit rectangle. Although practitioners can use the i.i.d. bootstrap proce-

dure in the previous section to avoid the need to simulate each boundary term individually,

we believe it instructive to point out that these boundary terms are relevant (unlike in the

time series case) and that other Monte Carlo approaches are possible.

We briefly sketch the extension to more general domains, which is based on an FCLT in

Goldie and Greenwood (1986). First fix a subset of the unit rectangle, A ⊂ [0, 1]2. Let B(A)

be the σ-algebra of Borel subsets of A. Now for a given C ∈ B(A) and positive integers L and

M , let n = (L,M), and define the function 1n
l,m : B(A)×{1, . . . , L}×{1, . . . ,M} → [0, 1] as

1n
l,m(C) =

∣∣∣∣C ∩ ( l − 1

L

]
×
(
m− 1

M

]∣∣∣∣ ,
where | · | denotes Lesbesgue measure. Let

{
snl,m
}

, with n = (L,M), be a sequence of random

fields, i.e. for each n = (L,M) a collection of random variables indexed by l = 1, . . . , L,

m = 1, . . . ,M , each of which satisfies E
(
snl,m
)

= 0 and Var
(
snl,m
)

= 1. Theorem 1.1 in Goldie

and Greenwood (1986) states that, under mild regularity conditions on the sequence
{
snl,m
}

and the set A, and with L,M →∞ as in our Assumption 1, the partial sum process defined

over B(A), converges weakly9 to a standard Wiener process on the domain A,

Zn(C) =

√
|C|
LM

L∑
l=1

M∑
m=1

1n
l,m(C) snl,m ⇒ W (C).

9For a precise definition of this convergence, see Goldie and Greenwood (1986), p.818-20.
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Though a full discussion of Wiener processes over arbitrary domains is beyond the scope

of this paper, we note that the limiting process W has the usual properties, i.e., W (C) is

a Gaussian random variable with E[W(C)] = 0 and E [W (B)W (C)] = |B ∩ C|. As such,

versions of Theorems 1 and 2 remain true under a modified version of Assumption 3, where

the limiting process W is a Wiener process with domain A ⊆ [0, 1]2, and an appropriately

modified version of Assumption 4, which guarantees that partial sums of the derivatives of

the scores over any C ∈ B(A) converge in probability to an additive function J(C). The chief

difference, intuitively, is that boundary terms take the form of integrals of the appropriate

‘pinned’ Wiener process along the boundary of A. The first order equivalence of the i.i.d.

“conditional on locations” bootstrap and the fixed-b asymptotic distribution will continue

to hold as long as the bootstrapped scores satisfy an FCLT in the same form as the original

data (Assumption 3) with possibly a different variance matrix, and that the bootstrapped

Hessian Ĵ satisfy a ULLN, again in the same form as the original data (Assumption 4) with

possibly a different probability limit. We therefore claim that Theorem 4 will hold under

the modified versions of Assumptions 3 and 4 mentioned in the previous paragraph.

Whether one uses a rectangular lattice-based FCLT or the more general one discussed

here depends upon whether one believes that observed locations will “fill in” the rectangular

integer lattice as the size of the sample increases. This matters in practice because the refer-

ence distributions for obtaining critical values will be different in the two cases. Because the

computation of the t and F statistics is the same in either case, different critical values will

lead to potentially different outcome for tests and different confident intervals. Fortunately,

the i.i.d. bootstrap will deliver valid critical values but the practitioner must use the version

of the i.i.d. bootstrap appropriate for the relevant reference asymptotic distribution. If the
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rectangular lattice structure is reasonable and missing locations (if there are any) are ran-

domly assigned, the i.i.d. “unconditional on locations” bootstrap is appropriate. If missing

locations on a rectangular lattice are not randomly assigned or if the rectangular structure is

unrealistic to begin with, the i.i.d. “conditional of locations” bootstrap is appropriate. We

note that in all of our simulation results, we use the “conditional on location” bootstrap.

4. Simulation Examples

In the previous sections, we have provided approximations to the behavior of test-statistics

based on spatial HAC covariance estimators under a sequence which keeps the HAC band-

widths proportional to the sample size. Under this sequence, estimation uncertainty associ-

ated with the covariance matrix is accounted for, unlike in the usual approximations which

ignore this source of uncertainty. We expect that, in many cases, this will lead to improved

finite sample performance of our approximation relative to the usual normal approximation.

We have also shown that a relatively simple i.i.d. bootstrap procedure can be used very gen-

erally to obtain critical values for test statistics. In this section, we provide evidence on the

finite-sample inference properties of tests using our new approximation through simulation

experiments first in purely cross-sectional data and then in a panel. In all of our simulations,

we consider inference about a slope coefficient from a linear regression model.

4.1. Cross-Sectional Example

We present simulation results obtained in cross-sectional data with data generated on a

rectangular lattice. All of our results are based on data generated using a spatial moving
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average model. Specifically, we consider data generated on an M ×M integer lattice with

ys = α + xsβ + εs,

where xs is a scalar, s is a vector (s1, s2) indicating which lattice point the observation

corresponds to, α = 0, and β = 1. We generate xs and εs as

xs =
∑
‖j‖≤2

γ‖j‖vs+j,

εs =
∑
‖j‖≤2

γ‖j‖us+j

with ‖j‖ = max(j1, j2) in this expression, us ∼ N(0, 1), and vs ∼ N(0, 1) for all i and j. We

consider three different values of γ, γ ∈ {0, .3, .6}. We consider two different designs, one of

which uses a full lattice and one of which uses a sparse lattice. For the full lattice results, we

set M = 25 and use the data generated at each location for a total sample size of N = 625.10

For the sparse lattice results, we set M = 36 and generate data on the full 36 × 36 lattice

but then randomly sample (without replacement) 625 of the potential 1296 locations. We

condition on the same set of 625 locations in each of the simulation replications.

Table 1 reports rejection rates for 5% level tests from this simulation experiment. All

results are based on 1000 simulation replications. Row labels indicate which covariance

matrix estimator and smoothing parameter are used. I.i.d. and Heteroskedasticity use con-

ventional OLS standard errors and heteroskedasticity robust standard errors respectively.

For all HAC estimators, we use product kernels11 and equal bandwidths in both coordinate

10We draw us and vs on a 29× 29 lattice to generate the 25× 25 lattice of xs and εs.
11For s, s̃ ∈ Z2

+, we refer to kernels of the form K(s, s̃) = k1(s1, s̃1)k2(s2, s̃2), where k1, k2 : Z+×Z+ → R+,

as product kernels. We use this type of kernel throughout our simulations and empirical example.
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directions. Rows labeled Bartlett(h) use HAC estimators with a Bartlett kernel and smooth-

ing parameter equal to h, K(s, s̃) = (1 − |s1 − s̃1|/h)+(1 − |s2 − s̃2|/h)+; and rows labeled

Gaussian(h) use HAC estimators with a Gaussian kernel and smoothing parameter equal to

h, K(s, s̃) = exp{−.5[(s1− s̃1)/(h/2)]2} exp{−.5[(s2− s̃2)/(h/2)]2}. Column 2 indicates from

which reference distribution critical values were obtained with “Fixed-b” indicating that the

approximations developed in this paper were used. All fixed-b critical values were obtained

via the i.i.d. bootstrap with 200 bootstrap replications. Columns labeled “Full Lattice” and

“Sparse Lattice” use the corresponding simulation designs as discussed above.

Some general patterns emerge from the simulation results. The sparsity of the lattice

does not adversely affect the properties of the fixed-b approximations and appears to simply

correspond to a general weakening of the spatial dependence in the data. In all cases, we

see large size distortions in testing procedures that ignore spatial correlation (i.e., ‘IID’ and

‘Heteroskedasticity’) when spatial correlation is present. Tests based on HAC estimators

also have substantial size distortions when critical values based on the standard asymptotic

normal approximation are used. These size distortions occur across all bandwidths when

there is spatial correlation in the data, and also occur for large bandwidths even when the

data are i.i.d.

When there is spatial correlation in the data, the only testing procedures with size close

to the nominal level are those that use a large value for the smoothing parameter and the

procedure developed in this paper. This result may not be surprising: When there are modest

amounts of dependence in data, one needs to use a smoothing parameter that is large enough

to allow this dependence to be captured. However, the large smoothing parameter induces

substantial sampling variability and downward bias in the HAC estimator, which is ignored
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in the usual asymptotic normal approximation. Our fixed-b approximation, like Kiefer and

Vogelsang (2002, 2005) in the time series case, uses critical values from a distributional

approximation that accounts for sampling uncertainty in the HAC estimator. The results

strongly suggest that one should use the approach of this paper or something similar when

faced with data in which there may be spatial dependence.

4.2. Panel Example

In this section, we present results from a simulated panel with both cross-sectional and

intertemporal dependence. Specifically, we generate data from the model

yst = βxst + αs + αt + εst

where yst is the outcome for observation s at time t, αs and αt are unobserved cross-sectional

unit and time effects, εst is the error term, and xst is the variable of interest. In all of the

simulations, we set β = 1, αs = 0 for all s = 1, ..., N , and αt = 0 for all t = 1, ..., T when

generating the data but include a full set of individual and time dummies when estimating

the model. To examine the behavior of our procedure in a relevant, reasonably small sample

setting, we set N = 49 and use the locations of the 48 contiguous United States plus

Washington D.C. to generate spatial dependence. In particular, we generate xst as

xst = ust + γ
∑

d(s,r)=1

urt where

ust = ρus(t−1) + vst,

vst ∼ N(0, 1),

d(s, r) is one for adjacent states s and r and zero otherwise, and ρ and γ respectively control

the strength of the intertemporal and spatial correlation and are varied in the simulations.
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We generate εst using the same model. We considered simulations for all combinations of

ρ and γ with ρ ∈ {0, .3, .6} and γ ∈ {.3, .6}.12 Many models are estimated with state level

panels with T between 10 and 20, and we arbitrarily chose to set T = 13.

We report rejection rates for 5% level tests from this simulation experiment in Table

2. In this case, our HAC estimator needs to account for dependence both in space and

over time. In implementing the HAC estimators, we choose to use the average latitude

and average longitude of each state measured in degrees to measure its spatial location and

treat them as Cartesian coordinates. As in many spatial applications, here there are many

possible location metrics, and the metric on which we base our HAC estimators (latitude,

longitude) is intentionally different from the data generating process. As in the simulation

results reported in the pure cross-sectional case, we consider either Bartlett or Gaussian

kernels of the product form. We also allow the smoothing parameter in each dimension

(latitude, longitude, and time) to be different. When reporting the results, we refer to

tests based on a given HAC estimator by the kernel and the three smoothing parame-

ters. Thus, results in a row labeled Bartlett(hlat, hlong, htime) correspond to using a ker-

nel K(st, rτ) = (1− |latitudes − latituder|/hlat)+(1− |longitudes − longituder|/hlong)+(1−

|t − τ |/htime)+, and results in a row labeled Gaussian(hlat, hlong, htime) correspond to us-

ing a kernel K(st, rτ) = exp{−.5[(latitudes − latituder)/(hlat/2)]2} exp{−.5[(longitudes −

longituder)/(hlong/2)]2} exp{−.5[(t−τ)/(htime/2)]2}. We also report results using a clustered

12We also considered γ = 0 but do not report these results for brevity. When ρ = γ = 0, the results

are similar to those reported in the pure cross-section case above for γ = 0. When γ = 0 otherwise, simply

clustering by state and using critical values from a t distribution with 48 (N-1) degrees of freedom as in

Hansen (2007) works very well.
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covariance estimator where we cluster by state or time13 and results based on conventional

OLS standard errors (IID) and heteroskedasticity robust standard errors (Heteroskedastic-

ity).

The rejection rates summarized in Table 2 show more or less the same patterns as the

results from the pure cross-section case discussed above. Large size distortions occur when

either conventional OLS or heteroskedasticity consistent standard errors are used to do in-

ference. We also see large size distortions in tests that use a HAC estimator together with

standard normal critical values; this is true with either kernel and any of the bandwidths we

consider (including bandwidths corresponding to clustering by state or time). In this exam-

ple, we see dramatic improvements in size of tests by employing critical values corresponding

to the approximation developed in this paper relative to the usual asymptotic approximation.

It is interesting that only Gaussian(20,40,∞) controls size uniformly across the strengths of

dependence considered, though many of the kernel and bandwidth combinations considered

do quite well across each {γ, ρ} combination.

Even when there is only modest spatial and temporal correlation, one needs to use

rather large values for smoothing parameters in order to control the size of tests. As in the

pure cross-section case, this involves using many cross-products, and the simulation results

clearly demonstrate that the usual approximation which ignores uncertainty in estimating the

covariance matrix is inadequate in this scenario. In addition to demonstrating the potential

13Note that cluster by state corresponds to using a HAC estimator with any kernel and bandwidths

hlat = 0, hlong = 0, and htime =∞, e.g. Bartlett(0,0,∞) or Gaussian(0,0,∞), and cluster by time corresponds

to using a HAC estimator with any kernel and bandwidths hlat = ∞, hlong = ∞, and htime = 0, e.g.

Bartlett(∞,∞,0) or Gaussian(∞,∞,0). In reporting results for these estimators, we use critical values

obtained using the same bootstrap we use with the other HAC estimators.
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large value added by the procedure in this paper, the simulation results also clearly illustrate

that inference procedures that do not adequately account for both spatial and temporal

dependence may suffer from severe size distortions.

5. Empirical Example: Temporary Help Employment

To illustrate that the methods developed in this paper can be important in practice, we

present a brief empirical example. Following Autor (2003), we examine the effect of excep-

tions to the common law doctrine of employment at will14 that were recognized in many

states during the late 1970s and 1980s on temporary help services employment. In partic-

ular, as discussed in Autor (2003), 46 state courts recognized exceptions to employment at

will between 1973 and 1995 that limited employers’ ability to dismiss workers and opened

them to potentially costly litigation in the case of “unjust dismissal.”15 Autor (2003) argues

that the recognition of unjust dismissal doctrine should have a positive effect on temporary

help employment for a variety of reasons and examines the effect of this unjust dismissal

doctrine on the growth of temporary help services employment.

For our empirical example, we use essentially the same data as Autor (2003) which

consists of an annual state-level panel on temporary help services employment from 1979 to

14Employment at will was recognized throughout the U.S. by 1953 and held that employees and employers

had unlimited discretion in terminating an employment relationship unless explicitly contracted against.
15See Autor (2003) for a thorough review of the relevant history of employment at will and unjust dismissal

doctrine as well as a discussion of other relevant exceptions to employment at will.
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1995.16 In our example, we focus on estimating the baseline specification of Autor (2003):

log(THSst) = β(CommonLawExceptionsst) + γ log(NonfarmEmploymentst)

+ αs + αt + λst+ εst

where THSst is total temporary help services employment in state s at time t, NonfarmEmploymentst

is total employment in the nonfarm sector in state s at time t, CommonLawExceptionsst

is a vector of dummy variables where a dummy variable is 1 if the state has recognized the

given exception,17 αs and αt are respectively state and year effects, and λst allows for a

state-specific time trend. Details of data construction along with descriptive statistics and

detailed descriptions of each variable are in Autor (2003). Autor (2003) also provides a dis-

cussion of the strengths and weakness of his strategy for identifying the effect of common law

exceptions on temporary help services employment. This discussion is largely tangential to

the point of the exercise in this paper, which is to illustrate the potential impact of neglected

spatial correlation on the precision of an estimator and the conclusions one might draw in

an empirical setting.

In his paper, Autor (2003) notes that there are obvious signs of temporal correlation in

the data and accounts for this when performing inference by using standard errors estimated

by clustering by state. This approach allows for essentially arbitrary serial dependence within

each state over time, but imposes that there is no cross-sectional correlation between states

16Our data set differs from that in Autor (2003) in that we exclude Alaska and Hawaii.
17As in Autor (2003), we use three dummy variables: one for unjust dismissal doctrine, one for public

policy exceptions, and one for good faith exceptions. We choose to focus on estimates for the unjust dismissal

doctrine as this is what Autor (2003) focuses on since the estimated effects of the other policies are small

and very imprecise even before spatial correlation is taken into account.
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in a given time period or across different states in different time periods. Given that there is

a strong possibility of spatial correlation in the data, inference obtained by solely accounting

for within state intertemporal correlation is potentially highly misleading.

Figures 1 and 2 provide evidence of possible spatial correlation in the residuals. Figure

1 plots the residuals from the regression of log(THSst) on state and year effects and state

specific trends, and Figure 2 plots the residuals from the regression of the unjust dismissal

dummy (the covariate of interest) on state and year effects and state specific trends. For both

the outcome and treatment, we present results for 1979, 1987, and 1995. Looking at these

figures, we see obvious signs of spatial correlation even after accounting for the state effects,

year effects, and state specific trends. For example, looking at Figure 1 for the outcome, we

see that there are large chunks of geographically close states that have very similar outcome

values (i.e. the same shading on the map). We also see, with few exceptions, that physically

close states are similarly shaded and that transitions between light and dark shaded states

(high and low values of the outcome) appear to occur fairly smoothly. The maps for the

treatment in Figures 2 display similar behavior. While clearly not conclusive, these figures

suggest moderate spatial correlation in the data which, if not properly accounted for, can

cause standard inference procedures to produce misleading results. These figures also suggest

that physical distance between states will provide a reasonable metric to describe the relevant

spatial correlation patterns.

To account for this potential correlation, we employ a HAC estimator and the approxi-

mation to the behavior of test statistics developed in this paper. We index observations by

their physical location as measured by average latitude and longitude and by their temporal

location. Using the panel data simulations from the previous section as a rough guide, we
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employ a Gaussian kernel when forming the HAC estimator. Thus, the kernel is

K(st, rτ) = exp{−.5[(latitudes − latituder)/(hlat/2)]2}

× exp{−.5[(longitudes − longituder)/(hlong/2)]2}

× exp{−.5[(t− τ)/(htime/2)]2}

which depends on three smoothing parameters: hlat for the latitude dimension, hlong for the

longitude dimension, and htime for the time dimension. We choose hlat = 20, hlong = 40, and

htime = ∞ again based on the panel simulations as these are the setting that control size

best in the simulations and we anticipate a moderate degree of spatial correlation and a high

degree of intertemporal correlation. These bandwidths allow for essentially unconstrained

within state intertemporal correlation and also allow for a high degree of spatial correlation

across physically close states within a given year as well as a high degree of correlation

across different but physically close states in different years. For comparison, we report

results from clustering by state as in Autor (2003), which corresponds to the most common

method used to estimate standard errors in this context, as well as results where we set

smoothing parameters hlat = 10, hlong = 20, and htime = ∞, which would be appropriate if

we believed spatial correlation decayed fairly rapidly.

Results from this exercise are reported in Table 3. The point estimate for the effect

of the presence of unjust dismissal doctrine on the natural log of temporary help services

employment is 0.140 and the clustered standard error is 0.059.18 In the table, we also report

standard errors using the spatial HAC estimator with our preferred smoothing parameter

18These numbers are very similar to those reported in Autor (2003). We get identical numbers to those

in Autor (2003) when we include Alaska and Hawaii. The clustered standard error we report is identical to

that reported in Stata which includes a bias adjustment factor as in Hansen (2007).
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settings. For each estimated standard error, we report 95% confidence intervals formed using

the usual asymptotic normal approximation (95% CI - Usual) and the fixed-b asymptotic

approximation (95% CI - Fixed-b).19 For the fixed-b confidence intervals using the HAC

estimators, we obtain critical values using the i.i.d. bootstrap as advocated in this paper

with 25,000 bootstrap replications.

When looking at the results, note that HAC estimators with large values for the smooth-

ing parameters, in addition to being highly variable, may also be substantially biased towards

zero.20 Thus, the cluster by state standard error estimate, which includes a bias adjustment

term, is not strictly comparable to the HAC estimators which do not.21 This point also helps

underscore the importance of using appropriate critical values, as the usual asymptotic nor-

mal critical values ignore both the variability and bias that HAC estimators exhibit in finite

samples. The fixed-b approximation we develop accommodates both of these factors and

so the critical values appropriately adjust for both. Evidence for this was provided in the

simulations in the previous section.

19For the cluster estimator, we use critical values from a t-distribution with 47 degrees of freedom as

in Hansen (2007) which is obtained under an approximating sequence for a clustering estimator that is

analogous to the fixed-b limit for more general HAC estimators.
20With no truncation, HAC estimators are identically equal to 0, and as the value of the smoothing

parameters increase, one approaches the no truncation point.
21For clustering estimators, the form of the bias is simple, depending only on the number of clusters, and

so is readily adjusted for in obtaining estimates of the standard errors. Then, when obtaining critical values,

one only needs to account for the variability of the clustered covariance estimator. This differs in the HAC

case where the bias is a nontrivial function of both the chosen kernel and values of the smoothing parameters

making it more convenient to use critical values that simultaneously adjust for the bias and variance.
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Looking at the confidence intervals, we first note that the standard errors from HAC es-

timators, which allow for correlation in the residuals across states both within and between

time periods, are larger than the standard error from clustering by state. In all three cases,

however, confidence intervals based on the standard normal approximation exclude zero. Us-

ing the standard normal approximation at the 95% level, one would find significant evidence

that unjust dismissal doctrines were associated with the large increases in temporary health

services employment over this time period after controlling for state and year effects, state

specific time trends, and other relevant exceptions to employment at will.

Confidence intervals based on our fixed-b approximation and bootstrap procedure are

wider, substantially so in the case of the HAC estimators. More importantly, the difference in

the inference one would draw after accounting for cross-sectional correlation is economically

meaningful. Both of the HAC estimator intervals include large positive and economically

meaningful negative values for the treatment effect. This indicates that, after accounting

for correlation in labor market outcomes across states and time periods, there is insufficient

evidence in the data to conclude that unjust dismissal doctrines are statistically associated

with the rise in temporary help services employment seen during the 1980s and early 1990s.

Note that this result is driven more by larger critical values, which correctly account for

bias and variability in nonparametric standard error estimates which take spatial-temporal

correlation into account, than by the actual point estimates of the standard error.

Overall, this example suggests that accounting for spatial correlation may be important in

applied work. It also illustrates the importance not only of thinking about correlation when

obtaining standard error estimates but also in using appropriate reference distributions. We

believe this example argues that empirical researchers interested in obtaining valid inference
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should think carefully about how to account for dependence when performing inference,

both in calculation of standard errors and use of appropriate reference distributions. The

simulation evidence presented in the previous section suggests that our approach offers one

way for empirical researchers interested in obtaining correct inference to do this. We also

believe the practicality of the i.i.d. bootstrap approach to obtaining critical values should

make it appealing to conscientious researchers.

6. Conclusion

In this paper, we have provided asymptotic approximation results for inference procedures

based on spatial HAC covariance estimators under asymptotics in which HAC smoothing

parameters are proportional to the sample size. Under this asymptotic sequence, the spatial

HAC estimator is not consistent but instead converges in distribution to a non-degenerate

random variable that depends on the HAC kernel and smoothing parameters. This random

variable has expectation that is proportional to the true covariance matrix that is being

estimated with bias that depends on the HAC kernel function and smoothing parameters.

Asymptotic distributions of test statistics based on the spatial HAC estimator under this

sequence thus better account for sampling properties of HAC estimators than the usual

approximations that treat the HAC estimator as if it is equal to the true covariance matrix.

The approximate distributions for test statistics that we obtain are pivotal but nonstandard,

so critical values must be obtained via simulation. We show that the i.i.d. bootstrap provides

a simple, feasible simulation procedure that can be used to construct valid critical values.

We illustrate the use of spatial HAC estimators and our approximation through brief

simulation examples and an empirical example. In the simulations, we find that spatial
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HAC estimators and inference based on the usual asymptotic approximation tends to be

badly size distorted. We also find that inference based on spatial HAC estimators and

the approximate distributions we develop on this paper controls size very well across all

simulations we consider as long as sufficiently large values of smoothing parameters are

used. In the empirical example, we consider the impact of the acceptance of exceptions to

employment at will at the state level on state level temporary help services employment

in a panel. Our findings suggest that the most commonly employed inference procedure in

this type of data, using standard errors clustered by state which ignores spatial correlation,

substantially overstates the precision with which the effects of interest are estimated relative

to inference based on spatial HAC which accounts for the potential spatial correlation.

We believe the results in this paper will be very useful to researchers using common

economic data in which spatial correlation is likely. While the asymptotic distributions are

complicated, the ability to simply obtain critical values via the i.i.d. bootstrap should make

using our approximation accessible to a wide range of researchers. One important question

that deserves more attention is smoothing parameter selection. Our current results are

helpful for smoothing parameter choice only to the extent that our simulation design matches

the dependence structure researchers believe is present in their data. Our simulation results

do suggest that one needs to use quite large values for smoothing parameters to control the

size of tests based on HAC estimators. This is consistent with Sun, Phillips, and Jin (2008),

who consider smoothing parameter selection in the context of Gaussian location model in a

time series and show that the rate of increase for the optimal smoothing parameter chosen

by trading off size and power under fixed-b asymptotics is much faster than the rate for
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minimizing MSE of the variance estimator. An interesting direction for future research

would be to adapt the arguments of Sun, Phillips, and Jin (2008) to the present context.

7. Proofs

Throughout we adopt Einstein summation conventions such that for a sequence bl,m,

bi,j =
i∑
l=1

j∑
m=1

bl,m, bi.,m =
i∑
l=1

bl,m, bjl,. =

j∑
m=1

bl,m

where convenient.

Proof of Lemma 1: Using Assumption 2 and a mean-value expansion it follows that

ŝ∗l,m = s∗l,m +
∂s∗l,m(θ)

∂θ′

(
θ̂N − θ0

)
,

Summing over l and m up to [rL] and [sM ] gives

(7.1) ŝ∗[rL],[sM ] = s∗[rL],[sM ] +
L∑
l=1

M∑
m=1

∂s∗l,m(θ)

∂θ′

(
θ̂N − θ0

)
.

When r = 1 and s = 1, the left hand side of (7.1) becomes zero (see (2.2)) and this leads to

(7.2) 0 =
L∑
l=1

M∑
m=1

s∗l,m(θ0) +
L∑
l=1

M∑
m=1

∂s∗l,m(θ)

∂θ′

(
θ̂N − θ0

)
.

Rearrangement of (7.2) and scaling gives

√
LM

(
θ̂N − θ0

)
= −

(
(LM)−1

L∑
l=1

M∑
m=1

∂s∗l,m(θ)

∂θ′

)−1

(LM)−1/2
L∑
l=1

M̄∑
m=1

s∗l,m(θ0)

⇒ −J −1ΛWp(1, 1),

using Assumptions 3 and 4.
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Before proving the theorems, it is convenient to establish the limiting behavior of ŝ∗[rL],[sM ].

Scaling (7.1) by (LM)−1/2 gives

(LM)−1/2ŝ∗[rL],[sM ] = (LM)−1/2s∗[rL],[sM ] + (LM)−1
L∑
l=1

M∑
m=1

∂1l,msl,m(θ)

∂θ′

√
LM

(
θ̂N − θ0

)
,

= (LM)−1/2s∗[rL],[sM ] + Ĵ
[rL],[sM ]

θ

√
LM

(
θ̂N − θ0

)
⇒ ΛWp(r, s)− (rsJ )J −1ΛWp(1, 1),

≡ Λ (Wp(r, s)− rsWp(1, 1)) = ΛBp(r, s),(7.3)

where line three of (7.3) follows from Lemma 1 and Assumptions 3 and 4.

Proof of Theorem 1: As stated above, K is a 2-d kernel defined on U × U with U ⊆ R2.

Define the following:

K∗l1,l2,m1,m2
= K

(
l1
b1L

,
l2
b1L

,
m1

b2M
,
m2

b2M

)
−∆l1K

∗
l1,l2,m1,m2

=
(
K∗l1,l2,m1,m2

−K∗l1+1,l2,m1,m2

)
−∆2

m1,l1
K∗l1,l2,m1,m2

= −(∆l1 ◦∆m1)K
∗
l1,l2,m1,m2

=
(
K∗l1,l2,m1,m2

−K∗l1+1,l2,m1,m2

)
−
(
K∗l1,l2,m1,m2

−K∗l1+1,l2,m1+1,m2

)
Kiefer and Vogelsang (2005) use the identity

L∑
l=1

albl =
L−1∑
l=1

(al − al+1)

(
l∑

i=1

bi

)
+ aL

L∑
l=1

bl.

We use a similar identity for double sums,

L∑
l=1

M∑
m=1

al,mbl,m =
L−1∑
l=1

M−1∑
m=1

−∆2
m,lal,mb

l,m +
L−1∑
l=1

−∆lal,Mb
l,M +

M−1∑
m=1

−∆maL,mb
L,m + aL,Mb

L,M ,

which may be derived by applying the original identity to the left hand side, first to the sum

over m, then again to the sum over l for each of the resulting terms. We apply this identity
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to (2.3), first to the sums over l1 and m1, then to the sums over l2 and m2 for each of the

resulting terms. The resulting expression for Ω̂ is

Ω̂ =
1

LM

{ L−1,L−1,
M−1,M−1∑
l1,l2,m1,m2

−∆4
m2,l2,m1,l1

K∗l1,l2,m1,m2
ŝ∗l1,m1 ŝ∗l2,m2′

+

L−1,
M−1,M−1∑
l2,m1,m2

−∆3
m2,l2,m1

K∗L,l2,m1,m2
ŝ∗L,m1 ŝ∗l2,m2′

+

L−1,
M−1,M−1∑
l1,m1,m2

−∆3
m2,m1,l1

K∗l1,L,m1,m2
ŝ∗l1,m1 ŝ∗L,m2′

+

L−1,L−1,
M−1∑
l1,l2,m2

−∆3
l2,m2,l1

K∗l1,l2,M,m2
ŝ∗l1,M ŝ∗l2,m2′(7.4)

+

L−1,L−1,
M−1∑
l1,l2,m1

−∆3
l2,m1,l1

K∗l1,l2,m1,M
ŝ∗l1,m1 ŝ∗l2,M ′

+

L−1,L−1,∑
l1,l2

−∆2
l2,l1

K∗l1,l2,M,M ŝ
∗l1,M ŝ∗l2,M ′ +

L−1,M−1∑
l1,m2

−∆2
m2,l1

K∗l1,L,M,m2
ŝ∗l1,M ŝ∗L,m2′

+

L−1,M−1∑
l2,m1

−∆2
l2,m1

K∗L,l2,m1,M
ŝ∗L,m1 ŝ∗l2,M ′

}

We now need to establish convergence of the RHS terms in (2.3) to the appropriate

functionals of the Brownian sheet, i.e.

Ω̂∅ =
1

LM

L−1,L−1,
M−1,M−1∑
l1,l2,m1,m2

−∆4
m2,l2,m1,l1

K∗l1,l2,m1,m2
ŝ∗l1,m1 ŝ∗l2,m2′ ⇒ ΛQ∅p(b1, b2)Λ′

Ω̂{1} =
1

LM

L−1,
M−1,M−1∑
l2,m1,m2

−∆3
m2,l2,m1

K∗L,l2,m1,m2
ŝ∗L,m1 ŝ∗l2,m2′ ⇒ ΛQ{1}p (b1, b2)Λ′
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Ω̂{1,2} =
1

LM

M−1,M−1∑
m1,m2

−∆2
m2,m1

K∗L,L,m1,m2
ŝ∗L,m1 ŝ∗L̄,m2′ ⇒ ΛQ{1,2}p (b1, b2)Λ′

and so on for each of the terms in (7.4).

Starting with the first term, we can write

Ω̂∅ =
1

LM

L,M∑
l1=1,m1=1

1

LM

L,M∑
l2=1,m2=1

−L2M2∆4
m2,l2,m1,l1

K∗l1,l2,m1,m2

(
1√
LM

ŝ∗l1,m1

)(
1√
LM

ŝ∗l2,m2′
)

Similarly to Kiefer and Vogelsang (2002), we define a process YL,M(r, s) such that

YL,M(r, s) = (LM)−1/2ŝ∗[rL],[sM ] ⇒ ΛBp(r, s),

where the limit follows from (7.3).

Observing that as L,M → ∞, −L2M2∆4
m2,l2,m1,l1

K∗l1,l2,m1,m2
→ ∂4K∗

∂x1∂x2∂x3∂x4

∣∣
l1,l2,m1,m2

,

and using Assumption 3 and the continuous mapping theorem, we have that

Ω̂∅ =

∫
u∈[0,1]2

v∈[0,1]2

−L2M2
(
∆4
m2,l2,m1,l1

K∗[uL,vM ]

)
YL,M(u)YL,M(v)′d (u× v)

⇒ Λ

∫
u∈[0,1]2

v∈[0,1]2

− ∂4K∗

∂x1∂x2∂x3∂x4

(u,v)Bp(u)Bp(v)′d (u× v)

Λ′

= ΛQ∅p(b1, b2)Λ′.

This argument is identical to Kiefer and Vogelsang (2005) except that the convergence is to

functionals involving Brownian sheets rather than Brownian motion. Note that this requires

a more general FCLT (Assumption 3).

The other terms in (7.4) are boundary terms in the sense that they arise from the co-

variance between scores on the boundary with those on the interior. The argument for these
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terms is similar. Write Ω̂{1} as

Ω̂{1} =

(
1

M

M∑
m1=1

1

LM

L,M∑
l2=1,m2=1

−LM2∆3
m2,l2,m1

K∗L,l2,m1,m2

(
1√
LM

ŝ∗L,m1

)(
1√
LM

ŝ∗l2,m2′
))

.

The far right term involving ŝ∗l2,m2 follows the process YL,M( l2
L
, m2

M
) given above. We also

have that

(LM)−1/2ŝ∗L,[sM ] = (LM)−1/2SL,[sM ] − ĴL,[sM ]
(
ĴL,M

)−1

(LM)−1/2s∗L,M = YL,M(1, s).

Therefore, by Assumption 3 and the continuous mapping theorem, we have

Ω̂{1} =

∫
u∈[0,1]
v∈[0,1]2

−LM2
(
∆3
m2,l2,m1

K∗[L,uL,vM ]

)
YL,M(1, u)YL,M(v)′d (u× v)

⇒ Λ

∫
u∈[0,1]
v∈[0,1]2

− ∂3K∗

∂x2∂x3∂x4

(1, u,v)Bp(1, u)Bp(v)′d (u× v)

Λ′

= ΛQ{1}p (b1, b2)Λ′

Proof of Theorem 2: As a preliminary calculation, consider the quadratic form

n∑
i=1

n∑
j=1

Kijaibj,

where ai and bj are generic sequences and Kij =
(
1−

∣∣ i−j
h

∣∣)1 (∣∣ i−j
h

∣∣ ≤ 1
)

with 1 < h ≤ n.

This quadratic form becomes a standard time series Bartlett HAC estimator when scaled

by n−1 and the ai and bj sequences are the same sequence, e.g. residual times regressors

in a regression model. Using algebraic results from Hashimzade and Vogelsang (2008) the

quadratic form can be rewritten as

(7.5)
n∑
i=1

n∑
j=1

Kijaib
′
j =

2

h

n−1∑
i=1

aibi′ − 1

h

n−h−1∑
i=1

(
ai+hbi′ + aibi+h′

)
− 1

h

n−1∑
i=n−h

(
anbi′ + aibn′

)
+ anbn′,
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where Einstein summation conventions are used. Take (3.2) and rearrange the order of the

sums to give

Ω̂ =
1

LM

L∑
ll=1

M∑
m1=1

L∑
l2=1

M∑
m2=1

KhL
l1,l2

KhM
m1,m2

ŝ∗l1,m1
ŝ∗′l2,m2

=
1

LM

M∑
m1=1

M∑
m2=1

KhM
m1,m2

L∑
ll=1

L∑
l2=1

KhL
l1,l2

ŝ∗l1,m1
ŝ∗′l2,m2

.

Applying (7.5) to the second double sum gives

Ω̂ =
1

LM

M∑
m1=1

M∑
m2=1

KhM
m1,m2

(
2

hL

L−1∑
l=1

ŝ∗l·,m1
ŝ∗l′·,m2

− 1

hL

L−hL−1∑
l=1

(
ŝ∗l+hL
·,m1

ŝ∗l′·,m2
+ ŝ∗l·,m1

ŝ∗l+hL′
·,m2

)
− 1

hL

L−1∑
l=L−hL

(
ŝ∗L·,m1

ŝ∗l′·,m2
+ ŝ∗l·,m1

ŝ∗L′·,m2

)
+ ŝ∗L·,m1

ŝ∗L′·,m2

)
.

Rearranging sums gives

Ω̂ =
1

LM

{
2

hL

L−1∑
l=1

M∑
m1=1

M∑
m2=1

KhM
m1,m2

ŝ∗l·,m1
ŝ∗l′·,m2

− 1

hL

L−hL−1∑
l=1

M∑
m1=1

M∑
m2=1

KhM
m1,m2

(
ŝ∗l+hL
·,m1

ŝ∗l′·,m2
+ ŝ∗l·,m1

ŝ∗l+hL′
·,m2

)
− 1

hL

L−1∑
l=L−hL

M∑
m1=1

M∑
m2=1

KhM
m1,m2

(
ŝ∗L·,m1

ŝ∗l′·,m2
+ ŝ∗l·,m1

ŝ∗L′·,m2

)
+

M∑
m1=1

M∑
m2=1

KhM
m1,m2

ŝ∗L·,m1
ŝ∗L′·,m2

}
.

Expanding the double sums over m1 and m2 using (7.5) gives

Ω̂ =
1

LM

{
2

hL

L−1∑
l=1

Al,l −
1

hL

L−hL−1∑
l=1

(Al+hL,l + Al,l+hL
)− 1

hL

L−1∑
l=L−hL

(AL,l + Al,L) + AL,L

}
,

where

Al1,l2 =
2

hM

M−1∑
m=1

ŝ∗l1,mŝ∗l2,m′ − 1

hM

M−hM−1∑
m=1

(
ŝ∗l1,m+hM ŝ∗l2,m′ + ŝ∗l1,mŝ∗l2,m+hM ′

)
− 1

hM

M−1∑
m=M−hM

(
ŝ∗l1,mŝ∗l2,M ′ + ŝ∗l1,M̄ ŝ∗l2,m′

)
+ ŝ∗l1,M ŝ∗l2,M ′.
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Plugging in b1L for hL and b2M for hM and rearranging gives

Ω̂ =
2

b1

1

L

L−1∑
l=1

1

LM
Al,l −

1

b1

1

L

L−b1L−1∑
l=1

1

LM
(Al+b1L,l + Al,l+b1L)(7.6)

− 1

b1

1

L

L−1∑
l=L−b1L

1

LM
(AL,l + Al,L) +

1

LM
AL,L.

Consider the first term in (7.6):

2

b1

1

L

L−1∑
l=1

1

L̄M
Al,l =

2

b1

1

L

L−1∑
l=1

{
2

b2

1

M

M−1∑
m=1

(LM)−1/2ŝ∗l,m(LM)−1/2ŝ∗l,m′

− 1

b2

1

M

M−b2M−1∑
m=1

(
(LM)−1/2ŝ∗l,m+b2M(LM)−1/2ŝ∗l,m′ + (LM)−1/2ŝ∗l,m(LM)−1/2ŝ∗l,m+b2M ′

)

− 1

b2

1

M

M−1∑
m=M−b2M

(
(LM)−1/2ŝ∗l,m(LM)−1/2ŝ∗l,M ′ + (LM)−1/2ŝ∗l,M(LM)−1/2ŝ∗l,m′

)
+(LM)−1/2ŝ∗l,M(LM)−1/2ŝ∗l,M ′

}
=

2

b1

∫ 1

0

{
2

b2

∫ 1

0

YL,M(r, s)YL,M(r, s)′ds

− 1

b2

∫ 1−b2

0

(YL,M(r, s+ b2)YL,M(r, s)′ + YL,M(r, s)YL,M(r, s+ b2)′) ds

− 1

b2

∫ 1

1−b2
(YL,M(r, s)YL,M(r, 1)′ + YL,M(r, 1)YL,M(r, s)′) ds+ YL,M(r, 1)YL,M(r, 1)′

}
dr

⇒ Λ
2

b1

∫ 1

0

{
2

b2

∫ 1

0

Bp(r, s)Bp(r, s)
′ds

− 1

b2

∫ 1−b2

0

(Bp(r, s+ b2)Bp(r, s)
′ +Bp(r, s)Bp(r, s+ b2)′) ds

− 1

b2

∫ 1

1−b2
(Bp(r, s)Bp(r, 1)′ +Bp(r, 1)Bp(r, s)

′) ds+Bp(r, 1)Bp(r, 1)′
}
drΛ′

= Λ
2

b1

∫ 1

0

Q̃p(r, r, b2)drΛ′.
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Note that
∫ 1

0
Q̃p(r, r, b2)dr is the first term in the limiting expression of Qbart

p (b1, b2) as re-

quired. The limits of the remaining terms in (7.6) are similar and are omitted.

Proof of Theorem 3: Given (3.3) and Theorems 1 and 2, it is easy to show that F and t

converge to functionals of Bp(r, s), Λ, J and R(θ0) using the continuous mapping theorem.

Straightforward extensions of arguments used by Kiefer and Vogelsang (2005) in the proof

of their Theorem 3 show that the limiting functionals can be rewritten in terms of Bq(r, s)

with Λ, J and R(θ0) cancelling from the representations.

Proof of Theorem 4: The first steps of the proof are to show that versions of Assumptions

3 and 4 hold for the i.i.d. “unconditional on locations” bootstrap. To establish a FCLT for

the bootstrap, recall that s∗∗l,m = s∗∗l,m(θ̂N) and E∗(s∗∗l,m(θ̂N)) = 0. Because of i.i.d. resampling,

the variance covariance matrix of s∗∗l,m(θ̂N) is

E∗[s∗∗l,m(θ̂N)s∗∗l,m(θ̂N)′] = (LM)−1
L∑
l=1

M∑
m=1

s∗∗l,m(θ̂N)s∗∗l,m(θ̂N)′ ≡ Γ̂∗0.

Define the matrix λ̂∗0 as the matrix square root of Γ̂∗0, i.e. Γ̂∗0 = λ̂∗0λ̂
∗′
0 . Then the random

field λ̂∗−1
0 s∗∗l,m(θ̂N) is stationary and mean zero with an identity variance covariance matrix

in which case λ̂∗−1
0 s∗∗l,m(θ̂N) satisfies a FCLT of the form

(LM)−1/2λ̂∗−1
0 s∗∗[rL],[sM ](θ̂N)⇒ Wp(r, s).

Note that Γ̂∗0 is the sample variance of s∗∗l,m(θ0). Given that θ̂N is assumed to be a consistent

estimator and given that FCLTs for random fields require stationarity of the underlying

random field, it follows that

Γ̂∗0 = λ̂∗0λ̂
∗′
0

p−→ λ0λ
′
0 = Γ0
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where Γ0 is the variance matrix of s∗l,m(θ0). Therefore we have

(7.7) (LM)−1/2s∗∗[rL],[sM ](θ̂N) = λ̂∗0(LM)−1/2λ̂∗−1
0 s∗∗[rL],[sM ](θ̂N)⇒ Λ∗Wp(r, s)

where Λ∗ = λ0. Now consider

1

LM

[rL]∑
l=1

[sM ]∑
m=1

∂s∗∗l,m(θ
∗
)

∂θ′

where θ
∗

is between θ̂∗ and θ̂N in the vector sense. Because of i.i.d. resampling it follows

that

E∗

[
∂s∗∗l,m(θ

∗
)

∂θ′

]
=

1

LM

L∑
l=1

M∑
m=1

∂s∗l,m(θ
∗
)

∂θ′
= Ĵθ∗

p−→ J

where the converge follows from Assumption 4 and the assumption θ̂∗ − θ̂N
p−→ 0. Some

algebra gives

(7.8)
1

LM

[rL]∑
l=1

[sM ]∑
m=1

∂s∗∗l,m(θ
∗
)

∂θ′
= Ĵθ∗

1

LM

[rL]∑
l=1

[sM ]∑
m=1

Ĵ−1

θ
∗
∂s∗∗l,m(θ

∗
)

∂θ′
p−→ J rsIp = rsJ .

Note that the converge follows because

E∗

[
Ĵ−1

θ
∗
∂s∗∗l,m(θ

∗
)

∂θ′

]
= Ip

which in turn gives

1

LM

[rL]∑
l=1

[sM ]∑
m=1

Ĵ−1

θ
∗
∂s∗∗l,m(θ

∗
)

∂θ′
p−→ rsIp.

Using similar arguments it follows that

(7.9)
1

LM

[rL]∑
l=1

[sM ]∑
m=1

∂s∗∗l,m(θ̂∗)

∂θ′
p−→ rsJ .

The next steps in the proof are to establish the limits of
√
LM

(
θ̂∗ − θ̂N

)
and (LM)−1/2s∗∗[rL],[sM ](θ̂∗).

Recall that θ̂N is the population value of θ in the bootstrap world. Using the assumption
45



that θ̂∗− θ̂N
p−→ 0, we can use the mean-value theorem to expand s∗∗l,m(θ̂∗) around θ̂N giving

(7.10) s∗∗l,m(θ̂∗) = s∗∗l,m(θ̂N) +
∂s∗∗l,m(θ

∗
)

∂θ′

(
θ̂∗ − θ̂N

)
,

where θ
∗

is between θ̂∗ and θ̂N in the vector sense. Summing over l and m gives

0 =
L∑
l=1

M∑
m=1

s∗∗l,m(θ̂N) +
L∑
l=1

M∑
m=1

∂s∗∗l,m(θ
∗
)

∂θ′

(
θ̂∗ − θ̂N

)
,

where the left hand side follows from the first order conditions for θ̂∗. After the usual algebraic

manipulations and scaling it follows that

(7.11)

√
LM

(
θ̂∗ − θ̂N

)
= −

[
1

LM

L∑
l=1

M∑
m=1

∂s∗∗l,m(θ
∗
)

∂θ′

]−1

(LM)−1/2s∗∗L,M(θ̂N)⇒ −J −1Λ∗Wp(1, 1).

using (7.7) and (7.8). Double partial summing (7.10) and scaling by (LM)−1/2) gives

(LM)−1/2)

[rL]∑
l=1

[sM ]∑
m=1

s∗∗l,m(θ̂∗) = (LM)−1/2)

[rL]∑
l=1

[sM ]∑
m=1

s∗∗l,m(θ̂N) +
1

LM

[rL]∑
l=1

[sM ]∑
m=1

∂s∗∗l,m(θ
∗
)

∂θ′

√
LM

(
θ̂∗ − θ̂N

)
⇒ Λ∗Wp(r, s)− rsJJ −1Λ∗Wp(1, 1) ≡ Λ∗Bp(r, s),

where the convergence follows from (7.7), (7.8) and (7.11). The remainder of the proof

follows closely the proofs of Lemma 1 and Theorems 1-3 and details are omitted. Note

that we do not require Λ∗ = Λ because Λ∗ cancels from the asymptotic distribution of the

bootstrap statistic in the same way that Λ cancels from the asymptotic distribution of the

actual statistic. This is the sense in which we do not require the bootstrap to capture the

dependence in the data.
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Gonçalves, S., and T. J. Vogelsang (2006): “Block Bootstrap HAC Robust Tests: The Sophistication
of the Naive Bootstrap,” Working Paper, Department of Economics, Michigan State University.
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Gaussian(8) N(0 1) 0 085 0 122 0 122 0 093 0 092 0 092

Table 1.  Simulation Results from Cross-Sectional Design

Full Lattice Sparse Lattice

Ref. Dist. γ = 0 γ = .3 γ = .6 γ = 0 γ = .3 γ = .6

IID N(0,1) 0.051 0.381 0.490 0.056 0.053 0.395

Heteroskdasticity N(0,1) 0.052 0.385 0.497 0.055 0.050 0.403

Bartlett(2) N(0,1) 0.056 0.218 0.302 0.054 0.053 0.250

Bartlett(2) Fixed-b 0.023 0.156 0.232 0.030 0.026 0.181

Gaussian(2) N(0,1) 0.058 0.182 0.253 0.055 0.053 0.212

Gaussian(2) Fixed-b 0.023 0.121 0.171 0.030 0.026 0.142

Bartlett(4) N(0,1) 0.060 0.140 0.169 0.064 0.056 0.133

Bartlett(4) Fixed-b 0.024 0.085 0.112 0.032 0.025 0.086

Gaussian(4) N(0,1) 0.063 0.107 0.139 0.067 0.063 0.103

Gaussian(4) Fixed-b 0.022 0.064 0.081 0.029 0.025 0.062

Bartlett(8) N(0,1) 0.072 0.133 0.137 0.079 0.075 0.110

Bartlett(8) Fixed-b 0.023 0.067 0.073 0.028 0.029 0.051

Gaussian(8) N(0 1), 0 085. 0 122. 0 122. 0 093. 0 092. 0 092.

Gaussian(8) Fixed-b 0.020 0.045 0.050 0.030 0.031 0.037

Bartlett(16) N(0,1) 0.121 0.164 0.173 0.127 0.126 0.121

Bartlett(16) Fixed-b 0.028 0.050 0.058 0.032 0.028 0.047

Gaussian(16) N(0,1) 0.169 0.195 0.192 0.181 0.173 0.123

Gaussian(16) Fixed-b 0.027 0.039 0.040 0.035 0.033 0.036

Note:  This table reports rejection rates for 5% level tests from a Monte Carlo simulation experiment with data generated on a 
two-dimensional lattice.  All results are based on 1000 simulation replications.  Row labels indicate which covariance matrix 
estimator and smoothing parameter are used.  IID and Heteroskedasticity use conventional OLS standard errors and 
heteroskedasticity robust standard errors respectively.  Rows labeled Bartlett(h) use HAC estimators with a Bartlett kernel and 
smoothing parameter equal to h, and rows labeled Gaussian(h) use HAC estimators with a Gaussian kernel and smoothing 
parameter equal to h.  In all cases we use product kernels and equal bandwidths in both coordinate directions.  Column 2 
indicates from which reference distribution critical values were obtained with "Fixed-b" indicating that the approximations 
developed in this paper were used.  All Fixed-b critical values were obtained via the i.i.d. bootstrap with 200 bootstrap 
replications.  Columns labeled "Full Lattice" use all data points where data are generated on a regular 25 x 25 lattice.  
Columns labeled "Sparse Lattice" use 625 randomly sampled (without replacement) observations where data were generated 
on a regular 36 x 36 lattice.  All data were generated by a spatial moving average model as described in the text and γ 
provides a measure of the strength of the cross-sectional dependence.
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Gaussian(10 20 6) N(0 1) 0 140 0 156 0 222 0 176 0 175 0 224

Table 2.  Simulation Results from Panel Design

γ = .3 γ = .6

Ref. Dist. ρ = 0 ρ = .3 ρ = .6 ρ = 0 ρ = .3 ρ = .6

IID N(0,1) 0.184 0.218 0.330 0.299 0.313 0.407

Heteroskdasticity N(0,1) 0.189 0.217 0.335 0.294 0.300 0.400

Bartlett(10,20,∞) N(0,1) 0.195 0.189 0.209 0.251 0.224 0.243

Bartlett(10,20,∞) Fixed b 0.061 0.062 0.064 0.096 0.089 0.088

Gaussian(10,20,∞) N(0,1) 0.213 0.203 0.217 0.255 0.235 0.242

Gaussian(10,20,∞) Fixed b 0.052 0.050 0.049 0.076 0.068 0.071

Bartlett(20,40,∞) N(0,1) 0.279 0.278 0.300 0.330 0.319 0.315

Bartlett(20,40,∞) Fixed b 0.054 0.059 0.058 0.087 0.077 0.076

Gaussian(20,40,∞) N(0,1) 0.332 0.351 0.356 0.377 0.381 0.367

Gaussian(20,40,∞) Fixed b 0.029 0.043 0.043 0.058 0.049 0.053

Bartlett(10,20,6) N(0,1) 0.136 0.156 0.226 0.186 0.177 0.238

Bartlett(10,20,6) Fixed b 0.061 0.075 0.111 0.089 0.084 0.141

Gaussian(10 20 6), , N(0 1), 0 140. 0 156. 0 222. 0 176. 0 175. 0 224.

Gaussian(10,20,6) Fixed b 0.054 0.062 0.088 0.064 0.072 0.104

Cluster by State N(0,1) 0.211 0.214 0.224 0.320 0.308 0.291

Cluster by State Fixed b 0.126 0.109 0.137 0.227 0.190 0.194

Cluster by Time N(0,1) 0.085 0.120 0.238 0.111 0.105 0.220

Cluster by Time Fixed b 0.025 0.042 0.097 0.037 0.030 0.093

Note:  This table reports rejection rates for 5% level tests from a Monte Carlo simulation experiment with data generated as a 
state level panel.  All results are based on 1000 simulation replications.  Row labels indicate which covariance matrix 
estimator and smoothing parameters are used.  IID and Heteroskedasticity use conventional OLS standard errors and 
heteroskedasticity robust standard errors respectively.  Rows labeled Bartlett(h lat,hlong,htime) use HAC estimators with a 
Bartlett kernel and smoothing parameters equal to hlat in the latitude direction, hlong in the longitude dimension, and htime in the 
time dimension; and rows labeled Gaussian(hlat,hlong,htime) are defined similarly but use a Gaussian kernel.  Column 2 indicates 
from which reference distribution critical values were obtained with "Fixed-b" indicating that the approximations developed in 
this paper were used.  All Fixed-b critical values were obtained via the i.i.d. bootstrap with 200 bootstrap replications.  ρ and γ 
respectively correspond to the strength of intertemporal and cross-sectional correlation and are defined in the text.  All data 
were generated using locations as given by the 48 contiguous United States plus Washington D.C. with the spatial model 
described in the text, and the number of time periods in the panel is 13.
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Table 3.  Estimated Standard Errors and Confidence Intervals                                    
from Temporary Help Services Example

HAC

Cluster by State
hlat = 10, hlong = 20,       

htime = ∞
hlat = 20, hlong = 40,       

htime = ∞

Estimated s.e. 0.059 0.068 0.062

95% CI - Usual (0.025,0.255) (0.007,0.273) (0.018,0.261)

95% CI - Fixed-b (0.022,0.258) (-0.091,0.371) (-0.201,0.480)

Note:  This table reports estimated standard errors and 95% confidence intervals for the effect of the unjust dismissal doctrine 
on the natural log of temporary help services employment.  The coefficient estimate is 0.140.  We report standard errors 
estimated using a clustering estimator where we cluster by state and two other spatial HAC estimators where values of 
smoothing parameters are given as column labels.  In forming the 95% confidence intervals, we report both the interval 
obtained using the usual asymptotic normal approximation (95% CI - Usual).  For the row labeled "95% CI - Fixed-b", we use 
the asymptotic approximation developed in this paper for the two HAC estimators and obtain critical values through the 
bootstrap procedure.  For the clustered covariance estimator, we report results using critical values from a t-distribution with 
47 degrees of freedom as suggested in Hansen (2007) in the "95% CI - Fixed b" column.  
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