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ABSTRACT. In the first part of the paper, we consider estimation and inference on policy relevant
treatment effects, such as local average and quantile treatment effects, in a data-rich environment
where there may be many more control variables available than there are observations. In addition
to many control variables, the setting is expressly designed to handle endogenous receipt of treat-
ment, heterogeneous treatment effects, and possibly function-valued outcomes. To make informative
inference possible, we assume that some reduced form predictive relationships are approximately
sparse. That is, we require that the relationship between the control variables and the outcome,
treatment status, and instrument status can be captured up to a small approximation error by a
small number of the control variables whose identities are unknown to the researcher. This condi-
tion permits estimation and inference for a wide variety of treatment parameters to proceed after
data-driven selection of control variables. We provide conditions under which post-selection infer-
ence is uniformly valid across a wide-range of models and show that a key condition underlying
the uniform validity of post-selection inference allowing for imperfect model selection is the use of
orthogonal moment conditions. We illustrate the use of the proposed methods with an application
to estimating the effect of 401(k) participation on accumulated assets.

In the second part of the paper, we present a generalization of the treatment effect framework
to a much richer setting, where possibly a continuum of target parameters is of interest and Lasso-
type or Post-Lasso type methods are used to estimate a continuum of high-dimensional nuisance
functions. This framework encompasses a wide variety of classical and modern moment-condition
problems in econometrics. We establish a functional central limit theorem for the continuum of
target parameters that holds uniformly in a wide range of data generating processes (dgp’s), i.e.
over P € P where P include dgp’s where perfect model selection is theoretically impossible. Here
again the use of orthogonal moment conditions is the key to achieving uniform validity. We also
establish a functional central limit theorem for the multiplier bootstrap that resamples first-order
approximations to the proposed estimators that holds uniformly over P € P. We propose a notion
of the functional delta method that allows us to derive approximate distributions for smooth func-
tionals of a continuum of target parameters that hold uniformly over P € P and to establish the
validity of the multiplier bootstrap for approximating these distributions uniformly over P € P.
Finally, we establish rate and consistency results for continua of Lasso or Post-Lasso type estimators
for continua of (nuisance) regression functions and provide practical, theoretically justified choices
for the penalty parameters used in these methods. Each of these results is new and could be of

independent interest outside of the present framework.
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1. INTRODUCTION

The goal of many empirical analyses in economics is to understand the causal effect of a treatment
such as participation in a government program on economic outcomes. Such analyses are often
complicated by the fact that few economic treatments or government policies are randomly assigned.
The lack of true random assignment has led to the adoption of a variety of quasi-experimental
approaches to estimating treatment effects that are based on observational data. Such approaches
include instrumental variable (IV) methods in cases where treatment is not randomly assigned
but there is some other external variable, such as eligibility for receipt of a government program or
service, that is either randomly assigned or the researcher is willing to take as exogenous conditional
on the right set of control variables or simply controls. Another common approach is to assume
that the treatment variable itself may be taken as exogenous after conditioning on the right set
of controls which leads to regression or matching based methods, among others, for estimating

treatment effects[]

A practical problem empirical researchers face when trying to estimate treatment effects is de-
ciding what conditioning variables to include. When the treatment variable or instrument is not
randomly assigned, a researcher must choose what needs to be conditioned on to make the ar-
gument that the instrument or treatment is exogenous plausible. Typically, economic intuition
will suggest a set of variables that might be important to control for but will not identify exactly
which variables are important or the functional form with which variables should enter the model.
While less crucial to identifying treatment effects, the problem of selecting controls also arises in
situations where the key treatment or instrumental variables are randomly assigned. In these cases,
a researcher interested in obtaining precisely estimated policy effects will also typically consider
including additional controls to help absorb residual variation. As in the case where including
controls is motivated by a desire to make identification of the treatment effect more plausible, one
rarely knows exactly which variables will be most useful for accounting for residual variation. In
either case, the lack of clear guidance about what variables to use presents the problem of select-
ing controls from a potentially large set including raw variables available in the data as well as

interactions and other transformations of these variables.

In this paper, we consider estimation of the effect of an endogenous binary treatment, D, on
an outcome, Y, in the presence of a binary instrumental variable, Z, in settings with very many
potential controls, f(X), including raw variables, X, and transformations of these variables such
as powers, b-splines, or interactions. We allow for fully heterogeneous treatment effects and thus
focus on estimation of causal quantities that are appropriate in heterogeneous effects settings such
as the local average treatment effect (LATE) or the local quantile treatment effect (LQTE). We

focus our discussion on the endogenous case where identification is obtained through the use of

!There is a large literature about estimation of treatment effects. See, for example, the textbook treatments
in Angrist and Pischke (2008) or Wooldridge (2010) and the references therein for discussion from an economic

perspective.
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an instrumental variable, but all results carry through to the exogenous case where the treatment
is taken as exogenous after conditioning on sufficient controls by simply replacing the instrument

with the treatment variable in the estimation and inference methods and in the formal results.

The methodology for estimating policy-relevant effects we consider allows for cases where the
number of potential controls, p := dim f(X), is much larger than the sample size, n. Of course,
informative inference about causal parameters cannot proceed allowing for p > n without further
restrictions. We impose sufficient structure through the assumption that reduced form relationships
such as the conditional expectations Ep[D|X], Ep[Z|X], and Ep[Y|X] are approximately sparse.
Intuitively, approximate sparsity imposes that these reduced form relationships can be represented
up to a small approximation error as a linear combination, possibly inside of a known link function
such as the logistic function, of a number s < n of the variables in f(X) whose identities are a
priori unknown to the researcher. This assumption allows us to use methods for estimating models
in high-dimensional sparse settings that are known to have good prediction properties to estimate
the fundamental reduced form relationships. We may then use these estimated reduced form
quantities as inputs to estimating the causal parameters of interest. Approaching the problem of
estimating treatment effects within this framework allows us to accommodate the realistic scenario
in which a researcher is unsure about exactly which confounding variables or transformations of

these confounds are important and so must search among a broad set of controls.

Valid inference following model selection is non-trivial. Direct application of usual inference
procedures following model selection does not provide valid inference about causal parameters even
in low-dimensional settings, such as when there is only a single control, unless one assumes sufficient
structure on the model that perfect model selection is possible. Such structure can be restrictive
and seems unlikely to be satisfied in many economic applications. For example, a typical condition
that allows perfect model selection in a linear model is to assume that all but a small number of
coefficients are exactly zero and that the non-zero coefficients are all large enough that they can
be distinguished them from zero with probability very near one in finite samples. Such a condition
rules out the possibility that there may be some variables which have moderate, but non-zero,
partial effects. Ignoring such variables may result in non-ignorable omitted variables bias that
has a substantive impact on estimation and inference regarding individual model parameters; for
further discussion, see Leeb and Potscher (2008a; 2008b); Potscher (2009); Belloni, Chernozhukov,
and Hansen (2013); and Belloni, Chernozhukov, and Hansen (2014).

A main contribution of this paper is providing inferential procedures for key parameters used
in program evaluation that are theoretically valid within approximately sparse models allowing for
imperfect model selection. Our procedures build upon Belloni, Chernozhukov, and Hansen (2010)
and Belloni, Chen, Chernozhukov, and Hansen (2012), which demonstrate that valid inference about
low-dimensional structural parameters can proceed following model selection, allowing for model
selection mistakes, under two key conditions. First, estimation should be based upon “orthogonal”

moment conditions that are first-order insensitive to changes in the values of nuisance parameters.
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Specifically, if the target parameter value «q is identified via the moment condition
Ep?[)(VV, Oé(),ho) = 0, (1.1)

where hg is a function-valued nuisance parameter estimated via a post-model-selection or regu-
larization method, one needs to use a moment function, 1, such that the moment condition is
orthogonal with respect to perturbations of h around hg. More formally, the moment conditions

should satisfy
8h[EP1/](W7 «, h)]hZho = 07 (12)

where 0j, is a functional derivative operator with respect to h restricted to directions of possible
deviations of estimators of hg from hg. Second, one needs to ensure that the estimation error of

the estimator of the nuisance parameter are “moderately” small despite the high-dimensionality.

The orthogonality condition embodied in has a long history in statistics and econometrics.
For example, this type of orthogonality was used by Neyman (1979) in low-dimensional settings
to deal with crudely estimated parametric nuisance parameters. See also Newey (1990), Andrews
(1994b), Newey (1994), Robins and Rotnitzky (1995), and Linton (1996) for applications to semi
parametric problems. To the best of our knowledge, Belloni, Chernozhukov, and Hansen (2010) and
Belloni, Chen, Chernozhukov, and Hansen (2012) were the first to use orthogonality in the p >
n setting. They applied it to a linear instrumental variables model with many instruments, where
the nuisance function hg is the optimal instrument estimated by Lasso or Post-Lasso methods and ag
is the coeflicient of the endogenous regressor. Using estimators based upon moment conditions with
the orthogonality ensures that crude estimation of hg via post-selection or other regularization
methods has an asymptotically negligible effect on the estimation of g, resulting in a regular,
root-n consistent estimator of ag. Belloni, Chernozhukov, and Hansen (2014) also exploited this
approach in the p > n setting to develop a double-selection method that yields valid inference
on the parameters of the linear part of a partially linear model and on average treatment effects
when the treatment is binary and ezogenous conditional on controls; see also Farrell (2013) who
extended this method to estimation of average treatment effects when the treatment is multivalued

and exogenous conditional on controls, using group penalization for selection.

In the general endogenous treatment effects setting we consider in this paper, moment conditions
satisfying can be found as efficient influence functions for certain reduced form parameters
as in Hahn (1998). We illustrate how these efficient influence functions coupled with methods de-
veloped for forecasting in high-dimensional approximately sparse models can be used to estimate
and obtain valid inferential statements about a variety of structural/treatment effects. We formally
demonstrate the uniform validity of the resulting inference within a broad class of approximately
sparse models including models where perfect model selection is theoretically impossible. An im-
portant feature of our main theoretical results is that they cover the use of variable selection for
functional response data using £1-penalized methods. Functional response data arises, for example,

when one is interested in the LQTE at not just a single quantile but over a range of quantile indices
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or when one is interested in how 1(Y < u) relates to the treatment over a range of threshold values
u. Considering such functional response data allows us to provide a unified inference procedure for
interesting quantities such as the distributional effects of the treatment as well as simpler objects
such as the LQTE at a single quantile or the LATE.

A second main contribution of this paper is providing a general set of results for estimation
and inference on a continuum of target parameters based upon preliminary use of Lasso- and Post-
Lasso-type methods for estimation of a continuum of high-dimensional nuisance functions. We apply
these results to the analysis of LQTE and other treatment effects obtained from function-valued
outcomes, but the framework and results apply far more generally. They cover a wide variety of
classic and modern moment-condition problems allowing for both smooth and non-smooth moment
functions. For example, the results could be used in the context of structural quantile analysis as
in the nonseparable endogenous model of Chernozhukov and Hansen (2005). In our results, we first
establish a functional central limit theorem for the continuum of the target parameters and show
that it holds uniformly in a wide range of data-generating processes P with approximately sparse
continua of nuisance functions. Second, we establish a functional central limit theorem for the
multiplier boostrap that resamples the first order approximations to the standardized estimators
and demonstrate its uniform-in-P validity. These uniformity results complement those given in
Romano and Shaikh (2012) for the empirical bootstrap. Third, we establish a functional delta
method for smooth functionals of the continuum of target parameters and a functional delta method
for the multiplier bootstrap of these smooth functionals both of which hold uniformly in P using
an appropriately strengthened notion of Hadamard differentiability. All of these results are new

and are of independent interest outside of the application in this paperﬂ

We illustrate the use of our methods by estimating the effect of 401(k) participation on measures
of accumulated assets as in Chernozhukov and Hansen (2004)E| Similar to Chernozhukov and
Hansen (2004), we provide estimates of LATE and LQTE over a range of quantiles. We differ
from this previous work by using the high-dimensional methods developed in this paper to allow
ourselves to consider a broader set of controls than have previously been considered. We find
that 401(k) participation has a moderate impact on accumulated financial assets at low quantiles
while appearing to have a much larger impact at high quantiles. Interpreting the quantile index as

“preference for savings” as in Chernozhukov and Hansen (2004), this pattern suggests that 401(k)

2These results build upon the work of Belloni and Chernozhukov (2011) who provided rates of convergence for
variable selection when one is interested in estimating the quantile regression process with exogenous variables. More
generally, this theoretical work complements and extends the rapidly growing set of results for ¢;-penalized estimation
methods; see, for example, Frank and Friedman (1993); Tibshirani (1996); Fan and Li (2001); Zou (2006); Candeés and
Tao (2007); van de Geer (2008); Huang, Horowitz, and Ma (2008); Bickel, Ritov, and Tsybakov (2009); Meinshausen
and Yu (2009); Bach (2010); Huang, Horowitz, and Wei (2010); Belloni and Chernozhukov (2011); Kato (2011);
Belloni, Chen, Chernozhukov, and Hansen (2012); Belloni and Chernozhukov (2013); Belloni, Chernozhukov, and
Kato (2013); Belloni, Chernozhukov, and Wei (2013); and the references therein.

3See also Poterba, Venti, and Wise (1994; 1995; 1996; 2001); Benjamin (2003); and Abadie (2003) among others.
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participation has little causal impact on the accumulated financial assets of those with low desire
to save but a much larger impact on those with stronger preferences for saving. It is interesting
that these results are similar to those in Chernozhukov and Hansen (2004) despite allowing for a

much richer set of controls.

We organize the rest of the paper as follows. Section [2] introduces the structural parameters
for policy evaluation, relates these parameters to reduced form functions, and gives conditions un-
der which the structural parameters have causal interpretation. Section [3| describes a three step
procedure to estimate and make inference on the structural parameters and functionals of these
parameters, and Section [4] provides asymptotic theory. Section [5] generalizes the setting and results
to moment-conditions problems with a continuum of structural parameters and a continuum of
reduced form functions. Section [6] derives general asymptotic theory for the lasso and post-lasso es-
timators for functional response data used in the estimation of the reduced form functions. Section
[7] presents the empirical application. We gather the notation, the proofs of all the results and ad-
ditional technical results in Appendices [AHG] A supplementary appendix provides implementation

details for the empirical application and a Monte Carlo simulation.

2. THE SETTING AND THE TARGET PARAMETERS

2.1. Observables and Reduced Form Parameters. The observed random variables consist of
((Yu)ueu, X, Z, D). The outcome variable of interest Y,, is indexed by u € U. We give examples of
the index u below. The variable D € D = {0, 1} is a binary indicator of the receipt of a treatment
or participation in a program. It will be typically treated as endogenous; that is, we will typically
view the treatment as assigned non-randomly with respect to the outcome. The instrumental
variable Z € Z = {0, 1} is a binary indicator, such as an offer of participation, that is assumed to
be randomly assigned conditional on the observable covariates X with support X. For example,
in the empirical application we argue that 401(k) eligibility can be considered exogenous only
after conditioning on income and other individual characteristics. The notions of exogeneity and
endogeneity we employ are standard, but we state them in Section for clarity and completeness.
We also restate standard conditions that are sufficient for a causal interpretation of our target

parameters.

The indexing of the outcome Y, by wu is useful to analyze functional data. For example, Y,
could represent an outcome falling short of a threshold, namely Y, = 1(Y < u), in the context of
distributional analysis; Y,, could be a height indexed by age u in growth charts analysis; or Y, could
be a health outcome indexed by a dosage u in dosage response studies. Our framework is tailored
for such functional response data. The special case with no index is included by simply considering

U to be a singleton set.

We make use of two key types of reduced form parameters for estimating the structural param-

eters of interest — (local) treatment effects and related quantities. These reduced form parameters



are defined as
ay(z) == Eplgv(z,X)] and ~y := Ep[V], (2.1)

where z = 0 or z = 1 are the fixed values of Z E| The function gy maps ZX, the support of the
vector (Z, X), to the real line R and is defined as

gv(z,2) = Ep[V|Z =2, X = z|. (2.2)

We use V' to denote a target variable whose identity may change depending on the context such as
V =14(D)Y, or V.= 14(D), where 14(D) := 1(D = d) is the indicator function.

All the structural parameters we consider are smooth functionals of these reduced-form parame-
ters. In our approach to estimating treatment effects, we estimate the key reduced form parameter
ay(z) using modern methods to deal with high-dimensional data coupled with using orthogonal
estimating equations. The orthogonality property is crucial for dealing with the “non-regular”
nature of penalized and post-selection estimators which do not admit linearizations except under
very restrictive conditions. The use of regularization by model selection or penalization is in turn

motivated by the desire to accommodate high-dimensional data.

2.2. Target Structural Parameters — Local Treatment Effects. The reduced form parame-
ters defined in (2.1)) are key because the structural parameters of interest are functionals of these

elementary objects. The local average structural function (LASF) defined as

a1,(pyy, (1) — a1,(pyy, (0)

Oy (d) =
v (d) a1,p)(1) — a1,p)(0)

, de{0,1} (2.3)

underlies the formation of many commonly used treatment effects. The LASF identifies the average
outcome for the group of compliers, individuals whose treatment status may be influenced by
variation in the instrument, in the treated and non-treated states under standard assumptions; see,
e.g. Abadie (2002; 2003). The local average treatment effect (LATE) of Imbens and Angrist (1994)
corresponds to the difference of the two values of the LASF:

By, (1) — Oy, (0). (2.4)

The term local designates that this parameter does not measure the effect on the entire population

but on the subpopulation of compliers.

When there is no endogeneity, formally when D = Z, the LASF and LATE become the average
structural function (ASF) and average treatment effect (ATE) on the entire population. Thus, our

results cover this situation as a special case where the ASF and ATE simplify to

4The expectation that defines ay (z) is well-defined under the support condition 0 < Pp(Z =1 | X) < 1 a.s. We
impose this condition in Assumption and Assumption
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We also note that the impact of the instrument Z itself may be of interest since Z often encodes
an offer of participation in a program. In this case, the parameters of interest are again simply the
reduced form parameters

ay,(2), ay,(1) — ay,(0).

Thus, the LASF and LATE are primary targets of interest in this paper, and the ASF and ATE

are subsumed as special cases.

2.2.1. Local Distribution and Quantile Treatment Effects. Setting Y, = Y in (2.3)) and (2.4]) provides
the conventional LASF and LATE. An important generalization arises by letting Y, = 1(Y < u)
be the indicator of the outcome of interest falling below a threshold « € R. In this case, the family

of effects
(0, (1) — 0y, (0))uer, (2.6)

describe the local distribution treatment effects (LDTE). Similarly, we can look at the quantile

left-inverse transform of the curve u — 6y, (d),
0y (7,d) := inf{u € R: by, (d) > 7}, (2.7)
and examine the family of local quantile treatment effects (LQTE):

(63 (1) = 05 (7,0))7e(0,1)- (2.8)

2.3. Target Structural Parameters — Local Treatment Effects on the Treated. In addition
to the local treatment effects given in Section 2.2, we may be interested in local treatment effects
on the treated. The key object in defining these effects is the local average structural function on
the treated (LASF-T) which is defined by its two values:

_ MDY — Q14(D)Y, (0)
Y14(D) — @¥14(D)(0)

Iy, (d) . de {01} (2.9)

The LASF-T identifies the average outcome for the group of treated compliers in the treated and
non-treated states under assumptions stated below. The local average treatment effect on the
treated (LATE-T) introduced in Hong and Nekipelov (2010) is the difference of two values of the
LASF-T:

Jy, (1) — vy, (0). (2.10)

The LATE-T may be of interest because it measures the average treatment effect for treated compli-
ers, namely the subgroup of compliers that actually receive the treatment. The distinction between
LATE-T and LATE can be relevant; for example, in our empirical application the estimated LATE-
T and LATE are substantially different.

When the treatment is assigned randomly given controls so we can take D = Z, the LASF-T and

LATE-T become the average structural function on the treated (ASF-T) and average treatment



effect on the treated (ATE-T). In this special case, the ASF-T and ATE-T simplify to

_ Loy By, (0) = Y1o(D)Y, — @, (0)

Dy (1
() Y1,(D) Y10(D) — 1

and we can use our results to provide estimation and inference methods for these quantities.

2.3.1. Local Distribution and Quantile Treatment Effects on the Treated. Local distribution treat-
ment effects on the treated (LDTE-T) and local quantile treatment effects on the treated (LQTE-T)
can also be defined. As in Section 2.2.1, we let Y,, = 1(Y < u) be the indicator of the outcome of

interest falling below a threshold u. The family of treatment effects

(W, (1) = Vv, (0))uer (2.12)

then describes the LDTE-T. We can also use the quantile left-inverse transform of the curve u +—
Yy, (d), namely 95 (7,d) := inf{u € R : ¥y, (d) > 7}, and define LQTE-T:

9y (1, 1) =95 (7,0))re(0,1)- (2.13)

Under conditional exogeneity LQTE and LQTE-T reduce to the quantile treatment effects (QTE)
and quantile treatment effects on the treated (QTE-T) (Koenker, 2005, Chap. 2).

2.4. Causal Interpretations for Structural Parameters. The quantities discussed in Sections
and are well-defined and have causal interpretation under standard conditions. We briefly
recall these conditions, using the potential outcomes notation. Let Y,,; and Y, denote the potential
outcomes under the treatment states 1 and 0. These outcomes are not observed jointly, and we
instead observe Y,, = DY,1 + (1 — D)Y,0, where D € D = {0,1} is the random variable indicating
program participation or treatment state. Under exogeneity, D is assigned independently of the
potential outcomes conditional on covariates X, i.e. (Yu1,Yu0) L D | X a.s., where 1L denotes

statistical independence.

Exogeneity fails when D depends on the potential outcomes. For example, people may drop out
of a program if they think the program will not benefit them. In this case, instrumental variables
are useful in creating quasi-experimental fluctuations in D that may identify useful effects. Let
Z be a binary instrument, such as an offer of participation, that generates potential participation
decisions D; and Dy under the instrument states 1 and 0, respectively. As with the potential
outcomes, the potential participation decisions under both instrument states are not observed
jointly. The realized participation decision is then given by D = Z Dy + (1 — Z)Dy. We assume that
Z is assigned randomly with respect to potential outcomes and participation decisions conditional
on X, ie., (Yy,Yu1,Do,D1) 1L Z | X aus.

There are many causal quantities of interest for program evaluation. Chief among these are
various structural averages: d — Ep[Y,4], the causal ASF; d — Ep[Yyq | D = 1], the causal ASF-T;
d— Ep[Yyuq | D1 > Dy, the causal LASF; and d — Ep[Yyuq | D1 > Dy, D = 1], the causal LASF-T;
as well as effects derived from them such as Ep[Y,; — Y], the causal ATE; Ep[Y,1 — Yy | D = 1],
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the causal ATE-T; Ep[Yy1 — Yo | D1 > Dy, the causal LATE; and Ep[Y,1 — Yo | D1 > Do, D = 1],
the causal LATE-T. These causal quantities are the same as the structural parameters defined in

Sections 2.2-2.3 under the following well-known sufficient condition.

Assumption 2.1 (Assumptions for Causal/Structural Interpretability). The following conditions
hold P-almost surely: (Ezogeneity) ((Yui, Yuo)ueu, D1, Do) 1L Z | X; (First Stage) Ep[D; | X] #
Ep[Do | X]; (Non-Degeneracy) Pp(Z =1| X) € (0,1); (Monotonicity) Pp(D1 > Dy | X) = 1.

This condition due to Imbens and Angrist (1994) is much-used in the program evaluation liter-
ature. It has an equivalent formulation in terms of a simultaneous equation model with a binary
endogenous variable; see Vytlacil (2002) and Heckman and Vytlacil (1999). For a thorough discus-
sion of this assumption, we refer to Imbens and Angrist (1994). Using this assumption, we present
an identification lemma which follows from results of Abadie (2003) and Hong and Nekipelov (2010)
that both in turn build upon Imbens and Angrist (1994). The lemma shows that the parameters
Oy, and vy, defined earlier have a causal interpretation under Assumption Therefore, our

referring to them as structural/causal is justified under this condition.

Lemma 2.1 (Identification of Causal Effects ). Under Assumption for each d € D,
Ep[Yud ’ Dy > D()] = eyu(d), Ep[Yud | Dy > Do,D = 1] = ﬂyu(d)
Furthermore, if D is exogenous, namely D = Z a.s., then

Ep[Yud | Dy > Do] = EP[YU ], Ep[Yud ’ Dy > Dy, D = 1] = Ep[Yud ‘ D = 1].

3. ESTIMATION OF REDUCED-FORM AND STRUCTURAL PARAMETERS IN A DATA-RICH
ENVIRONMENT

Recall that the key objects used to define the structural parameters in Section 2 are the expec-
tations

ay(z) = Eplgv(z, X)] and vy = Ep[V], (3.1)

where gy (z,X) = Ep[V|Z = 2z, X] and V denotes a variable whose identity will change with the

context. Specifically, we shall vary V over the set V,:
Vey, = {Vuj}?zl = {Yy,10(D)Yy,10(D),11(D)Yy, 11(D)}. (3.2)
It is clear that gy (z, X) will play an important role in estimating ay (z). A related function that

will also play an important role in forming a robust estimation strategy is the propensity score
my : ZX — R defined by

myz(z,x) :=Pp[Z = z|X = x]. (3.3)

We will denote other potential values for the functions gy and myz by the parameters g and m,
respectively. A first approach to estimating ay (z) is to try to recover gy and my directly using

high-dimensional modelling and estimation methods.
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As a second approach, we can further decompose gy as

1

gv(z,x) = Zev(d,z,x)l[)(d,z,x), (3.4)
d=0

where the regression functions ey and [p map the support of (D, Z, X), DZX, to the real line and
are defined by

ev(d,z,z) :==Ep[V|D =d,Z = 2,X = z] and (3.5)
Ip(d,z,x) :=Pp[D=d|Z =2,X =x]. (3.6)

We will denote other potential values for the functions ey and [p by the parameters e and [. In this
second approach, we can again use high-dimensional methods for modelling and estimating ey and
Ip, and we can then use the relation to estimate gy . Given the resulting estimate of gy and
an estimate of my obtained from using high-dimensional methods to model the propensity score,

we will then recover an estimate of ay (z).

This second approach may be seen as a “special” case of the first. However, this approach
could in fact be more principled. For example, if we use linear or generalized linear models to
approximate each of the elements ey, [p and myz, then the implied approximations can strictly
nest some coherent models such as the standard binary endogenous variable model with normal
disturbancesﬂ This strict nesting of coherent models is less easily guaranteed in the first approach
which directly approximates gy using linear or generalized linear forms. Indeed, the “natural”
functional form for gy is not of the linear or generalized linear form but rather is given by the affine
aggregation of cross-products shown in . While these potential differences exist, we expect to
see little quantitative difference between the estimates obtained via either approach if sufficiently
flexible functional forms are used. For example, we find little difference between the two approaches

in our empirical example.

In the rest of this section, we describe the estimation of the reduced-form and structural param-

eters. The estimation method consists of 3 steps:

(1) Estimation of the predictive relationships my and gy, or my, Ip and ey, using high-
dimensional nonparametric methods with model selection.

(2) Estimation of the reduced form parameters oy and 7y using orthogonal estimating equa-
tions to immunize the reduced form estimators to imperfect model selection in the first
step.

(3) Estimation of the structural parameters and effects via the plug-in rule.

3.1. First Step: Modeling and Estimating the Regression Functions gy, mz, Ip, and ey
in a Data-Rich Environment. In this section, we elaborate the two strategies to estimate gy

and myz.

S“Generalized linear” means “linear inside a known link function” in the context of the present paper.
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Strategy 1. We first discuss direct modelling and estimation of gy and mz, which corresponds
to the first strategy suggested in the previous subsection. Since these functions are unknown and

potentially complicated, we use a generalized linear combination of a large number of control terms

FX) = (f5(X)j=1, (3.7)

to approximate gy and my. Specifically, we use

gv(z, %) = Av[f(z,2) Bv] + rv(z, @), (3.8)
fzox) = ((1=2)f(x),2f(x)), Bv:= (Bv(0),Bv(1)), (3.9)

and

mz(1,x) =: Agz[f(x) Bz] +rz(x), mz(0,2)=1— Az[f(z)'Bz] —rz(x). (3.10)

In these equations, ry(z,x) and rz(z) are approximation errors, and the functions Ay (f(z,z) By )
and Az (f(z)'Bz) are generalized linear approximations to the target functions gy (z, x) and mz(1, x).
The functions Ay and Az are taken to be known link functions A. The most common exam-
ple is the linear link A(u) = w. When the response variable is binary, we may also use the
logistic link A(u) = Ao(u) = €“/(1 + €*) and its complement 1 — Ag(u) or the probit link
Alu) = ®(u) = (2m)~1/? I ¢*/2dz and its complement 1 — ®(u). For clarity, we use links
from the finite set £ = {Id, ®,1 — ®,Ag,1 — Ap} where Id is the identity (linear) link.

In order to allow for a flexible specification, the dictionary of controls, denoted by f(X), can be
“rich” in the sense that its dimension p = p,, may be large relative to the sample size. Specifically,

our results require that
logp = o(n'/?)

along with other technical conditions. High-dimensional regressors f(X) could arise for different
reasons. For instance, the list of available variables could be large, i.e. f(X) = X asin e.g. Koenker
(1988). It could also be that many technical controls are present; i.e. the list f(X) = (fj(X))le
could be composed of a large number of transformations of elementary variables X such as B-splines,
indicators, polynomials, and various interactions as, e.g., in Newey (1997), Tsybakov (2009), and
Wasserman (2006). The functions f forming the dictionary can depend on n, but we suppress this

dependence.

Having very many controls f(X) creates a challenge for estimation and inference. A useful
condition that makes it possible to perform constructive estimation and inference in such cases is
termed approximate sparsity or simply sparsity. Sparsity imposes that there exist approximations
of the form given in — that require only a small number of non-zero coefficients to render
the approximation errors small relative to estimation error. More formally, sparsity relies on two
conditions. First, there must exist Sy and Sz such that, for all V € V :={V, : u € U},

1Bvllo+[[Bzllo < s. (3.11)
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That is, there are at most s = s,, < n components of f(Z, X) and f(X) with nonzero coefficient
in the approximations to gy and myz. Second, the sparsity condition requires that the size of the
resulting approximation errors is small compared to the conjectured size of the estimation error;
namely, for all V € V,

{Ep[ri(Z, X)}? + {EprZ (X} < V/s/n. (3.12)

Note that the size of the approximating model s = s, can grow with n just as in standard series

estimation, subject to the rate condition
s*log?(p vV n)log®n/n — 0.

These conditions ensure that the functions gy and my are estimable at o(n~/4) rate and are used to
derive asymptotic normality results for the structural and reduced-form parameter estimators. They
could be relaxed through the use of sample splitting methods as in Belloni, Chen, Chernozhukov,
and Hansen (2012).

The high-dimensional-sparse-model framework outlined above extends the standard framework
in the program evaluation literature which assumes both that the identities of the relevant controls
are known and that the number of such controls s is small relative to the sample sizeﬁ Instead, we
assume that there are many, p, potential controls of which at most s controls suffice to achieve a
desirable approximation to the unknown functions gy and myz; and we allow the identity of these
controls to be unknown. Relying on this assumed sparsity, we use selection methods to choose

approximately the right set of controls.

Current estimation methods that exploit approximate sparsity employ different types of regu-
larization aimed at producing estimators that theoretically perform well in high-dimensional set-
tings while remaining computationally tractable. Many widely used methods are based on /¢1-
penalization. The Lasso method is one such commonly used approach that adds a penalty for the
weighted sum of the absolute values of the model parameters to the usual objective function of
an M-estimator. A related approach is the Post-Lasso method which performs re-estimation of
the model after selection of variables by Lasso. These methods are discussed at length in recent
papers and review articles; see, for example, Belloni, Chernozhukov, and Hansen (2013). Rather
than providing specifics of these methods here, we specify detailed implementation algorithms in a

supplementary appendix.

In the following, we outline the general features of the Lasso and Post-Lasso methods focusing
on estimation of g-. Given the data (Vj, Xi)?zl = (Vi, f(Z;, X;)), the Lasso estimator EV solves

. . . A~
Bvearg min (E.[M(Y,X'B)]+ 2T ), (3.13)
BeRM(X) n

6For example, one would use the first s basis terms and assume that s /n — 0 for some number C' whose value

depends on the context in a standard nonparametric approach using series.
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~

where ¥ = diag(/l\l, . dim( )?)) is a diagonal matrix of data-dependent penalty loadings, M (y,t) =
(y—1)?/2 in the case of linear regression, and M (y,t) = —{1(y = 1) log A(t)+1(y = 0) log(1—A(t))}
in the case of binary regression. In the binary case, the link function A could be logistic or
probit. The penalty level, A, and loadings, lAj, j=1, ...,dim()N( ), are selected to guarantee good
theoretical properties of the method. We provide theoretical choices and further detail regarding
the implementation in Section |§”Z| A key consideration in this paper is that the penalty level needs
to be set to account for the fact that we will be simultaneously estimating potentially a continuum

of Lasso regressions since our V' varies over the list V,, with u varying over the index set U.

The Post-Lasso method uses BV solely as a model selection device. Specifically, it makes use of

the labels of the regressors with non-zero estimated coefficients,

Iy = support(By ).

The Post-Lasso estimator is then a solution to

By €arg min (En[M(ff,f(’ﬂ)] B =0,j¢ fv). (3.14)
BeRm(X)

A main contribution of this paper is establishing that the estimator gy (Z, X) = A(f(Z, X)'By) of

the regression function gy(Z, X), where Sy = BV or By = By, achieve the near oracle rate of con-

vergence \/(slogp)/n and maintain desirable theoretic properties, while allowing for a continuum

of response variables.

Estimation of myz proceeds similarly. The Lasso estimator BZ and Post-Lasso estimator (y
are defined analogously to BV and By using the data (fﬁ-,f(i)?:l: (Z;, f(X;))_,. The estimator
myz(1,X) = Az(f(X)'Bz) of mz(X), with Bz = B\Z or B = Bz, also achieves the near oracle rate
of convergence \/(slogp)/n and has other good theoretic properties. The estimator of (0, X)

is then formed as 1 — mz(1, X).

Strategy 2. The second strategy we consider involves modeling and estimating m as above via
(3.10) while modeling gy through its disaggregation into the parts ey and Ip via (3.4). We model
and estimate each of the unknown parts of ey and Ip using the same approach as in Strategy 1E|

Specifically, we model the conditional expectation of V given D, Z, and X by

ev(d, z,z) =: Ty [f(d,z,2)'0y] + ov(d, z,z), (3.15)
fld,z,z) == (1 —d)f(z,2),df (z,2)"), (3.16)
Oy := (01 (0,0),01,(0,1),6y(1,0),0y(1,1)"). (3.17)

"We also provide a detailed description of the implementation we used in the empirical example in a supplementary
appendix.

8Upon conditioning on D = d some parts become known; e.g., e1, oy (d,z,z) =0ifd # d" and e1 ;(py(d',z,2) =1
ifd=d'.
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We model the conditional probability of D taking on 1 or 0, given Z and X by

Ip(1,2,2) = Tp[f(z,2)'0p] + op(z, ), (3.18)
Ip(0,2,2) =1 —-Tpl|f(2,2)0p] — op (2, 2), (3.19)
flz,2) = ((1=2)f(2), 2f(2)'), (3.20)
0p = (6p(0),6p(1))". (3:21)
Here oy (d, z,xz) and op(z,x) are approximation errors, and the functions 'y (f(d, z,x)'0y) and
I'p(f(z,2)'0p) are generalized linear approximations to the target functions ey (d, z, z) and Ip(1, z, z).

The functions I'yy and I'p are taken to be known link functions A € L.

As in the first strategy, we maintain approximate sparsity in the modeling framework. We assume
that there exist 8z, 6y and 6p such that, for all V € V,

16vllo + [10D]l0 + [1Bzlo < s (3.22)

That is, there are at most s = s,, < n components of 6y, 0p, and Sz with nonzero values in the
approximations to ey, [p and myz. The sparsity condition also requires the size of the approximation

errors to be small compared to the conjectured size of the estimation error: For all V' € V., we assume

{Ep[ot (D, Z, X)}'? + {Eplob (2, X))/ + {Ep[r3 (X)}? S Vs/n. (3.23)

Note that the size of the approximating model s = s, can grow with n just as in standard series

estimation as long as s2log?(p V n) log?(n)/n — 0.

We proceed with the estimation of eyy and I[p analogously to the approach outlined in Strategy
1. The Lasso estimator 5‘/ and Post-Lasso estimator év are defined analogously to BV and BV
using the data (Y;, Xi)y= (Vi, f(Ds, Zi, X; ))Z ; and the link function A = I'yy. The estimator
ev(D,Z,X) =Ty[f(D,Z,X)'0y], with 0y = 0V or @y = By, has near oracle rate of convergence,
\/W and other desirable properties The Lasso estimator 6 and Post-Lasso estimators
fp are also defined analogously to By and By using the data (Yi, X7, = (D, f(Zi, Xi))P_, and
the link function A = T'p. Again, the estimator Ip(Z, X) = T'p[f(Z, X)'0p)] of Ip(Z,X), where
Op = HD or Op = 6p, has good theoretical properties including the near oracle rate of convergence,
\/W. The resulting estimator for gy is then

1

Z (d, z,2)lp(d, z, z). (3.24)
d=0

3.2. Second Step: Robust Estimation of the Reduced-Form Parameters ay(z) and vy.
Estimation of the key quantities ay (z) will make heavy use of orthogonal moment functions as
defined in . These moment functions are closely tied to efficient influence functions, where effi-
ciency is in the sense of locally minimax semi-parametric efficiency. The use of these functions will
deliver robustness with respect to the non-regularity of the post-selection and penalized estimators

needed to manage high-dimensional data. The use of these functions also automatically delivers



16
semi-parametric efficiency for estimating and performing inference on the reduced-form parameters
and their smooth transformations — the structural parameters.

The efficient influence function and orthogonal moment function for oy (z), z € Z = {0, 1}, are

given respectively by

waz(W) = w%,z,gv,mz(w7 Oév(z)) and (325)

Vo gm(W, @) = 1(Z = 277)%((‘; ;()g(z, X))

+9(z,X) — a. (3.26)

This efficient influence function was derived by Hahn (1998); it was also used by Cattaneo (2010)
in the series context (with p < n) and Rothe and Firpo (2013) in the kernel context. The efficient

influence function and the moment function for ~y are trivially given by
by (W) = Py (W, ), and @i (W,7) ==V — 7. (3.27)

We then define the estimator of the reduced-form parameters ay(z) and 7y (z) as solutions

a = ay(z) and 7 = Ay to the equations

]En[w%,z,/g\v,fﬁz(m a)] =0, EnW&(W, 7)] =0, (3.28)

where gy and my are constructed as in the first step. Note that gy may be constructed via either
Strategy 1 or Strategy 2. We apply this procedure to each variable name V' € V), and obtain the
estimaton’

Pui= ({av (01, 8v (1), 30 ) pey, of pui= {av(0),av (1), 3w} yey, - (3.29)

The estimator and the parameter are vectors in R% with dimension d, =3 xdimV, = 15.

In the next section, we formally establish a principal result which shows that

\/ﬁ(ﬁu - pu) ~ N(Ov VarP("‘ﬁﬁ)% Tﬂﬁ = ({Tﬁ?},o, W},u 1/17/})Vevuv (330)
uniformly in P € P,,

14

where P, is a rich set of data generating processes P. The notation “Z, p ~ Zp uniformly in
P € P, is defined formally in Appendix @ and can be read as “Z,, p is approximately distributed
as Zp uniformly in P € P,,.” This usage corresponds to the usual notion of asymptotic distribution

¢

extended to handle uniformity in P. Here P, is a “rich” set of data generating processes P which

includes cases where perfect model selection is impossible theoretically.

We then stack all the reduced form estimators and parameters over u € U as
ﬁ: (ﬁu)ueu and p= (pu)ueua

9By default notation, (a;);jes returns a column vector produced by stacking components together in some consis-

tent order.
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giving rise to the empirical reduced-form process p and the reduced-form function-valued parameter
p. We establish that \/n(p — p) is asymptotically Gaussian: In £°(U)%,

Vn(p —p) ~ Zp = (GpyYP) ey, uniformly in P € P, (3.31)

where Gp denotes the P-Brownian bridge (van der Vaart and Wellner, 1996, p. 81-82). This result
contains as a special case and again allows P, to be a “rich” set of data generating processes
P that includes cases where perfect model selection is impossible theoretically. Importantly, this
result verifies that the functional central limit theorem applies to the reduced-form estimators in

the presence of possible model selection mistakes.

Since some of our objects of interest are complicated, inference can be facilitated by a multiplier

bootstrap method (Giné and Zinn, 1984). We define p* = (p},)ucu, a bootstrap draw of p, via

o =Dut+n 1D GUE(W). (3.32)
=1

Here (&)}, are i.i.d. copies of £ which are independently distributed from the data (W;)!_; and
whose distribution P: does not depend on P. We also impose that

Elg] =0, B[] =1, Elexp(l¢])] < . (3.33)

Examples of £ include (a) £ = £ —1, where £ is a standard exponential random variable, (b) £ = N,
where A is a standard normal random variable, and (c) & = N7/v2 + (NF — 1)/2, where N and
Ny are mutually independent standard normal random Variablesm The choices of (a), (b), and
(c) correspond respectively to the Bayesian bootstrap (e.g., Hahn (1997), Chamberlain and Imbens
(2003)), the Gaussian multiplier method (e.g, Giné and Zinn (1984), van der Vaart and Wellner
(1996, Chap. 3.6)), and the wild bootstrap method (Mammen, 1993) P8 in is an estimator

of the influence function %, defined via the plug-in rule:

U= Wveves V) = {405, m, WAV (0).9081 5, , WGy (1)), 40 (W.3v)}. - (3.34)

Note that this bootstrap is computationally efficient since it does not involve recomputing the
influence functions 12)\5 Each new draw of (&)}, generates a new draw of p* holding the data
and the estimates of the influence functions fixed. This method simply amounts to resampling
the first-order approximations to the estimators. Here we build upon prior uses of this or similar

methods in low-dimensional settings such as Hansen (1996) and Kline and Santos (2012).

We establish that the bootstrap law of \/n(p* — p) is uniformly asymptotically consistent: In the

metric space £>°(U)%, conditionally on the data,
Vn(p* —p) ~p Zp, uniformly in P € P,

10We do not consider the nonparametric bootstrap, which corresponds to using multinomial multipliers £, to

reduce the length of the paper; but we note that the conditions and analysis could be extended to cover this case.
1 The motivation for method (c) is that it is able to match 3 moments since E[¢%] = E[¢®] = 1. Methods (a) and

(b) do not satisfy this property since E[¢?] = 1 but E[¢%] # 1 for these approaches.
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where ~»p denotes weak convergence of the bootstrap law in probability, as defined in Appendix

Bl

3.3. Step 3: Robust Estimation of the Structural Parameters. All structural parameters

we consider take the form of smooth transformations of the reduced-form parameters:

A= (Ag)ge, where Ag:=¢(p)(q), q € Q. (3.35)

The structural parameters may themselves carry an index ¢ € Q that can be different from w; for
example, the LQTE is indexed by a quantile index ¢ € (0,1). This formulation includes as special
cases all the structural functions of Section We estimate these quantities by the plug-in rule.
We establish the asymptotic behavior of these estimators and the validity of the bootstrap as a
corollary from the results outlined in Section 3.2 and the functional delta method (extended to

handle uniformity in P).

For the application of the functional delta method, we require that the functional p — ¢(p)
be Hadamard differentiable uniformly in p € D,, where DD, is a set that contains the true values
p = pp for all P € P, — tangentially to a subset that contains the realizations of Zp for all P € P,
— with derivative map h — ¢(h) = ((b’p(h)(q))qegﬂ We define the estimators of the structural

parameters and their bootstrap versions via the plug-in rule as

~

A= (Bg)geo, By:=6(p) (), and A" := (Ah)gea, A; =0 (7")(q)- (3.36)
We establish that these estimators are asymptotically Gaussian
V(A = A) ~ ¢),(Zp), uniformly in P € Py, (3.37)

and that the bootstrap consistently estimates their large sample distribution:

o~

Vi(A* — A) g ¢ (Zp), uniformly in P € P,,. 3.38
P

These results can be used to construct simultaneous confidence bands and test functional hypotheses
on A.

4. THEORY OF ESTIMATION AND INFERENCE ON LOCAL TREATMENT EFFECTS FUNCTIONALS

Consider fixed sequences of numbers 6, \, 0, €, \, 0, A, \, 0, at a speed at most polynomial
in n (for example, &, > 1/n¢ for some ¢ > 0), ¢, — oo, and positive constants ¢, C, and ¢/ < 1/2.
These sequences and constants will not vary with P. The probability P can vary in the set P,
of probability measures, termed “data-generating processes”, where P, is typically a set that is

weakly increasing in n.

12we give the definition of uniform Hadamard differentiability in Definition of Appendix
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Assumption 4.1 (Basic Assumptions). (i) Consider a random element W with values in a mea-
sure space (W, Ayw) and law determined by a probability measure P € Py,. The observed data
(Wyi)ueu)—y consist of n i.i.d. copies of a random element (Wy)ueu = (Yu)ueu, D, Z, X), where
U is a Polish space equipped with its Borel sigma-field and (Y, D,Z,X) € R3t4x. FEach W, is
generated via a measurable transform t(W,u) of W and u, namely the map t : W x U s R3TIx s

measurable, and the map can possibly dependent on P. Let
Vu = {Vuj}jej = {Yua 10(D)Ym 10<D)7 11(D>Yu7 11(D)}7 V= (Vu)uebh

where J = {1,...,5}. (i) For P := Uy, Pn, the map u +— Y, obeys the uniform continuity
property:

‘2+c

lim sup sup ||Y, — Yallp2 =0, sup Epsup|Y;, < 00,
PeP

NO PEP dy (u,)<e ueld
where the second supremum is taken over u,w € U, andU is a totally bounded metric space equipped
with a semi-metric dy. The uniform covering entropy of the set Fp = {Y, : u € U}, viewed as a
collection of maps (W, Ay) — R, obeys

suplog N (el Frloa: Zp, | lg2) < Clog(e/e) v 0

for all P € P, where Fp(W) = sup,cy |Yu|, with the supremum taken over all finitely discrete
probability measures Q on (W, Aw). (iii) For each P € P, the conditional probability of Z = 1
given X is bounded away from zero or one, namely ¢ < myz(1,X) <1—¢ P-a.s., the instrument
Z has a non-trivial impact on D, namely ¢ < |lp(1,1,X) —Ip(1,0,X)| P-a.s, and the regression
function gy is bounded, ||gv || poc < 00 for all V e V.

Assumption |4.1]is stated to deal with the measurability issues associated with functional response
data. This assumption also implies that the set of functions (¢4) e, where ¢ := ({8, V%1, ) }vev,,

is P-Donsker uniformly in P. That is, it implies
Znp~ Zp in £2°U)%, uniformly in P € P, (4.1)
where
Zn,p = (Gn)ueu and Zp := (GpY)ucu, (4.2)
with Gp denoting the P-Brownian bridge (van der Vaart and Wellner, 1996, p. 81-82), and Zp

having bounded, uniformly continuous paths uniformly in P € P:

sup Epsup ||Zp(u)|| < oo, limsupEp sup |Zp(u)— Zp(a)| =0. (4.3)
PeP  weld NOPEP  dy(uii)<e

Other assumptions will be specific to the strategy adopted.

Assumption 4.2 (Approximate Sparsity for Strategy 1). Under each P € Py, and for each n > ny,
uniformly for all V € V: (i) The approzimations (@— hold with the link functions Ay and
Az belonging to the set L, the sparsity condition ||Bv|o + ||5zllo < s holding, the approzimation

errors satisfying ||rv||p2+ ||lrzllp2 < 8,n Y% and IrvIlPoo + |72l Poo < €n, and the sparsity index
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s and the number of terms p in the vector f(X) obeying s>log®(p V n)log?n < ,n. (ii) There
are estimators By and Bz such that, with probability no less than 1 — A, the estimation errors
satisfy ||f(Z, X) By — Bv)le,2 + £ (X) (Bz — B2)llp,2 < dun 4, KullBy — Bvll + KnllBz —
Bzl < €n; the estimators are sparse such that ||By|lo + ||Bzllo < Cs; and the empirical and
population norms induced by the Gram matriz formed by (f(X;))I_, are equivalent on sparse subsets,
sup|iso<tns |1 £ (X) 61, 2/ 1 f(X)0llp2 — 1| < €. (iii) The following boundedness conditions hold:
HFCllsclloo < Kn and [V|es < C.

Comment 4.1. Assumption imposes simple intermediate-level conditions which encode both
the approximate sparsity of the models as well as some reasonable behavior of the sparse estimators
of myz and gy. Sufficient conditions for the equivalence between empirical and population norms
are given in Belloni, Chernozhukov, and Hansen (2014). Primitive examples of functions admit-
ting sparse approximations are given in Belloni, Chernozhukov, and Hansen (2014), and primitive
conditions for the estimators obeying the bounds above are given in Section 6, which addresses
the problem of estimating continua of approximately sparse nuisance functions. These conditions
extend and generalize the conditions employed in the literature on adaptive estimation using series
methods. The boundedness conditions are made to simplify arguments, and they could be removed

at the cost of more complicated proofs and more stringent side conditions. [

Assumption 4.3 (Approximate Sparsity for Strategy 2). Under each P € P, and for each n >

ng, uniformly for all V€ V: (i) The approximations — and apply with the

link functions Ty, T'p and Ay belonging to the set L, the sparsity condition ||0v|o + ||0pllo +

~1/4 gnd

|Bzllo < s holding, the approzimation errors satisfying ||op||p2 + ||ov|
lepllp.eo + llov
vector f(X) obeying s>log?(p V n)log®n < 6,n. (ii) There are estimators Oy, Op, and Bz such
that, with probability no less than 1— A, the estimation errors satisfy || f(D, Z, X)) (0y —0v)|e, 2+
1£(Z.X) (0 = 0p) .2 + IL/(X) (Bz = B2)llpn,2 < Gan™/* and Kn||fy — by |1 + Knllfp — 6|11 +
Knl|Bz — Bz||l1 < €n; the estimators are sparse such that |0y |lo + |0pllo + ||Bz]l0 < Cs; and the

empirical and population norms induced by the Gram matriz formed by (f(X;))}, are equivalent

p2+rzllp2 < onn
Poo K €n, and the sparsity indexr s and the number of terms p in the

Poo t+ I7z]

on sparse subsets, sup|is <e,s |1f(X) 0|, 2/ f(X)'0llp2 — 1| < €. (iii) The following boundedness
conditions hold: ||| f(X)|lss||Poc < Kpn and ||V pee < C.

Under the stated assumptions, the empirical reduced form process 2n p = v/n(p— p) defined by
(3.29) obeys the following relations. We recall definitions of convergence uniformly in P € P, in

Appendix [A]

Theorem 4.1 (Uniform Gaussianity of the Reduced-Form Parameter Process). Under
Assumptions[{.1] and[{.3 or[4.1] and[{.3, the reduced-form empirical process admits a linearization,
namely

~

Znp =P —p)=Znp+op(l) in U, uniformly in P € P,. (4.4)

)
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The process ZL p is asymptotically Gaussian, namely
Z\nvp ~ Zp in €°°(L{)d”, uniformly in P € Py, (4.5)
where Zp is defined in and its paths obey the property .

Another main result of this section shows that the bootstrap law of the process
=, PO 1 - ~
nP ‘= \/ﬁ(P —p) = % Zfin(Wi),
i=1

where Jqﬂ’ is defined in 1} provides a valid approximation to the large sample law of \/n(p — p).

Theorem 4.2 (Validity of Multiplier Bootstrap for Inference on Reduced-Form Param-

eters). Under Assumptions cmd or cmd the bootstrap law consistently approximates
the large sample law Zp of Z, p uniformly in P € Py, namely,

/Z\:;P ~wp Zp  in £°U)%, uniformly in P € P,. (4.6)

Next we consider inference on the structural functionals A defined in . We derive the large
sample distribution of the estimator A in , and show that the multiplier bootstrap law of A*
in provides a consistent approximation to that distribution. We rely on the functional delta
method in our derivations, which we modify to handle uniformity with respect to the underlying

dgp P. Our argument relies on the following assumption on the structural functionals.

Assumption 4.4 (Uniform Hadamard Differentiability of Structural Functionals). Suppose that
for each P € P, p=pp € D,, a compact metric space. Suppose o0 +— ¢(0), a functional of interest
mapping Dy C D = (°(U)% to £>°(Q), where D, C Dy, is Hadamard differentiable in o tangentially
to Dy = UCU)% uniformly in o € D,, with the linear derivative map qb’g : Dy — D such that the
mapping (0, h) = ¢, (h) from D, x Do to £2(Q) is continuous.

The definition of uniform Hadamard differentiability is given in Definition of Appendix

Assumption [4:4] holds for all examples of structural parameters listed in Section 2.

The following corollary gives the large sample law of \/ﬁ(ﬁ — A), the properly normalized
structural estimator. It also shows that the bootstrap law of \/ﬁ(g* — ﬁ), computed conditionally
on the data, approaches the large sample law \/ﬁ(ﬁ — A). It follows from the previous theorems

as well as from a more general result contained in Theorem

Corollary 4.1 (Limit Theory and Validity of Multiplier Bootstrap for Smooth Struc-
tural Functionals). Under Assumptions 07’ and
V(A = A) ~ Tp = O, (Zp), in L2(Q), uniformly in P € P, (4.7)

where Tp is a zero mean tight Gaussian process, for each P € P. Moreover,

~

V(A = A) ~p Tp, in £2(Q), uniformly in P € P. (4.8)
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5. A GENERAL PROBLEM OF INFERENCE ON FUNCTION-VALUED PARAMETERS WITH
APPROXIMATELY SPARSE NUISANCE FUNCTIONS

In this section, we consider a general setting where possibly a continuum of target parameters is
of interest and Lasso-type or Post-Lasso-type methods are used to estimate a continuum of high-
dimensional nuisance functions. This setting covers a rich variety of modern moment-condition
problems in econometrics including the treatment effects problem. We establish a functional central
limit theorem for the estimators of the continuum of target parameters that holds uniformly in P €
P, where P includes a wide range of data-generating processes with approximately sparse continua
of nuisance functions. We also derive a functional central limit theorem for the multiplier bootstrap
that resamples the first order approximations to the standardized estimators of the continuum of
target parameters and establish its uniform validity. Moreover, we establish the uniform validity
of the functional delta method and the functional delta method for the multiplier bootstrap for
smooth functionals of the continuum of target parameters using an appropriate strengthening of
Hadamard differentiability.

We are interested in function-valued target parameters indexed by u € U C R%. We denote the
true value of the target parameter by

0° = (0w)uecu, where 0, € ©,, C O C R% for each u € U.

We assume that for each v € U, the true value 6, is identified as the solution to the following

moment condition:

where W,, is a random vector that takes values in a Borel set W, C R% and contains as a

subcomponent the vector Z, taking values in a Borel set Z,; the moment function
Yu t W X Oy x Ty = R (w,0,1) = by (w, 0, 1) = (1hy(w, 0,1)) 72, (5.2)
is a Borel measurable map, and the function
Bt Zu = RYE 20 hy(2) = (hum(2))%_, € Tu(z), (5.3)

is another Borel measurable map, the nuisance parameter, possibly infinite-dimensional. The sets

T.(z) are assumed to be convex for each u € U and z € Z,.

We assume that the continuum of nuisance functions (hy,)yeys is approximately sparse and thus
can be modelled and estimated using modern regularization and post-selection methods such as
Lasso and Post-Lasso methods. We let ﬁu = (ﬁum)gﬁzl denote the estimator of h,, which we assume
obeys the conditions in Assumption The estimator @u of 0, is constructed as any approximate

en-solution in O, to a sample analog of the moment condition (5.1)), i.e.,

Enfu(Wa, O, B Z) < i (B0 (Wir, 0, B Z)]| + €n, where e = ofn™ V). (5.4)
€0y
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The key condition needed for regular estimation of 6, is an orthogonality or immunization con-

dition. The simplest to explain, yet strongest, form of this condition can be expressed as follows:
OEp[thy(Wy, 0y, hi(Z4))|Zu) = 0, a.s., (5.5)

subject to additional technical conditions such as continuity and dominance stated below,
where we use the symbol 9; to abbreviate % This condition holds in the previous setting of
inference on policy-relevant treatment effects after interchanging the order of the derivative and
expectation. The formulation here also covers certain non-smooth cases such as structural and

instrumental quantile regression problems.

A more general form of the orthogonality condition is:

Definition 5.1 (Orthogonality for Moment Condition Models, General Form). For each
u € U, suppose that (5.1)-(5.9) hold. Consider M., a set of measurable functions z — h(z) € T,(z)
from Z, to R¥* such that |h(Zy) — hu(Zy)||p2 < 0o for all h € H,. Suppose also that the set T, (2)
is a convex subset of R% for each z € Z,. We say that 1), obeys a general form of orthogonality with
respect to H,, uniformly in u € U, if the following conditions hold: For each u € U, the derivative

t — OEp[tpy(Wy, 04, 1)| Zy] is continuous on t € T,,(Z,) P-a.s., (5.6)
1s dominated,
swp OB [u(Was 0,012 | < o0, (5.7)
1Ty (Z) Pa
and obeys the orthogonality condition:
Ep [atEP [ (W, Oy haa(Zu)| Z) (B Zu) — hu(Zu))] =0 forallh € Hy. (5.8)

The orthogonality condition (5.8)) reduces to (5.5) when #, can span all measurable functions
h: Z, — T, such that ||h||p2 < oo, but is more general otherwise.

Comment 5.1. It is important to use a moment function v, that satisfies the orthogonality
property given in . Generally, if we have a moment function 1, which identifies 6, but does
not have this property, we can construct a moment function v, that identifies 6, and has the
required orthogonality property by projecting the original function 1y, onto the orthocomplement
of the tangent space for the nuisance functions h,; see, for example, van der Vaart and Wellner
(1996), van der Vaart (1998, Chap. 25), Kosorok (2008), Belloni, Chernozhukov, and Kato (2013),
and Belloni, Chernozhukov, and Hansen (2014). [

Comment 5.2 (An alternative formulation of the orthogonality condition). A slightly
more general, though less primitive definition is as follows. For each u € U, suppose that —
hold. Consider H,, a set of measurable functions z — h(z) € Ty (2) from Z, to R* such that
|h(Zy) — hu(Z4)||p2 < oo for all h € H,, where the set T,(z) is a convex subset of R% for each

13The expression O;Ep[thy (W, Ou, hu(Z.))| Zu] is understood to be O:Ep [y (W, Ou, )| Zu]|t=hy, (2.)-
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z € Z,. We say that 1, obeys a general form of orthogonality with respect to H, uniformly in

u € U, if the following conditions hold: The Gateaux derivative map

Dyalh = hu = OFp (wu{wu, Ous hul(Zu) + t|R(Z0) = hu(Z0)| })

exists for all t € [0,1), h € H,, and u € U, and it vanishes at ¢ = 0, namely
Dyolh —hy] =0 for all h € H,,. (5.9)

Definition 5.1 implies this definition by the mean-value expansion and the dominated convergence

theorem. [

In what follows, we shall denote by 9, ¢, ¢, and C some positive constants. For a positive integer
d, [d] denotes the set {1,...,d}.

Assumption 5.1 (Moment condition problem). Consider a random element W, taking values in
a measure space (W, Ay), with law determined by a probability measure P € P,. The observed
data (Wyi)ueu)i—, consist of n i.i.d. copies of a random element (W, )ucy which is generated
as a suitably measurable transformation with respect to W and w. Uniformly for all n > ng and
P € P, the following conditions hold: (i) The true parameter value 6,, obeys and is interior
relative to ©, C © C R%, namely there is a ball of radius § centered at 0, contained in ©, for
all w € U, and © is compact. (ii) For v := (Vk)Zfidt = (0,t), each j € [dg] and v € U, the map
Oy X Ty(Zy) 2 v = Ep[thyj(Wy,v)|Z,] is twice continuously differentiable a.s. with derivatives
obeying the integrability conditions specified in Assumption . (iii) For all w € U, the moment
function ¥, obeys the orthogonality condition given in Definition 5.1 for the set H, = Hun Specified
in Assumption [5.3 (iv) The following identifiability condition holds: ||Ep[thy(Wy, 0, hu(Zy,))]| >
27 (|| Ju(0 — 0.)|| Aco) for all O € O, where the singular values of Jy := OgE[u (Wi, Ou, hu(Z4))]
lie in between ¢ > 0 and C for allu € U.

The conditions of Assumption [5.1] are mild and standard in moment condition problems. As-
sumption (iv) encodes sufficient global and local identifiability to obtain a rate result. The
suitably measurability condition, defined in Appendix [A] is a mild condition satisfied in most

practical cases.

Assumption 5.2 (Entropy and smoothness). The set (U,dy) is a semi-metric space such that
log N(e,U,dy) < Clog(e/e) V0. Let a € [1,2], and oy and ag be some positive constants.
Uniformly for all n > ng and P € Py, the following conditions hold: (i) The set of functions
Fo = {uj Wy, 04, hi(Zy)) = j € [dol,u € U}, viewed as functions of W is suitably measurable; has
an envelope function Fo(W) = SUD;cia,] uctt,vco., xTu(Zy) |Vuj(Wu, V)| that is measurable with respect
to W and obeys ||Fyllpq < C, where ¢ > 4 is a fized constant, and has a uniform covering entropy
obeying supg log N (¢|| Foll g2, Fo, || - llg.2) < Clog(e/e) V0. (ii) For all j € [dg] and k,r € [dg + dy],
and Puj(W) := thuj (W, Ou, hu(Zu)),
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(8) SUPuers,(v,7)e(©uxTu(Zu))2 EP[(Yug (W, v) — Yuj(Wa, 7))?|Z4] < Cllv = 7||%, P-as.,
(b) sUP gy, (u,m)<s EP[(Yuj (W) = ¢a;(W))?] < Co*1, Supdu(u a)<s | Ju — Jall < €62,
) Epsupueyveo,x1,(2.,) |0n.Ep Wug(WuaV) | Zu] \2

)

Assumption imposes smoothness and integrability conditions on various quantities derived

from 1. It also imposes conditions on the complexity of the relevant function classes.

In what follows, let A, N\, 0, §, \( 0, and 7, N\, 0 be sequences of constants approaching zero

from above at a speed at most polynomial in n (for example, d,, > 1/n¢ for some ¢ > 0).

Assumption 5.3 (Estimation of nuisance functions). The following conditions hold for eachmn = ng
and all P € P,. The estimated functions ﬁu = (ﬁum)%zl € Huyn with probability at least 1 — Ay,
where Hyy, is the set of measurable maps Zy 3 z > h = (hy)%_,(2) € Tu(z) such that

m=1
”hm - humHP,Q < T,

and whose complexity does not grow too quickly in the sense that Fi = {1u;(Wy,0,h(Z,)) : j €
[dol,u €U, 0 € Oy, h € Hyn} is suitably measurable and its uniform covering entropy obeys:

Sup log N(el|Fillga2, F1: || - l.2) < sn(log(an/€)) v

where F1 (W) is an envelope for Fi which is measurable with respect to W and satisfies F1(W') <
Fo(W), for the Fy defined in Assumption . The complexity characteristics a, > max(n,e) and
> 1 obey the growth conditions:

1 1
n~1/2 ( splog(ay) + n~1/2s na log(an)) T, and T“/Q splog(ay) + snna_% log(ay)logn < oy,
where q and o are defined in Assumption[5.3.

Assumption imposes conditions on the estimation rate of the nuisance functions Ay, and on
the complexity of the functions sets that contain the estimators /ﬁum Within the approximately
sparse framework, the index s,, corresponds to the maximum of the dimension of the approximating
models and of the size of the selected models; and a, = p V n. Under other frameworks, these
parameters could be different; yet if they are well behaved, then our results still apply. Thus these
results potentially cover other frameworks, where assumptions other than approximate sparsity
are used to make the estimation problem manageable. It is important to point out that the class
F1 need not be Donsker because its entropy is allowed to increase with n. Allowing for non-
Donsker classes is crucial for accommodating modern high-dimensional estimation methods for the
nuisance functions as we have seen in the previous section. This feature makes the conditions
imposed here very different from the conditions imposed in various classical references on dealing
with nonparametrically estimated nuisance functions; see, for example, van der Vaart and Wellner
(1996), van der Vaart (1998), and Kosorok (2008).
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The following theorem is one of the main results of the paper:

Theorem 5.1 (Uniform Functional Central Limit Theorem for a Continuum of Target
Parameters). Under Assumptions and for an estimator (é\u)ueu that obeys equation
:

Vi(0y = 00)ucr = (Gpthw)ucu + op(1) in £°U)% ., uniformly in P € P,
where ¥y (W) = —J (W, 0y, ho(Zy)), and

(Gnﬂ_)u)ueu ~ (GPq/_Ju)ueu in goo(u)d9> uniformly in P € Py,
where the paths of u +— Gpib, are a.s. uniformly continuous on (U,dy) and

sup Epsup [|Gpipy|| < oo and lim sup Ep sup  [|Gpipy — Gpiba|| = 0.
PEP,  ueld =0 PeP,  dy(u,u)<6

We can estimate the law of Zp with the bootstrap law of

Zy p o= (0 = Ou)ucy = (\}ﬁ Zsﬂu(m)) , (5.10)
=1

ueU

where (&), are i.i.d. multipliers as defined in equation 1’ Ju(Wz) is the estimated score
@Zu(Wz) = _j;_ldju(wuiy é\u’ﬁu(zuz))a

and ju is a suitable estimator of Ju The bootstrap law is computed by drawing (&;)?_; conditional
on the data.

The following theorem shows that the multiplier bootstrap provides a valid approximation to

the large sample law of /1 (8 — 04 )ucus-

Theorem 5.2 (Uniform Validity of Multiplier Bootstrap). Suppose Assumptions
and hold, the estimator (§u)ueu obeys equation , and that, for the constant o defined in
Assumption [5.3 and some positive constant az, uniformly in P € P, with probability 1 — 6,

(u— ju) €ETn={ur Jy:||Ju— Jal| < Cllu—a|*,||Ju — Ju|| < 7'3/2, for all (u,u) € Z/lz}.

Then,
Z*JD ~p Zp in EOO(Z/{)dQ, uniformly in P € Py,.

n

We next derive the large sample distribution and validity of the multiplier bootstrap for the
estimator A 1= ¢(6) := ¢((Fu)uers) of the functional A := ¢(6°) = ¢((fy)ucrs) using the functional
delta method. The functional 8° — ¢(6°) is defined as a uniformly Hadamard differentiable trans-
form of ° = (,)ucy. The following result gives the large sample law of \/ﬁ(ﬁ — A), the properly
normalized estimator. It also shows that the bootstrap law of \/ﬁ(ﬁ* — 3), computed conditionally
on the data, is consistent for the large sample law of /(A — A). Here A* := gb(é\*) = gb((é\*)ueu)

14We do not discuss the estimation of J, since it is often a problem-specific matter. In Section 3, J, was equal to

the identity matrix, so we did not need to estimate it.
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is the bootstrap version of 3, and é\; =0,+n! Sy fﬂ//}\u(Wl) is the multiplier bootstrap version
of §u defined via equation ([5.10)).

Theorem 5.3 (Uniform Limit Theory and Validity of Multiplier Bootstrap for Smooth
Functionals of 6). Suppose that for each P € P := UypspnyPp, 0° = HOP is an element of a compact
set Dy. Suppose 0 — ¢(0), a functional of interest mapping Dy C D = £2°(U)% to (>°(Q), where
Dy C Dy, is Hadamard differentiable in 6 tangentially to Dy = UCU)% uniformly in 0 € Dy, with
the linear derivative map ¢ : Do — D such that the mapping (0, h) — ¢y(h) from Dy x Dy to £°(Q)

s continuous. Then,
V(A = A) ~ Tp = d)é)% (Zp) in £°°(Q), uniformly in P € Py, (5.11)

where Tp is a zero mean tight Gaussian process, for each P € P. Moreover,

~

VI(A* = A) ~p Tp  in £°(Q), uniformly in P € Py, (5.12)

To derive Theorem [5.3] we strengthen the usual notion of Hadamard differentiability to a uniform
notion introduced in Definition [B.Il Theorems [B.3 and [B.4] show that this uniform Hadamard
differentiability is sufficient to guarantee the validity of the functional delta uniformly in P. These

new uniform functional delta method theorems may be of independent interest in other problems.

6. GENERIC LASSO AND PoST-LLASSO METHODS FOR FUNCTIONAL RESPONSE DATA

In this section, we provide estimation and inference results for Lasso and Post-Lasso estimators
with function-valued outcomes and linear or logistic links. These results are of interest beyond the
context of treatment effects estimation, and thus we present this section in a way that leaves it

autonomous with respect to the rest of the paper.

6.1. The generic setting with function-valued outcomes. Consider a data generating process

with a functional response variable (Y;,)ycs and observable covariates X satisfying for each v € U,
EP[YU ’ X] = A(f(X)lgu) + ru(X)7 (6'1)

where f : X — RP is a set of p measurable transformations of the initial controls X, 6, is a p-
dimensional vector, 7, is an approximation error, and A is a fixed known link function. The notation
in this section differs from the rest of the paper with Y, and X denoting a generic response and a
generic vector of covariates to facilitate the application of these results to other contexts. We only
consider the linear link function, A(t) = ¢, and the logistic link function A(t) = exp(t)/{1+exp(t)},

in detail.

Considering the logistic link is useful when the functional response is binary, though the linear
link can be used in that case as well under some conditions. For example, it is useful for estimating a
high-dimensional generalization of the distributional regression models considered in Chernozhukov,

Fernandez-Val, and Melly (2013), where the response variable is the continuum (Y, = 1(Y < w))yeu-
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Even though we focus on these two cases we note that the principles discussed here apply to many
other convex (or near-convex) M-estimators. In the remainder of the section, we discuss and
establish results for ¢1-penalized and post-model selection estimators of (6,,),ezs that hold uniformly

over u € U.

Throughout the section, we assume that u € U C [0,1]% and that n i.i.d. observations from
dgps where (6.1) holds, {(Yui)ueu, Xi)}-,, are available to estimate (6,)ycy. For each u € U, a
penalty level A\, and a diagonal matrix of penalty loadings \TJU, we define the Lasso estimator as

o~

A~
0, € arg min E,,[M (Y, f(X)'0)] + =||¥.0|1 (6.2)
(Jag n
where M (y,t) = $(y — A(t))? in the case of linear regression, and M (y,t) = —{1(y = 1)log A(t) +
1(y = 0)log(1 — A(t))} in the case of the logistic link function for binary response data. For each

u € U, the Post-Lasso estimator based on a set of covariates fu is then defined as

0, € arg Orrel[iR% E,[M(Y,, f(X)0)] : supp(d) C T, (6.3)

where the set 7, w contains supp(gu) and possibly additional variables deemed as important We

will set T, = supp(gu) unless otherwise noted.

The chief departure between the analysis when U is a singleton and the functional response case
is that the penalty level needs to be set to control selection errors uniformly over v € U. To do so,
we will set A so that with high probability

A esup |9 En [00M (Yo, £(X)'0)] | (6.4)
n ueU 00
where ¢ > 1 is a fixed constant. When U is a singleton the strategy above is similar to Bickel,
Ritov, and Tsybakov (2009), Belloni and Chernozhukov (2013), and Belloni, Chernozhukov, and
Wang (2011), who use an analog of to derive the properties of Lasso and Post-Lasso. When U
is not a singleton, this strategy was first employed in the context of ¢1-penalized quantile regression

processes by Belloni and Chernozhukov (2011).
To implement ((6.4]), we propose setting the penalty level as

A= ey/n® (1 —y/{2pn™}), (6.5)

where d,, is the dimension of U, 1 — v with v = o(1) is a confidence level associated with the
probability of event (6.4)), and ¢ > 1 is a slack constantm When implementing the estimators, we
set ¢ = 1.1. and v = .1/log(n), though other choices are theoretically valid.

15The total number of additional variables 3, should also obey the same growth conditions that s obeys. For
example, if the additional variables are chosen so that 5, < |supp(§u)\ the growth condition is satisfied with probability
going to one for the designs covered by Assumptions and See also Belloni, Chernozhukov, and Hansen (2014)
for a discussion on choosing additional variables.

16When the set U is a singleton, one can use the penalty level in with d,, = 0. This choice corresponds to

that used in Belloni, Chernozhukov, and Hansen (2014).
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In addition to the penalty parameter A\, we also need to construct a penalty loading matrix
T, = diag({lAuj,j = 1,...,p}). This loading matrix can be formed according to the following

iterative algorithm.

Algorithm 1 (Estimation of Penalty Loadings). Choose v € [1/n,min{1/logn,pn%~1}] and
c > 1 to form X\ as defined in , and choose a constant K > 1 as an upper bound on the
number of iterations. (0) Set & = 0, and initialize lAum for each j = 1,...,p. For the linear link
function, set RJ,O ={E, [sz(X)(Yu — Y)?}/? with Y, = E,[Y,]. For the logistic link function, set
lAuj,O = HE,] ]Z(X)]}lﬂ. (1) Compute the Lasso and Post-Lasso estimators, 6, and 6, based on
B, = diag({ugr j = 1,20} (2) Set Dyer = {Balf2(X)(Ya— AF(XVB)}V2. (3) 1 b > K,
stop; otherwise set k < k + 1 and go to step (1).

6.2. Asymptotic Properties of a Continuum of Lasso and Post-Lasso Estimators for
Functional Responses: Linear Case. We provide sufficient conditions for establishing good
performance of the estimators discussed above when the linear link function is used. In the state-
ment of the following assumption, &, \, 0, £, — oo, and A, \, 0 are fixed sequences; and ¢, C, k’, k"

and v € (0, 1] are positive finite constants.

Assumption 6.1. Consider a random element W taking values in a measure space (W, Aw),
with law determined by a probability measure P € Py,. The observed data ((Yui)ueu, Xi)i—, consist
of n i.i.d. copies of random element ((Yy)ueu,X), which is generated as a suitably measurable
transformation of W and w. The model holds with linear link t — A(t) =t for allu € U C
[0, 1]%, where d,, is fized and U is equipped with the semi-metric dy. Uniformly for all n > ng and
P € Py, the following conditions hold. (i) The model is approzimately sparse with sparsity
index obeying sup,ey ||0ullo < s and the growth restriction log(p V n) < §,n'/3. (ii) The set U has
uniform covering entropy obeying log N (e,U, dy) < dylog(1/€) VvV 0, and the collection (¢, = Y, —
Ep[Yy | X],7u)ueu are suitably measurable transformations of W and w. (iii) Uniformly overu € U,
the moments of the model are boundedly heteroscedastic, namely ¢ < Ep[¢? | X] < C a.s., and
max;<,Ep[| fj(X)Cul® + | fj(X)Yul?] < C. (iv) For a fized v > 0 and a sequence K, the dictionary
functions, approximation errors, and empirical errors obey the following boundedness and empirical
reqularity conditions: (a) ¢ < Ep[sz(X)] <C,j=1,...,p; maxj<, | f;(X)| < K, a.s.; K2slog(pV
n) < dyn. (b) With probability 1 — A, sup,cy En[r2(X)] < Cslog(pV n)/n; sup,ey max;j<p |(En, —
Ep)[f2(X)C)|V [(En — Ep)[f2(X)Y2)| < n; log"2(p V 1) SUDg,, () <1/ maxjcp{En[ £ (X)?(Cu —
Cu )12 < 6, and sup g, (. ury<t jnllEnlf (X)(Cu = Cu)]lloe < 8nn ™2, (¢) With probability 1 — Ay,
the empirical minimum and mazximum sparse eigenvalues are bounded from zero and above, namely
&< nf5)0<se, [1f(X) 0], 2 < supysyg<se, [1/(X)0]lp, 2 < K"

Assumption [6.1] is only a set of sufficient conditions. The finite sample results in the Appendix
allow for more general conditions (for example, d,, can grow with the sample size). We verify that
the more technical conditions in Assumption [6.1|iv)(b) hold in a variety of cases, see Lemma
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in Appendix [G] Under Assumption [6.1], we establish results on the performance of the estimators
(6.2) and (6.3]) for the linear link function case that hold uniformly over u € Y and P € P,,.

Theorem 6.1 (Rates and Sparsity for Functional Responses under Linear Link). Under Assump-
tion[6.1] and setting the penalty and loadings as in Algorithm[1], for all n large enough, uniformly for
all P € P,, with Pp probability 1 — o(1), for some constant C, the Lasso estimator @\u is uniformly

sparse, Sup,cy ||§u\|0 < Cs, and the following performance bounds hold:

~ _ [slog(pVn ~ _ [s2log(pVn
up [£(X) B — 0l 2 < Oy 222 i sup (B, — 6,1 < Oy 082V,
ueU n ueU n

For all n large enough, uniformly for all P € P,, with Pp probability 1 — o(1), the Post-Lasso

estimator corresponding to é\u obeys

~ _ /slo Vn ~ _ /s21o Vn
sup | F(X) B — 0102 < O BCY g sup 18, — By < Oy S 22BE V),
n="74 n ueU n

We note that the performance bounds are exactly of the type used in Assumptions and
Indeed, under the condition s%log? (pVn) log?n < §,n, the rate of convergence established in

Theorem [6.1| yields /slog(p V n)/n < o(n=1/%).

6.3. Asymptotic Properties of a Continuum of Lasso and Post-Lasso Estimators for
Functional Responses: Logistic Case. We provide sufficient conditions to state results on the
performance of the estimators discussed above for the logistic link function. This case corresponds
to M(y,t) = —{1(y = 1)log A(t)+1(y = 0) log(1—A(t))} with A(t) = exp(t)/{1+exp(t)} where the
response variable is assumed to be binary, Y, € {0,1} for all u € Y. Consider the fixed sequences
O \( 0, £, — 0o, and A, \, 0 and the positive finite constants ¢, C, x’,, ", and ¢ < 1/2.

Assumption 6.2. Consider a random element W taking values in a measure space (W, Aw),
with law determined by a probability measure P € P,,. The observed data ((Yui)ueu,Xi)i—q con-
sist of n i.i.d. copies of random element ((Yy)ueu, X ), which is generated as a suitably mea-
surable transformation of W and w. The model holds with Y,; € {0,1} with the logistic
link t ~— A(t) = exp(t)/{1 + exp(t)} for each u € U C [0,1]%, where d, is fived and U is
equipped with the semi-metric dy. Uniformly for all n > ng and P € Py, the following conditions
hold. (i) The model is approzimately sparse with sparsity index obeying sup,cy ||Oullo < s
and the growth restriction log(p V n) < 6,n'/3. (i) The set U has uniform covering entropy
obeying log N(e,U,dy) < dylog(1/e) vV 0, and the collection (¢, = Yy — Ep[Yy | X, 70)ueu is
a suitably measurable transformation of W and w. (iii) Uniformly over uw € U the moments
of the model satisfy max;<,Ep[|fj(X)]*] < C, and ¢ < Ep[Yy, | X] < 1 —¢ as. (i) For
a sequence K,, the dictionary functions, approximation errors, and empirical errors obey the
following boundedness and empirical regularity conditions: (a) sup,cy |ru(X)| < 05 a.s.; ¢ <
Ep[ff(X)] <O, j=1,....,p; maxje, |f;(X)| < Ky, a.s.; and K2s*log*(p V n) < d,n. (b) With
probability 1 — Ay, supyey Eq[rg(X)] < Cslog(p V n)/n; sup,ey max;j<p |[(En — EP)[J?(X)@” <



31

57‘6; SUPy, ! el dyy (u,u’)<1/n manéP{En [f] (X)z(CU_CUI)Q]}1/2 < 5717 and Supu,u’eu,du(u,u’)él/nHEn [f(X)(Cu_
C)lloo < 8,n~ V2. (¢c) With probability 1— A, the empirical minimum and mazimum sparse eigen-
values are bounded from zero and above: ' < inf5 <, [1f(X) 0], 2 < sup|sjo<se, [1F(X) 3, 2 <

K",

The following result characterizes the performance of the estimators ((6.2]) and (6.3)) for the logistic

link function case under Assumption [6.2

Theorem 6.2 (Rates and Sparsity for Functional Response under Logistic Link). Under Assump-
tion[6.9 and setting the penalty and loadings as in Algorithm[1], for all n large enough, uniformly for
all P € Py, with Pp probability 1 — o(1), the following performance bounds hold for some constant
C:

sup || £(X)'(u — 6u)|p,2 < C

slog(pV n) ~ [s2log(pV n)
u€eU n

and sup ||, — 0,1 < Cy/ 2.
ueU n
and the estimator is uniformly sparse: sup,cy Hé\uHO < Cs. For all n large enough, uniformly for

all P € Py, with Pp probability 1 — o(1), the Post-Lasso estimator corresponding to §u obeys

~ _ [slog(pVn ~ _ /s2log(pVn
sup |7 (XY B — B)llprz < Oy BLY g qup 1B, — s < Oy 22082V,

Comment 6.1. We note that the performance bounds satisfy the conditions of Assumptions |4.2
and [£.3] Moreover, since in the logistic case the link function is 1-Lipschitz and the approximation
errors are assumed to be small, the results above establish the same rates of convergence for the

estimators of the conditional probabilities, for example

N _ Islo vn
sup [EplY, | X] =~ AU, 0 < Oy ELL,
uec

7. ESTIMATING THE EFFECT OF 401(K) PARTICIPATION ON FINANCIAL ASSET HOLDINGS

As a practical illustration of the methods developed in this paper, we consider the estimation of
the effect of 401(k) participation on accumulated assets as in Abadie (2003) and Chernozhukov and
Hansen (2004). Our goal here is to explain the practical implementation details of our methods, to
illustrate how to interpret the estimation results and inference statements, and to make the following
points that underscore our theoretical findings: 1) In a low-dimensional setting, where the number of
controls is low and therefore there is no need of selection, our robust post-selection inference methods
perform well. That is, the results of our methods agree with the results of standard methods that
do not employ any selection. 2) In a high-dimensional setting, where there are (moderately) many
controls, our post-selection inference methods perform well, producing well-behaved estimates and
confidence intervals compared to the erratic estimates and confidence intervals produced by the
standard methods that do not employ selection as a means of regularization. 3) Finally, in a

very high-dimensional setting, where the number of controls is comparable to the sample size, the
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standard methods break down completely, while our methods still produce well-behaved estimates
and confidence intervals. These findings are in line with our theoretical results about uniform

validity of our inference methods.

The key problem in determining the effect of participation in 401(k) plans on accumulated assets
is saver heterogeneity coupled with the fact that the decision to enroll in a 401(k) is non-random.
It is generally recognized that some people have a higher preference for saving than others. It
also seems likely that those individuals with high unobserved preference for saving would be most
likely to choose to participate in tax-advantaged retirement savings plans and would tend to have
otherwise high amounts of accumulated assets. The presence of unobserved savings preferences with
these properties then implies that conventional estimates that do not account for saver heterogeneity
and endogeneity of participation will be biased upward, tending to overstate the savings effects of

401(k) participation.

To overcome the endogeneity of 401(k) participation, Abadie (2003) and Chernozhukov and
Hansen (2004) adopt the strategy detailed in Poterba, Venti, and Wise (1994; 1995; 1996; 2001)
and Benjamin (2003), who used data from the 1991 Survey of Income and Program Participation
and argue that eligibility for enrolling in 401(k) plan in this data can be taken as exogenous after
conditioning on a few observables of which the most important for their argument is income. The
basic idea of their argument is that, at least around the time 401(k)’s initially became available,
people were unlikely to be basing their employment decisions on whether an employer offered a
401(k) but would instead focus on income. Thus, eligibility for a 401(k) could be taken as exoge-
nous conditional on income, and the causal effect of 401(k) eligibility could be directly estimated
by appropriate comparison across eligible and ineligible individualsm Abadie (2003) and Cher-
nozhukov and Hansen (2004) use this argument for the exogeneity of eligibility conditional on
controls to argue that 401(k) eligibility provides a valid instrument for 401(k) participation and

employ IV methods to estimate the effect of 401(k) participation on accumulated assets.

As a complement to the work cited above, we estimate various treatment effects of 401(k) par-
ticipation on holdings of financial assets using high-dimensional methods. A key component of
the argument underlying the exogeneity of 401(k) eligibility is that eligibility may only be taken
as exogenous after conditioning on income. Both Abadie (2003) and Chernozhukov and Hansen
(2004) adopt this argument but control only for a small number of terms. One might wonder
whether the small number of terms considered is sufficient to adequately control for income and
other related confounds. At the same time, the power to learn anything about the effect of 401 (k)
participation decreases as one controls more flexibly for confounds. The methods developed in this
paper offer one resolution to this tension by allowing us to consider a very broad set of controls

and functional forms under the assumption that among the set of variables we consider there is a

1Tpoterba, Venti, and Wise (1994; 1995; 1996; 2001) and Benjamin (2003) all focus on estimating the effect of
401(k) eligibility, the intention to treat parameter. Also note that there are arguments that eligibility should not be

taken as exogenous given income; see, for example, Engen, Gale, and Scholz (1996) and Engen and Gale (2000).
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relatively low-dimensional set that adequately captures the effect of confounds. This approach is
more general than that pursued in Chernozhukov and Hansen (2004) or Abadie (2003) which both
implicitly assume that confounding effects can adequately be controlled for by a small number of

variables chosen ex ante by the researcher.

We use the same data as Abadie (2003), Benjamin (2003), and Chernozhukov and Hansen (2004).
The data consist of 9,915 observations at the household level drawn from the 1991 SIPP. We
consider two different outcome variables, Y, in our analysis: net total financial assetﬂ and total
WealthH Our treatment variable, D, is an indicator for having positive 401(k) balances; and our
instruments, Z, is an indicator for working at a firm that offers a 401(k) plan. The vector of raw
covariates, X, consists of age, income, family size, years of education, a married indicator, a two-
earner status indicator, a defined benefit pension status indicator, an IRA participation indicator,
and a home ownership indicator. Further details about the sample and variables used can be found
in Chernozhukov and Hansen (2004).

We present detailed results for four different sets of controls f(X). The first set uses the indicators
of marital status, two-earner status, defined benefit pension status, IRA participation status, and
home ownership status, a linear term for family size, five categories for age, four categories for
education, and seven categories for income (Indicator specification). We use the same definitions of
categories as in Chernozhukov and Hansen (2004) and note that this is identical to the specification
in Chernozhukov and Hansen (2004) and Benjamin (2003). The second specification augments
the Indicator specification with all two-way interactions between the variables from the Indicator
specification (Indicator plus interactions specification). The third specification uses the indicators
of marital status, two-earner status, defined benefit pension status, IRA participation status, and
home ownership status, and cubic b-splines with one, one, three, and five interior knots for family
size, education, age, and income, respectively (B-Spline specification). The fourth specification
augments the B-Spline specification with all two-way interactions of the sets of variables from
the B-Spline specification (B-Spline plus interactions specification). The dimensions of the set
of controls are thus 20, 167, 27, and 323 for the Indicator, Indicator plus interactions, B-Spline,
and B-Spline plus interactions specifications, respectively. We refer to the specifications without

interactions as low-p, and to the specifications with interactions as high-p.

We also give some results for a very high dimensional specification that uses the indicators of
marital status, two-earner status, defined benefit pension status, IRA participation status, and
home ownership status, a third degree polynomial in family size, a fifth degree polynomial in

education, a cubic b-spline with 15 interior knots for age, a cubic b-spline with 30 interior knots

18Net total financial assets are defined as the sum of IRA balances, 401(k) balances, checking accounts, U.S. saving
bonds, other interest-earning accounts in banks and other financial institutions, other interest-earning assets (such
as bonds held personally), stocks, and mutual funds less nonmortgage debt.

19Tgtal wealth is net financial assets plus housing equity, housing value minus mortgage, and the value of business,

property, and motor vehicles.
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in income, and all the two-way interactions (Many series terms specification). From the resulting
10,763 terms, we keep 3,009 non redundant controls after eliminating all terms without variation
or one of each pair of terms that have a sample correlation greater than 0.999 in absolute value,
in either of the subset of observations with Z = 0 or Z = 1. We take this specification as an

approximation to a situation where the number of controls is comparable to the sample size.

We report estimates of the LATE, LATE-T, LQTE, and LQTE-T for each of the four low-p and
high-p sets of controls, whereas we only report estimates of the LATE and LATE-T for the largest
specification. Estimation of all of the treatment effects depends on first-stage estimation of reduced
form functions as detailed in Section [3} We estimate reduced form functions where Y,, =Y is the
outcome using least squares when no model selection is used or Post-Lasso when selection is used.
We estimate propensity scores and reduced form functions where Y,, = 1(Y < u) is the outcome
by logistic regression when no model selection is used or Post-£1-penalized logistic regression when
selection is usedm We use the penalty level given in and construct penalty loadings using
the method detailed in Algorithm [I] For the LATE and LATE-T where the set U is a singleton,
we use the penalty level in with d, = 0. This choice corresponds to that used in Belloni,
Chernozhukov, and Hansen (2014). We refer to the supplementary appendix for further details on

the implementation.

Estimates of the LATE and LATE-T are given in Table 1. In this table, we provide point
estimates for each of the five sets of controls with and without variable selection. We also report
both analytic and multiplier bootstrap standard errors. The bootstrap standard errors are based
on 500 bootstrap replications with centered exponential variables as multipliers. Looking first at
the two sets of standard error estimates, we see that the bootstrap and analytic standard are quite

similar and that one would not draw substantively different conclusions from one versus the other.

It is interesting that the estimated LATE and LATE-T are similar in eight of the ten sets of
estimates reported, suggesting positive and significant effects of 401 (k) participation on net financial
assets and total wealth, significantly larger for treated compliers than for untreated compliers. This
similarity is reassuring in the Indicator and B-Spline specifications as it illustrates that there is little
impact of variable selection relative to simply including everything in a low-dimensional setting@
The two cases where we observe substantively different results are in the B-Spline plus interactions
and many series terms specifications when we do not use variable selection. In these cases, both
the LATE and LATE-T point estimates are implausibly large with associated very large estimated
standard errors, especially in the many series term specification. One would favor these imprecise

20The estimated propensity score shows up in the denominator of the efficient moment conditions. As is conven-

tional, we use trimming to keep the denominator bounded away from zero with trimming set to 102

. Trimming
only occurs when selection is not done in the B-spline plus interactions and many series terms specifications.

211 the low-dimensional setting, using all available controls is semi-parametrically efficient and allows uniformly
valid inference. Thus, the similarity between the results in this case is an important feature of our method which results
from our reliance on low-bias moment functions and sensible variable selection devices to produce semi-parametrically

efficient estimators and uniformly valid inference statements following model selection.
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estimates if there were important nonlinearity that is missed by the simpler specifications. The
concern that there is important nonlinearity missed by the other specifications that renders the
estimated treatment effects too imprecise to be useful is alleviated by noting that the point estimates
and standard errors based on the B-spline plus interactions and many series terms specifications
following variable selection are sensible and more similar to the other estimates. The similarity in
the point estimates suggests the bulk of the reduced form predictive power is contained in a set of
variables similar to those used in the other specifications and that there is not a small number of the
added variables that pick out important sources of nonlinearity neglected by the other specifications.
Thus, the large point estimates and standard errors in this case seem to be driven by including many
variables which have little to no predictive power in the reduced form relationships but result in
overfitting. After selection, the many series specification yields the largest standard errors, showing

that the search among a very large set of controls has a cost in terms of sampling variation.

We provide estimates of the LQTE and LQTE-T based on the Indicator specification, the In-
dicator plus interaction specification, the B-Spline specification, and the B-Spline plus interaction
specification in Figures 1, 2, 3, and 4, respectively. The left column in each figure gives results for
the LQTE, and the right column displays the results for the LQTE-T. In the top row of each figure,
we display the results with net financial assets as the dependent variable, and we give the results
based on total wealth as the dependent variable in the middle row. The bottom row of each figure
displays the selection-based estimate of the treatment effect on net total financial assets along with
the selection-based estimate of the treatment effect on total wealth. In each graphic, we use solid

lines for point estimates and report uniform 95% confidence intervals with dashed lines.

Looking across the figures, we see a similar pattern to that seen for the LATE and LATE-T in
that the selection-based estimates are stable across all specifications and are similar to the estimates
obtained without selection from the baseline low-p Indicator and B-Spline specifications. In the
more flexible high-p specifications that include interactions, the estimates that do not make use of
selection start to behave erratically. This erratic behavior is especially apparent in the estimated
LQTE of 401(k) participation on total wealth where we observe that small changes in the quantile
index may result in large swings in the point estimate of the LQTE and estimated standard errors
are large enough that meaningful conclusions cannot be drawn. Again, this erratic behavior is likely
due to overfitting as the variable selection methods select a roughly common low-dimensional set

of variables that are useful for reduced form prediction in all cases.

If we focus on the LQTE and LQTE-T estimated from variable selection methods, we find that
401(k) participation has a small impact on accumulated net total financial assets at low quantiles
while appearing to have a much larger impact at high quantiles. Looking at the uniform confidence
intervals, we can see that this pattern is statistically significant at the 5% level and that we would
reject the hypothesis that 401(k) participation has no effect and reject the hypothesis of a constant
treatment effect more generally. For total wealth, we can also reject the hypothesis of zero treatment

effect and the hypothesis of a constant treatment effect, though the uniform confidence bands are
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much wider. Interestingly, the only evidence of a statistically significant impact on total wealth
occurs for low and intermediate quantiles; one cannot rule out the hypothesis of no effect of 401 (k)
participation on total wealth in the upper quantiles. This pattern is especially interesting when
coupled with the evidence of essentially a uniformly positive effect of participation on net total
financial assets larger than the effect on total wealth in the upper quantiles, which suggests that
some of the effect on financial assets may be attributed to substitution from non-financial assets
into the tax-advantaged 401(k) assets.

It is interesting that our results are similar to those in Chernozhukov and Hansen (2004) despite
allowing for a much richer set of controls. The similarity is due to the fact that the variable
selection methods consistently pick a set of variables similar to those used in previous work. The
fact that we allow for a rich set of controls but produce similar results to those previously available
lends further credibility to the claim that previous work controlled adequately for the available
observables@ Finally, it is worth noting that this similarity is not mechanical or otherwise built in
to the procedure. For example, applications in Belloni, Chen, Chernozhukov, and Hansen (2012)
and Belloni, Chernozhukov, and Hansen (2014) use high-dimensional variable selection methods

and produce sets of variables that differ substantially from intuitive baselines.

APPENDIX A. NOTATION

A.1. Overall Notation. We consider a random element W = Wp taking values in the measure
space (W, Ayy), with probability law P € P. Note that it is most convenient to think about P
as a parameter in a parameter set P. We shall also work with a bootstrap multiplier variable
¢ taking values in (R, Agr) that is independent of Wp, having probability law P, which is fixed
throughout. We consider (W;)2, = (W; p)52, and ()52, to be i.i.d. copies of W and &, which are
also independent of each other. The data will be defined as some measurable function of W; for

i =1,...,n, where n denotes the sample size.

We require the sequences (W;)72, and ()2, to live on a probability space (2, Aq,Pp) for all
P € P (other variables arising in the proofs do not need to live on the same space). It is important
to keep track of the dependence on P in the analysis since we want the results to hold uniformly
in P in some set P,,, which may be dependent on n, namely it may typically increase with n, i.e.

Pn g Pn+1~
Throughout the paper we signify the dependence on P by mostly using P as a subscript in Pp,

but in the proofs we sometimes use it as a subscript for variables as in Wp. The operator E denotes
a generic expectation operator with respect to a generic probability measure P, while Ep denotes

the expectation with respect to Pp. Note also that we use capital letters such as W to denote

220f course, the estimates are still not valid causal estimates if one does not believe that 401(k) eligibility can be

taken as exogenous after controlling for income and the other included variables.
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random elements and use the corresponding lower case letters such as w to denote fixed values that
these random elements can take.
We denote by P, the (random) empirical probability measure that assigns probability n~! to

each W; € (W;)I_;. E, denotes the expectation with respect to the empirical measure, and G,, p
denotes the empirical process /n(E,, — P), i.e.

Gn.p(f) =G p(f(W)) =n~' 2> {f(Wi) = P[f(W)]}, P[f(W)]:= / f(w)dP(w),
1=1

indexed by a measurable class of functions F : W — R; see van der Vaart and Wellner (1996,
chap. 2.3). We shall often omit the index P from G, p and simply write G,. In what follows,
we use | - |lp4 to denote the LI(P) norm; for example, we use ||f(W)|py = ([ |f(w)|?dP(w))"/
and || f(W)||p, 4 = (R 20, |fF(W;)|9)Y4. For a vector v = (v1,...,v,) € RP, |[v]jo denotes the
lp-“norm” of v, that is, the number of non-zero components of v, ||v||; denotes the ¢;-norm of v,
that is, ||v]l1 = |v1| + - + |vp, and ||v|| denotes the Euclidean norm of v, that is, ||v|| = v/v'v.

We say that a collection of random variables F = {f(W,t),t € T}, where f : W x T — R,

indexed by a set T and viewed as functions of W € W, is suitably measurable with respect to W, if

it is image admissible Suslin class, as defined in Dudley (1999), p 186. In particular, F is suitably
measurable if f: W x T — R is measurable and T is a Polish space equipped with its Borel sigma

algebra, see Dudley (1999), p 186. This condition is a mild assumption satisfied in practical cases.

For a positive integer k, [k] denotes the set {1,...,k}.

A.2. Notation for Stochastic Convergence Uniformly in P. All parameters, such as the law
of the data, are indexed by P. This dependency is sometimes kept implicit. We shall allow for the
possibility that the probability measure P = P,, can depend on n. We shall conduct our stochastic
convergence analysis uniformly in P, where P can vary within some set P,, which itself may vary

with n.

The convergence analysis, namely the stochastic order relations and convergence in distribution,
uniformly in P € P, and the analysis under all sequences P, € P, are equivalent. Specifically,
consider a sequence of stochastic processes X,, p and a random element Yp, taking values in the
normed space D, defined on the probability space (€2, Aq,Pp). Through most of the Appendix
D = ¢>°(U), the space of uniformly bounded functions mapping an arbitrary index set U to the real

line. Consider also a sequence of deterministic positive constants a,,. We shall say that

(i) Xn,p = Op(ay) uniformly in P € Py, if limg o limy, 00 SUppep, PH(|Xn,p| > Ka,) = 0,
(ii) Xy p = op(an) uniformly in P € Py, if supgq limp 00 Suppep, Pp(|Xn,p| > Kay,) =0,
(iii) Xy, p ~ Yp uniformly in P € Py, if suppep, suppepr, )y [Eph(Xn,p) — Eph(Yp)| — 0.

Here the symbol ~» denotes weak convergence, i.e. convergence in distribution or law, BL;(D)
denotes the space of functions mapping D to [0, 1] with Lipschitz norm at most 1, and the outer

probability and expectation, P} and E}, are invoked whenever (non)-measurability arises.
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Lemma A.1. The above notions (i), (ii) and (iii) are equivalent to the following notions (a), (b),

and (c), each holding for every sequence P, € Pp:

(a) Xpn.p, =Op,(ay), i.e. img_,o0limy_so0 P}Sn(\Xn’pn] > Kay,) =0;
(b) Xu.p, = op,(an), i-e. SUpg~olimy o0 Pp (| Xn,p,| > Kan) = 0;

The claims follow straightforwardly from the definitions, and so the proof is omitted. We shall

use this equivalence extensively in the proofs of the main results without explicit reference.

APPENDIX B. KEY TooLs I: UNIFORM IN P DONSKER THEOREM, MULTIPLIER BOOTSTRAP,
AND FUNCTIONAL DELTA METHOD

B.1. Uniform in P Donsker Property. Let (W;)°, be a sequence of i.i.d. copies of the random
element W taking values in the measure space (W, Ayy) according to the probability law P on that
space. Let Fp = {fi.p : t € T'} be a set of suitably measurable functions w — f; p(w) mapping
W to R, equipped with a measurable envelope Fp : W — R. The class is indexed by P € P and
t € T, where T is a fixed, totally bounded semi-metric space equipped with a semi-metric dp. Let
N(e, Fp,| - |g,2) denote the e-covering number of the class of functions Fp with respect to the
L*(Q) seminorm || - || g2 for Q a finitely-discrete measure on (W, Ayy). We shall use the following

result.

Theorem B.1 (Uniform in P Donsker Property). Work with the set-up above. Suppose that
forq>2

sup |[Fpllpq < C and limsup sup ||fip — frpllp2 = 0. (B.1)
PeP INO PEP dp(t,8)<6

Furthermore, suppose that

1)
fim sup [ sup yflog Nl Fellga, Fi | - lo)de =0, (B.2)
NOpepJo @

Let Gp denote the P-Brownian Bridge, and consider
Znp = (Znp(t)ter = (Gn(fe.p))ter, Zp := (Zp(t))ter := (Gp(ft,P))ter
(a) Then, Zp p ~ Zp in £°(T) uniformly in P € P, namely

sup sup \[Eph(Z, p) — Eph(Zp)| — 0.
PEP he BL1 (°(T))

(b) The process Zy, p is stochastically equicontinuous uniformly in P € P, i.e., for every e > 0,

lim limsup sup Pp [ sup |Z,p(t) — Z,p(t)| >c | =0.
N0 n—soo PeP dp(t,5)<68
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(c) The limit process Zp has the following continuity properties:

sup Epsup|Zp(t)| < oo, limsup Ep sup |Zp(t) — Zp(t)| =0.
PEP el SNOPEP  dp(tE)<s

(d) The paths t — Zp(t) are a.s. uniformly continuous on (T, dr) under each P € P.

This is an extension of the uniform Donsker theorem stated in Theorem 2.8.2 in van der Vaart
and Wellner (1996), which allows for the function classes F to be dependent on P themselves. This

generalization is required in all of our problems.

B.2. Uniform in P Validity of Multiplier Bootstrap. Consider the setting of the preceding
subsection. Let (£)? ; be i.i.d multipliers whose distribution does not depend on P, such that
E¢ =0, B¢ =1, and E[¢]? < C for ¢ > 2. Consider the multiplier empirical process:

np = (Zy p()ter = (Gn(&fi.p))ter = <\/1ﬁ Zfift,P(Wi)>
=1

teT

Here G,, is taken to be an extended empirical processes defined by the empirical measure that
assigns mass 1/n to each point (W;, &) for i = 1,...,n. Let Zp = (Zp(t))ier = (Gp(fi,p))ter as
defined before.

Theorem B.2 (Uniform in P Validity of Multiplier Bootstrap). Assume the conditions of
Theorem hold. Then (a) the following unconditional convergence takes place, Zy, p~ Zpin
°(T) uniformly in P € P, namely

sup  sup  [Eph(Z, p) —Eph(Zp)| =0,
PEP he BL (£=(T))

and (b) the following conditional convergence takes place, Z} p ~p Zp in {>°(T) uniformly in
P € P, namely uniformly in P € P

sup  |Ep,h(Z, p) — Eph(Zp)| = op(1),
heBL, (£ (T))

where Ep, denotes the expectation over the multiplier weights (&), holding the data (W;)I", fized.

B.3. Uniform in P Functional Delta Method and Bootstrap. We shall use the functional
delta method, as formulated in van der Vaart and Wellner (1996, Chap. 3.9). Let Dy, D, and E be
normed spaces, with Dg C D. A map ¢ : Dy C D — E is called Hadamard-differentiable at p € Dy
tangentially to Dy if there is a continuous linear map d)’p : Dg — E such that

¢(p + tnhn) B gb(ﬂ)
tn

— QS;)(h), n — 0o,

for all sequences t,, — 0 in R and h, — h € Dy in D such that p + ¢, h,, € Dy for every n.

We now define the following notion of the uniform Hadamard differentiability:
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Definition B.1 (Uniform Hadamard Tangential Differentiability). Consider a map ¢ :
Dy — E, where the domain of the map Dy is a subset of a normed space D and the range is a
subset of the normed space E. Let Dy be a normed space, with Dy C D, and D, be a compact metric
space, a subset of Dy. The map ¢ : Dy — E is called Hadamard-differentiable uniformly in p € D,
tangentially to Dy with derivative map h <Z>;)(h), if

n nhn - n /
Olon ttnln) = 9en) _ 11y,

for all convergent sequences p, — p in D,, t, — 0 in R, and h, — h € Dy in D such that

G, (hn) = ¢,(h)| = 0, n — o0,

Pn + tohy € Dy for every n. As a part of the definition, we require that the derivative map
h— ¢,(h) from Dy to E is linear for each p € D,. [

Comment B.1. Note that the definition requires that that the derivative map (p,h) — (b;(h),
mapping D, x Dy to E, is continuous at each (p, h) € D, x Dy. [

Comment B.2 (Important Details of the Definition). Definition is different from the
definition of uniform differentiability given in van der Vaart and Wellner (1996, p. 379, eq. (3.9.12)),
since our definition allows D, to be much smaller than Dy, and D, to be endowed with a much
stronger metric than the metric induced by the norm of ). These differences are essential for
infinite-dimensional applications. For example, the quantile/inverse map is uniformly Hadamard
differentiable in the sense of Deﬁnition for a suitable choice of D,: Let T' = [e, 1 —¢], D = £°(T),
Dy= set of cadlag functions on T', Dy = UC(T), and D, be a compact subset of C'(T') such that
each p € D, obeys dp(t)/0t > ¢ > 0 on t € T, where ¢ is a positive constant. However, the
quantile/inverse map is not Hadamard differentiable uniformly on D, if we set D, = Dy and hence
is not uniformly differentiable in the sense of the definition given in van der Vaart and Wellner
(1996) which requires D, = Dg. It is important and practical to keep the distinction between D,
and Dy, since even though the population values of p are in D, by assumption, the estimated values
p may well be outside D,, unless explicitly imposed in estimation. For example, the empirical cdf

is in Dy, but is outside D,,. [

Theorem B.3 (Functional delta-method uniformly in P € P). Let ¢ : Dy C D — E
be Hadamard-differentiable uniformly in p € D, C Dy tangentially to Do, with derivative map
qbfo. Let p,.p be a sequence of stochastic processes taking values in Dy, where each p, p is an
estimator of the parameter pp € D,. Suppose there exists a sequence of constants r,, — oo such
that Z, p = rn(pn,p — pp) ~ Zp in D uniformly in P € P,. The limit process Zp is separable
and takes its values in Dy for all P € P = UpznyPn, where ng is fized. Moreover, the set of
stochastic processes {Zp : P € P} is relatively compact in the topology of weak convergence in

Dy, that is, every sequence in this set can be split into weakly convergent subsequences. Then,

0 (¢(Pn,p) — ¢(pP)) ~ ¢, (Zp) in E uniformly in P € Pn. If (p,h) = ¢:o(h) is defined and

/

op (Tn(ﬁn,P - PP))
converges to zero in outer probability uniformly in P € P,. Moreover, the set of stochastic processes

continuous on the whole of D, x D, then the sequence 1y, (¢(pn,r) — ¢(pp)) —

{#,,.(Zp) : P € P} is relatively compact in the topology of weak convergence in E.
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The following result on the functional delta method applies to any bootstrap or other simulation
method obeying certain conditions. This includes the multiplier bootstrap as a special case. Let
D, p = (W; p)"_, denote the data vector and B,, = (&), be a vector of random variables, used
to generate bootstrap or simulation draws (this may depend on the particular method). Consider
sequences of stochastic processes p,.p = pp,p(Dyn.p) , where Z,, p = rn(pn,p — pp) ~» Zp in the
normed space DD uniformly in P € P,,. Also consider the bootstrap stochastic process ; p =
Zpn,p(Dp,p, By) in D, where Z, p is a measurable function of B,, for each value of D,,. Suppose
that Z;, p converges conditionally given D, in distribution to Zp uniformly in P € P, namely that

sup (B, [1(Z; )] — Eph(Zp)] = op(1)
heBL; (D)
uniformly in P € P,,, where Ep, denotes the expectation computed with respect to the law of B,,
holding the data D,, p fixed. This is denoted as “ 7’; p ~B Zp uniformly in P € P,.” Finally, let

Pn.p = Pn,p+ 2, p/Tn
denote the bootstrap or simulation draw of p, p.

Theorem B.4 (Uniform in P functional delta-method for bootstrap and other simu-
lation methods). Assume the conditions of Theorem hold. Let p,p and f)j‘;yp be maps as
indicated previously taking values in Dy such that r,,(pn.p — pp) ~ Zp and rn(ﬁfhp — Pn,P) ~B Zp
in D uniformly in P € P,. Then, X;;P = rn(¢(ﬁ;§,P) — ¢(pn,p)) ~B Xp = <;5;)P(Zp) uniformly in
PecP,.

B.4. Proof of Theorem Part (a) and (b) are a direct consequence of Lemma In
particular, Lemma (a) implies stochastic equicontinuity under arbitrary subsequences P, € P,
which implies part (b). Part (a) follows from Lemma (b) by splitting an arbitrary sequence

n € N into subsequences n € N’ along each of which the covariance function

(t,s) = cp,(t,s) := Pufsp, ft.p, — Pufs,p, Puftp,

converges uniformly and therefore also pointwise to a uniformly continuous function on (7', dr).
This is possible because {(¢,s) — cp(t,s) : P € P} is a relatively compact set in £*°(T" x T') in view
of the Arzela-Ascoli theorem, the assumptions in equation , and total boundedness of (T, dr).
By Lemma (b) pointwise convergence of the covariance function implies weak convergence to
a tight Gaussian process which may depend on the identity N’ of the subsequence. Since this

argument applies to each such subsequence that split the overall sequence, part (b) follows.

Part (c) is immediate from the imposed uniform covering entropy condition and Dudley’s metric
entropy inequality for expectations of suprema of Gaussian processes (Corollary 2.2.8 in van der
Vaart and Wellner (1996)). Claim (d) follows from claim (c¢) and a standard argument, based on

the application of the Borel-Cantelli lemma. Indeed let m € N be a sequence and

6m:=2""A sups d>0:supEp sup |Zp(t)— Zp(t)] <2725,
PeP dr(t,t)<8



42

then by the Markov inequality

Pp sup  |Zp(t) — Zp(D)] > 2™ | <272t =o™m,
dT(t,ﬂSém

This sums to a finite number over m € N. Hence, by the Borel-Cantelli lemma, for almost all states

we N |Zp(t)(w)—Zp(t)(w)] < 27™ for all dp(t,t) < 0y, < 27™ and all m sufficiently large. Hence

claim (d) follows. [

B.5. Proof of Theorem Claim (a) is verified by invoking Theorem [B.1l We begin by
showing that Z} = (Gp&fi.p)ier is equal in distribution to Zp = (Gp fi,p)ier, in particular, Z}
and Zp share identical mean and covariance function, and thus they share the continuity properties
established in Theorem [B.I] This claim is immediate from the fact that multiplication by & of each
feFp={fp:teT} yields a set {Fp of measurable functions {f : (w,&) — & f(w), mapping
W X R to R. Each such function has mean zero under P x P, i.e. [sf(w)dPe(s)dP(w) =0, and
the covariance function (£f,6f) — Pff — PfPf. Hence the Gaussian process (Gp(&f))ereers

shares the zero mean and the covariance function of (Gp(f))sers-

We are claiming that Z; p ~ Zp in £°°(T) uniformly in P € P, where Z; p := (Gn&fi p)ter. We
note that the function class Fp and the corresponding envelope Fp satisfy the conditions of Theorem
The same is also true for the function class {Fp defined by (w,§) — &fp(w), which maps
W xR to R and its envelope |£|Fp, since ¢ is independent of W. Let ) now denote a finitely discrete
measure over W x R. By Lemma [C.2] multiplication by £ does not change qualitatively the uniform
02 6Fm |- loz) < logsupg N(2~Lel|Fpllz Fr, | -
|@,2). Moreover, multiplication by & does not affect the norms, [£fp(W)lpxp2 = Ifr(W)llp2,

covering entropy bound: logsupg N (¢||[§]Fp|

since ¢ is independent of W by construction and E¢? = 1. The claim then follows.

Claim (b). For each § > 0 and ¢t € T', let w5t denote a closest element in a given, finite J-net over
T. We begin by noting that

Ap = sup |EBnh(Z;;7P) —Eph(Zp)|
heBLy
< Ip+Ilp+11Ip:= sup ‘Eph(Zp o 7T5) — Eph(Zp)’
heBL;
+ sup |Ep,h(Z;, poms;) —Eph(Zpoms)|+ sup |Ep,h(Z;, poms)—Ep,hMZ, p)l,
heBL; heBL;

where here and below BL; abbreviates BL; (¢°°(T)).
First, we note that
Ip <Ep| sup [Zp(t)—Zp#)|A2|=:pp(d), limsuppp(d)=0.
dr(t,5)<6 N0 pep

The first assertion follows from

Ip < sup Bplh(Z),poms) = h(Z3p)] < B (sup|Zp o mot) = Zp(0)] A 2) < up(d)
heBLy teT
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and the second assertion holds by Theorem [B.1] (c).
Second, we note that
Bplllp < Ep( sup |Z0p(t) = Zop@IA2) = up(6), lim sup [uh(6) — jup(8)] = 0.
dr (t,5)<6 n—o0 pep
The first assertion follows because EpLII1p is bounded by
Ep sup Eu,|W(Zip075) = h(Z3,p)] < BB, (5091200 75(0) = 25, p(0)] A2) < ().
heBL; teT

The second assertion holds by part (a) of the present theorem. Define €(d) := 0 V suppep pp(9).
Then, by Markov’s inequality, followed by n — oo,

lim sup sup Pp (IIIp > \/6(5)) < limsup suppep Hp(0) < suppep 11 (%) < Ve(0).
n—oo PepP n—0o0 6(5) 6(5)

Finally, by Lemma for each € > 0

lim sup sup Pp (IIp > ¢) = 0.
n—oo PeP
We can now conclude. Note that €(d) N\, 0 if § N\, 0, which holds by the definition of €(d) and the
property suppcp up(0) N\ 0 if § N\, 0 noted above. Hence for each ¢ > 0 and all 0 < § < . such

that 31/€(6) < ¢,

lim sup sup Pp (Ap > ¢) < limsup sup Pp <Ip +I1Ip+11Ip > 3\/6(5)) < Ve(0).

n—oo PeP n—oo PeP

Sending § N\, 0 gives the result. ]

B.6. Auxiliary Result: Conditional Multiplier Central Limit Theorem in R? uniformly
in P € P. We rely on the following lemma, which is apparently new. (An analogous result can
be derived for almost sure convergence from the well-known non-uniform multiplier central limit
theorems, but that way requires us to put all the variables indexed by P on the single underlying

probability space, which is much less convenient in applications.)

Lemma B.1 (Conditional Multiplier Central Limit Theorem in R? uniformly in P € P). Let
(Zip)2y be i.i.d. random wvectors on R?, indexed by a parameter P € P. The parameter P
represents probability laws on RY. For each P € P, these vectors are assumed to be independent
of the i.i.d. sequence (&), with B¢y = 0 and EE = 1. There exist constants 2 < q < oo and
0 < M < oo, such that EpZ; p = 0 and (Ep||Z1 p||7)"9 < M uniformly for all P € P. Then, for
every e >0

lim sup Pp sup

n
EBnh(n_l/Q Zfizi,p) . Eph(N(o,EPZLpZLP))’ el =0,
n—o0 pep heBL1 (R4) im1

where Ep, denotes the expectation over (&)1, holding (Z; p)I'_, fized.
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Proof of Lemma Let X and Y be random variables in R?, then define dpr(X,Y) :=
SUPpeBL, (re) [ER(X) — ER(Y)[. Tt suffices to show that for any sequence P, € P and N* ~

n V2 & Zip | (Zip))ys dBr (N*,N(O,Eanl,an{, P,)) — 0 in probability (under Pp,).

Following Bickel and Freedman (1981), we shall rely on the Mallow’s metric, written m,, which is
a metric on the space of distribution functions on R?. For our purposes it suffices to recall that given
a sequence of distribution functions { F;.} and a distribution function F', m,(F, F)) — 0 if and only
if [ gdFy, — [ gdF for each continuous and bounded g : R — R, and [ ||z||"dF)(z) — [ ||z||"dF(z).
See Bickel and Freedman (1981) for the definition of m,.

Under the assumptions of the lemma, we can split the sequence n € N into subsequences
n € N, along each of which the distribution function of Z1,p, converges to some distribution
function F’ with respect to the Mallow’s metric m,., for some 2 < r < ¢. This also implies that
N(0,Ep, Z1,p,Z] p,) converges weakly to a normal limit N (0,Q’) with Q' = [ 22'dF’(2) such that
|Q'|| < M. Both @’ and F’ can depend on the subsequence N'.

Let Fj be the empirical distribution function of a sequence (zi)le of constant vectors in RY,
where k € N. The law of N = k=172 Zle &z is completely determined by Fj and the law of £
(the latter is fixed, so it does not enter as the subscript in the definition of Nf, ). If m,(Fy, F') — 0
as k — oo, then dBL(N;;k, N(0,Q")) — 0 by Lindeberg’s central limit theorem.

Let [, denote the empirical distribution function of (Z; p,);" ;. Note that N* = Ng ~
nV2N" &7 p, | (Zip,)P-,. By the law of large numbers for arrays, [ gdF, — [gdF’ and
[ Iz||"dFyp(2z) = [ ||z]|"dF’(z) in probability along the subsequence n € N'. Hence m,(F,, F') — 0
in probability along the same subsequence. We can conclude that dpr,(Ng , N(0,Q")) — 0 in prob-
ability along the same subsequence by the extended continuous mapping theorem (van der Vaart
and Wellner, 1996, Theorem 1.11.1).

The argument applies to every subsequence N’ of the stated form. The claim in the first paragraph

of the proof thus follows. [

B.7. Donsker Theorems for Function Classes that depend on n. Let (W;)?2, be a sequence
of ii.d. copies of the random element W taking values in the measure space (W, Ayy), whose
law is determined by the probability measure P, and let w — f,+(w) be measurable functions
fat : W — R indexed by n € N and a fixed, totally bounded semi-metric space (T, dr). Consider

the stochastic process

n
(Gnfnp)ter = {n_1/2 D (fue(Wi) = an,t)}
i=1 teT
This empirical process is indexed by a class of functions F,, = {fn+ : t € T'} with a measurable
envelope function F,. It is important to note here that the dependency on n allows us to have the

class itself be possibly dependent on the law P,.
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Lemma B.2 (Donsker Theorem for Classes Changing with n). Work with the set-up above.
Suppose that for some fized constant ¢ > 2 and every sequence 6, \, 0:

1Fallpag = O),  sup | fas = faillp,2 =0,
dT(Sut)gan

On
| sup e N el Falloa, Pl - loa)de 0.
0o Q

(a) Then the empirical process (Gy, fni)ter ts asymptotically tight in ¢>°(T'). (b) For any subse-
quence such that the covariance function Py, fn sfnt — Pnfn,sPnfnt converges pointwise on T x T,
(G fut)ier converges in £°(T) to a Gaussian process with covariance function given by the limit

of the covariance function along that subsequence.

Proof. This is merely a restatement for subsequences of Theorem 2.11.22 in van der Vaart and
Wellner (1996, p. 220-221), stated for sequences. [

B.8. Proof of Theorems and The proof consists of two parts, each proving the corre-

sponding theorem.

Part 1. We can split N into subsequences {N'} along each of which
Znp,~ 2" €DyinD, pp, —p inD, (neN),

where Z’ and p’ can possibly depend on N'. It suffices to verify that for each N':

Tn(@(Pn,p,) — d(pp,)) ~ ¢y(Z') (n €N') (B.3)
r0(¢(Pn,p,) = ¢(pP.,)) = &py, (rn(Pn,p, = pP,)) ~ 0 (n €N, (B.4)
0(¢(Pn,p.) — 3(pP,)) — Sy (1 (Pn,p, — pP,)) > 0 (n € N'), (B.5)

where the last two claims hold provided that (p, h) — ¢;,(h) is defined and continuous on the whole
of D, x D. The claim is not needed in Part 1, but we need it for the Part 2.

The map g, (h) = rn(d(pp, + 1, th) — ¢(pp,)), from D, = {h € D : pp, +r,'h € Dy} to E,
satisfies g, (hn) — @), (h) for every subsequence h,, — h € Dy (with n € N'). Application of the
extended continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1) yields
E3).

Similarly, the map my,(h) = r,(¢(pp, + 1, 1h) — ¢(pp,)) — pp, (1), from Dy, = {h € D : pp, +
rth € Dy} to E, satisfies my,(hy) — ¢/, (h) — ¢,(h) = 0 for every subsequence h, — h € Do
(with n € N). Application of the extended continuous mapping theorem (van der Vaart and
Wellner, 1996, Theorem 1.11.1) yields . The proof of is completely analogous and is

omitted.

To establish relative compactness, work with each N'. Then qb;JPn(h) mapping Dy to E satis-
fies ¢y, (hn) — ¢/,(h) for every subsequence h, — h € Dy (with n € N'). Application of the
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extended continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1) yields
that gb;,Pn(Zp) ~ qb;/(Z’).
Part 2. We can split N into subsequences {N'} as above. Along each N/,

Tn(Pr.p, — PP,) ~ Z"e€DyinD, rn(pnp, —pp,)~ 2 €DyinD, pp, = p inD, (neN),

where Z" is a separable process in Dy (which is given by Z’ plus its independent copy Z’). Indeed,
note that 7.(p, . —pp,) =2, p + Znp,, and (Z}, p , Zn p,) converge weakly unconditionally to
(Z',Z') by a standard argument.

Given each NN the proof is similar to the proof of Theorem 3.9.15 of van der Vaart and Wellner
(1996). We can assume without loss of generality that the derivative Qﬁ’p, : D — E is defined and
continuous on the whole of D. Otherwise, if (;S;, is defined and continuous only on Dy, we can extend
it to D by a Hahn-Banach extension such that C' = [|¢/,[|p,—E = [|¢/, [[pE < 0o (see van der Vaart
and Wellner (1996, p. 380) for details). For each N, by claim , applied to p, p, and to Z)j‘; P,

replacing p,.p,,

n(¢(Pn.p,) — ¢(pp,)) = &, (rn(Pn.p, — pP,)) + 0p, (1),
rn(0(0y,p,) — 8(pp,)) = &, (ra(P], p, — PP,)) + 0p, (1)

)

Subtracting these equations conclude that for each € > 0

Ep, 1 (|[ra(@(@.p,) = 6B0r)) = Oy (ralBhp, = Pr.r,))

; > s) -0 (neN). (B.6)

For every h € BL1(E), the function hog/, is contained in BL¢(D). Moreover, r(p, p—pn,p) ~>5 Zp
in D uniformly in P € P,, implies r, (ﬁ; p — Pn,p) ~B Z' along the subsequence n € N'. These two

facts imply that

sup B, b0 (ra(hp, — ur)) = Bh(6p(2))] = 0, (1) (e N).
heBL (E)

Next for each € > 0 and along n € N

0 [Enh(ra(0(F,p,) = 6Fnr.))) = B (¢ (a(Brp, = Pe))]

*

<s+2E3n1< IE>e) = op, (1),

rn((Pr,p,) = ¢(Pn.pP,)) — 8y (rn(D7,,p, = Pr,p))

where the op, (1) conclusion follows by the Markov inequality and by . Conclude that

sup_[Ep,h(rn(0(B.p,) — 6(Bur,))) = BR(0(Z)| = 0}, (1) (n € W),
heBL (E)
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ApPPENDIX C. KEY TooLS II: PROBABILISTIC INEQUALITIES

Let (W;)I", be a sequence of i.i.d. copies of random element W taking values in the measure
space (W, Ay) according to probability law P. Let F be a set of suitably measurable functions
f: W — R, equipped with a measurable envelope F': W — R.

The following maximal inequality is due to Chernozhukov, Chetverikov, and Kato (2012).

Lemma C.1 (A Maximal Inequality). Work with the setup above. Suppose that F' > supsc x| f]
is a measurable envelope with ||F| p, < 0o for some q¢ > 2. Let M = max;<, F(W;) and 0 > 0 be
any positive constant such that sup e r HfoDQ <o’ HFHfD2 Suppose that there exist constants
a>=e andv > 1 such that

Q2 F [ - |

log sup N (|| F| 0.2) <v(loga+log(1l/e)), 0 <e< 1.
Q

Then

F M o
EP[HGnH]-'] < K (\/UO‘2 log <CLH O—HP,Q) + UH ||Pp,2 IOg <CL|||

N am))’

where K s an absolute constant. Moreover, for every t > 1, with probability > 1 — /2,

1Gall7 < (1 + a)ER[[|Gnll 7] + K(q) [(0 + 02 Mlpp ) VE+ 04_171_1/2IIMHPP,24, va >0,

where K(q) > 0 is a constant depending only on q. In particular, setting a > n and t = logn, with

probability > 1 — c(logn)~!,

F M F
IGall < K(a:0) (a\/vlog<“” ez 4 t2eea o, (2] ”P’Q)), (©1)
o N4D o

where | M||p, 4 < n'/9||F|p, and K(g,c) > 0 is a constant depending only on q and c.

Lemma C.2 (Algebra for Covering Entropies). Work with the setup above.
(1) Let F be a VC subgraph class with a finite VC index k or any other class whose entropy is
bounded above by that of such a VC subgraph class, then the uniform covering entropy of F obeys:

SgplogN(ellFllQ,%f, I llQ2) S 1+ klog(1/€) v O

(2) For any measurable classes of functions F and F' mapping W to R

log N(e|| F + F'llg2. F + F', || - llg2) <log N (5l Fllgz2 F. I - l@z2) +1og N (51 F [z F, I - lg2)
log N(e||F - F'llg2, F - F', || - llg.2) <log N (51 Fllgz2: F. |l - lo.2) +1og N (51 lg.2, 71l - lg.2) »
N(elF'V Flllg2, FUF, |- llo2) < N (ellFllg2, F, I - lo2) + N (el F'llg2, 7', I - lg.2) -

(8) Given a measurable class F mapping VW to R and a random variable & taking values in R,

log Sup N(ell[E]FllQ2: €F5 I - lQ.2) < log SgPN (/2 FllQ.e: I - |

Q.2)

where supremum is taken over finitely-discrete measures Q@ over W x R.
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Proof. For the proof (1)-(2) see, e.g., Andrews (1994a) and (3) follows from (2). [

Lemma C.3 (Covering Entropy for Classes obtained as Conditional Expectations). Let
F denote a class of measurable functions f : W x Y — R with a measurable envelope F. For
a given f € F, let f: W — R be the function f(w) := [ f(w,y)dpw(y) where wy, is a regular
conditional probability distribution over y € Y conditional on w € W. Set F = {f feF} and let
F(w) := [ F(w,y)duy(y) be an envelope for F. Then, forr,s > 1,

Qm,f, H i ||Q,T) < logsgpN((6/4)T“|FHQ"87-F7 ” : HQ:s)v

log sup N (¢|| F|
@ Q

where Q belongs to the set of finitely-discrete probability measures over W such that 0 < ||F||g, <
oo, and @ belongs to the set of finitely-discrete probability measures over W x ) such that 0 <
HFH@ s < 00. In particular, for every e >0 and any k > 1

logsgpN(e,f, I+ llge) <logsup N(e/2,F, || - [l5,)-
Q

Proof. The proof generalizes the proof of Lemma A.2 in Ghosal, Sen, and van der Vaart (2000).
For f,g € F and the corresponding f,§ € F, and any probability measure @ on W, by Jensen’s
inequality, for any k£ > 1,

Eqllf — g1*] = Eoll [ (f — 9)dpw ()] < Eqlf1f — 9*dpw(y)] = Egllf — gI*]
where dQ(w,y) = dQ(w)dp.,(y). Therefore, for any € > 0
SlleN(Eaf7 || ’ ||Q,k‘) < SgpN(e,./T, || : HQ,I{) < SEPN(G/l]'—a || : ”@’k)a
Q

where we use Problems 2.5.1-2 of van der Vaart and Wellner (1996) to replace the supremum over
Q) with the supremum over finitely-discrete probability measures @

Moreover, |[Fllg, = EqlP(w)] = Eqlf F(w,y)dimu(y)] = EgIF(w,y)] = |Flig,. Therefore
taking k =1,

supg N (e[| Fllg, . [l - o) < supg N (el Flig.s, 7.l llg.1)
< supg N((e/DFllg 1 F - 5.1) < supg N(€/2)1Fll .00 F 1 -l )
where we use Problems 2.5.1-2 of van der Vaart and Wellner (1996) to replace the supremum over

Q with the supremum over finitely-discrete probability measures é, and then Problem 2.10.4 of
van der Vaart and Wellner (1996) to argue that the last bound in weakly increasing in s > 1.

Also, by the second part of the proof of Theorem 2.6.7 of van der Vaart and Wellner (1996)

Sup N(ellFllgr F: [l - llor) < Sup N((e/2)"[[Fll@1: F: - lQ.1)-
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Comment C.1. Lemma extends the result in Lemma A.2 in Ghosal, Sen, and van der Vaart
(2000) and Lemma 5 in Sherman (1994) which considered integral classes with respect to a fixed
measure p on Y. In our applications we need to allow the integration measure to vary with w,

namely we allow for u,, to be a conditional distribution. ]

APPENDIX D. PROOFS FOR SECTION 4

D.1. Proof of Theorem The results for the two strategies have similar structure, so we only
give the proof for Strategy 1.

STEP 0. (Preparation). In the proof a < b means that a < Ab, where the constant A depends on
the constants in Assumptions [4.1| and |4.2| only, but not on n once n > ng = min{j : §; < 1/2}, and
not on P € P,,. We consider a sequence P, in P,, but for simplicity, we write P = P, throughout
the proof, suppressing the index n. Since the argument is asymptotic, we can assume that n > ng

in what follows.

To proceed with the presentation of the proofs, it might be convenient for the reader to have the
notation collected in one place. The influence function and low-bias moment functions for ay (z)
for z € Z ={0,1} are given respectively by:

1(Z =2)(V —g(z X))
m(z, X)

@D%’Z(W) = qzz)?/,z,gv,mz (W’ Oév(Z)), w%’,z,g,m(vvv Oé) = + g(Z, X) - Q.

The influence function and the moment function for vy are ¢, (W) = (W, yy) and (W, ) =
V — 7. Recall that the estimator of the reduced-form parameters ay (z) and vy are solutions

a = ay(z) and v = 7y to the equations:

En[v, 5, 7, W, )] = 0, By 1y, (W,7)] =0,
where gy (z,2) = Av(f(z,2)By), mz(1,2) = Az(f(x)'Bz), and mz(0,z) = 1 — mz(1, ), where
By and By are estimators as in Assumption For each variable V € V),

Vu = (Vuj)js'zl = (Yw 10(D)YU7 IO(D)v ll(D)Yua 11(D)),

we obtain the estimator p, = ({&V(O),&V(l)ﬁv})‘/evu of py:= ({aV(O),av(l),ny})Vevu. The
estimator and the estimand are vectors in R% with a fixed finite dimension. We stack these vectors

into the processes p = (pu)uey and p = (pu)ueu-

STEP 1.(Linearization) In this step we establish the first claim, namely that
V(P —p) = Znp+op(l) inD=2U), (D.1)

where Z,, p = (ang)ueu and ¢l = ({1/1\0},071#{7,171?3/})\/612“- The components (\/ﬁ(;Y\VuJ - 'YVuj))uEM
of /n(p — p) trivially have the linear representation (with no error) for each j € J. We only need
to establish the claim for the empirical process (v/n(av,,(z) —av,;(?)))ueu for z € {0,1} and each
j € J, which we do in the steps below.
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(a) We make some preliminary observations. For t = (t1,ts,t3,t4) € R? x (0,1)? and v € R,
(2,2) € {0,1}2, we define the function (v, z, 2, t) — (v, 2, Z,t) via:
lz=1)(v—t 1(z=0)(v—t

GVt 1e=00-t)
t4 t3
The derivatives of this function with respect to t obey for all k = (k~);’~‘:1 eN*:0< |k <3

QP(UwZalat) = + 1.

0F (v, 2,2,t)| < L, Y(v,%,2,t): |v] <C,t1],|t2] < C,¢'/2 < |ts], |ta] <1-¢/2, (D.2)

where L depends only on ¢ and C, |k| = Zj:1 k;, and OF := Bfll 8@285533&4.
(b) Let

hv (X) == (gv(0,X),gv (1,

hy (X) := (gv (0, X), gv (1, X),1 -

Fav (W) = 0(V, Z, 2, hy (X)),

Jry vz (W) = 0(V, Z, 2, hy (X)).

We observe that with probability no less than 1 — A,

1= Z( X),mz(l,X))/,

X)
) Z( X)va(le))/a

3

)

gv(0,-) € Gv(0), gv(1,-) € Gy(1), mz(1,-) € M(1), mz(0,-) € M(0) =1- M(1),
where

z = Av(f(z,2)'8) : [IBllo < sC

Gy (z) == AV (f(z, X)'B) = gv (2, X)|lp2 S Sun~ /% 5,
[Av(f(2, X)B) — gv(z, X)|lPeo S €n
z = Az (f(@)'B) : [|Bllo <

M(1) = [Az(f(X)B) —mz(L, )HP,z < Spn /4
[Az(f(X)'B) —mz(1, X)||poc S €n

To see this, note that under Assumption [£.2)for all n > min{;j : §; < 1/2},

[AZ(f(X)'B) —mz(1, X)|lp2 < [Az(F(X)'B) = Az(f(X)'Bz)| P2+ lr2(X)]lp2
SNOAzllooll F(X)' (B = Bz) P2 + Irz(X)p2
S NOAZl|oollF(X) (B = B2) B2 + 72(X) P2 S Gn ™M/
[AZ(f(X)B) —mz(1, X)lpoe < Az(F(X)'B) — Az(f(X) Bz) (X)
< [[0Azloo | £(X)' (B — B2) (X Poo
S KnllB =Bzl + en < 26n,

for B = Bz, with evaluation after computing the norms, and for ||OA| s denoting sup;cp |OA(1)]
here and below. Similarly, under Assumption

IAV(F(Z,X)'B) = gv(Z,X)lp2 S I0AV Il (2, X)' (B = Bv)lle,.2 + lrv(Z, X) P2 S 6an ™/
1AV (f(Z, X)'B) = gv(Z, X)peo < KallB = Bvi+en < 260,
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for f = By, with evaluation after computing the norms, and noting that for any 3
[Av(f(0,X)'B) = gv (0, X)|lp2 V [[Av (f(1, X)'B) — gv (1, X)lp2 S AV (f(Z, X)'B) — gv(Z, X))l P2
under condition (iii) of Assumption and
[Av(£(0,X)'B) — gv (0, X)lI oo V [[Av(f (1, X)'B) — gv (1, X)ll .o < 1AV (f(Z, X)'B) = gv(Z, X)|lP,oo
under condition (iii) of Assumption
Hence with probability at least 1 — A,,,
EV € HV,n = {h = (§(07 )7.@(17 ')7mZ(O7 ')7mZ(17 )) € gV(O) X gv(l) X M(O) X M(l)}
(c) We have that
aV(Z) = EP[th,V,z] and a(z) = En[fﬁ‘/’\/’zh
so that
\/ﬁ(aV(z) - Oév(Z)) = Gn[fhv,V,z] + Gn[fh,V,z - fhv,V,z] + \/ﬁ P[fh,V,z - th,V,z]a

Iy (2) ITy(2) II1y(2)

with h evaluated at h = EV.
(d) Note that for
Av,i = (Arvi, Dovi, Agvi, Aavi) = h(Xi) — by (Xi), AV, = AT AR AR Al

IIy(z) = VoY Plofe(Vi Zioz hy (X)) AL
k=1
+ VY 2 PV, Ziy 2 by (X)) AL ]
|k|=2
+ VY 6 / (07 ¢(Vi, Ziy 2, hy (X3) + My A JdA,
k=3 0

= IIT%(2) + I1T(2) + ITIS(2),

with h evaluated at h = h after computing the expectations under P.

By the law of iterated expectations and the orthogonal property of the moment condition for

ay,
Ep[0Fo(Vi, Zs, 2z, hy (X)) | Xs] =0 Ve e N*: |k| =1, = III&(z) =0.

Moreover, uniformly for any h € Hy,,, in view of properties noted in Steps (a) and (b),
[ITT(2)] S Vallh = hylba S Va(6.n™ %) < 67,

11T (2)| < < Vn(G,n~ )26, < 62,
Since /ﬁv €EHyp forall VeV={V,:uecl,je j} with probability 1 — A,,, for n > ng,

Pp(|IIIV(z)| <02.Vz e {0,1},VV € V) >1- A,

~ °n?
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(e) Furthermore, with probability 1 — A,

sup max [I1y(z)| < sup Galfh,v,e] = Gnlfny, vl
vep z€{0,1} heMy n,2€{0,1},VEV

The classes of functions,
Vi={Vyj:ueld,jeJ} and V' :={gy,,(Z,X):uecl,jc T}, (D.3)

viewed as maps from the sample space W to the real line, are bounded by a constant enve-
lope and obey logsupg N (e, V, || - [lg,2) < log(e/e) V 0, which holds by Assumption (ii), and
logsupg N (e, V*, || - [lg.2) < log(e/e) V 0 which holds by Assumption (ii) and Lemma The

uniform covering entropy of the function sets

B={1(Z==%):2€{0,1}} and M* = {my(2,X) : z € {0,1}}
are trivially bounded by log(e/e) V 0.
The class of functions
G:={Gv(2): VeV ze{0,1}}

has a constant envelope and is a subset of
{(2,2) = A(f(z,2)'B) : [|Bllo < sC,A € L={Id, ®,1 — @, Ao, 1 — Ao}},
which is a union of 5 sets of the form

{(z,2) = A(f(z,2)'8) : | Bllo < sC}

with A € £ a fixed monotone function for each of the 5 sets; each of these sets are the unions of
at most (é’; ) VC-subgraph classes of functions with VC indices bounded by C’s. Note that a fixed
monotone transformations A preserves the VC-subgraph property (van der Vaart and Wellner, 1996,
Lemma 2.6.18). Therefore

log Sup N(e, G| - llo2) < (slogp+ slog(e/e)) v 0.

Similarly, the class of functions M = (M(1)U (1 —M(1))) has a constant envelope, is a union of
at most 5 sets, which are themselves the unions of at most (szs) VC-subgraph classes of functions
with VC indices bounded by C’s (a fixed monotone transformations A preserves the VC-subgraph
property). Therefore, logsupg N (e, M, |- [lg.2) S (slogp + slog(e/e)) V0.

Finally, the set of functions
TIn = {fh,V,z — thJ/,z Lz E {0, 1}, Ve V,h (S ’HV,n},

is a Lipschitz transform of function sets V, V*, B, M*, G, and M, with bounded Lipschitz coeffi-

cients and with a constant envelope. Therefore,

logsup N (€, Tn, || - [[,2) < (slogp + slog(e/e)) V0.
Q
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Applying Lemma with o, = C"6,n~ Y4 and the envelope J, = C’, with probability 1 — A,

for some constant K > e

sup max |IIy(z)| < sup |Gu(f)]
vey 2€{0,1} fE€Tn

< <\/sa,%log(vaVUn1) + jﬁlog(p\/K\/agl)>

< (\/8(5%71‘”2 log(pV n)+ \/5271_1 log%(p v n)>

S (0n0y/* + 8/2) S 812

Here we have used some simple calculations, exploiting the boundedness condition in Assumptions

and to deduce that

sup [[fllpe < sup b —hv|p2 <6 Yt S o < ullpes
ijn hE'HV,n,VEV

by definition of the set Hy,,, so that we can use Lemma [C.1} We also note that log(1/d,) < log(n)
by the assumption on 8, and that s?log®(p V n)log?(n)/n < 6, by Assumption (1)

(f) The claim of Step 1 follows by collecting Steps (a)-(e).
STEP 2 (Uniform Donskerness). Here we claim that Assumption implies that the set of
vectors of functions (¢f))yey is P-Donsker uniformly in P, namely that

Znp ~ Zp inD=L2U)%, uniformly in P € P,

where Z,, p = (G} uer and Zp = (G pil)yey. Moreover, Zp has bounded, uniformly continuous

paths uniformly in P € P:

sup Epsup ||Zp(u)|| < oo, limsup Ep sup | Zp(u)— Zp(a)|| =0.
PeP  weld NOPeP  dy(u,i)<e

To verify these claims we shall invoke Theorem

To demonstrate the claim, it will suffice to consider the set of R-valued functions ¥ = (¢, : u €
U,k € [d,]). Further, we notice that Gnyy, = Gnf, for f € F,

{ HZ =2}(V - gv(z X))
mz(z, X)

and that Gp), = G, f, for f =V € V. Hence Gy, (¢ur) = Gu(f) for f € Fp = FoUF UV. We
thus need to check that the conditions of Theorem apply to Fp uniformly in P € P.

F. =

—i—gv(z,X),VeV}, z=0,1,

Observe that F, is formed as a uniform Lipschitz transform of the function sets B, V, V* and
M?* defined in Step 1(e), where the validity of the Lipschitz property relies on Assumption [4.1f(iii)
(to keep the denominator away from zero) and on boundedness conditions in Assumption (iii)
and Assumption (iii). The function sets B, V, V* and M* are uniformly bounded classes that
have the uniform covering entropy bounded by log(e/€) V 0 up to a multiplicative constant, and so

F, which is uniformly bounded under Assumption has the uniform covering entropy bounded
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by log(e/e) V 0 up to a multiplicative constant (e.g. van der Vaart and Wellner (1996)). Since Fp
is uniformly bounded and is a finite union of function sets with the uniform entropies obeying the
said properties, it also follows that Fp has this property, namely:

sup sup log N (e, Fp, || - lg,2) < log(e/e) V0.
PeP Q

Since [;~ y/log(e/€) V 0de = e\/7/2 < oo and Fp is uniformly bounded, the first condition in 1)
and the entropy condition (B.2)) in Theorem hold.

We demonstrate the second condition in (B.1). Consider a sequence of positive constants e
approaching zero, and note that
sup  max ||ur — Yakllpe S sup  ||fu — fallp2
dyy (u,@) <e F<dp dyy (u,i)<e
where f, and f; must be of the form:
HZ = z}(Uu — gu, (2, X)) HZ = 2}(Ua — gu, (2, X))
mz(Z,X) mZ(ZaX)
with (Uy, Us) equal to either (Y3, Ys) or (14(D)Yy, 14(D)Ys), for d =0 or 1, and z =0 or 1. Then

+ gv, (2, X),

+gUﬂ(Z7X)7

sup || fu — fallp2 S sup [|Yy — Yallp2 — 0,
Pep Pep

as dy(u, ) — 0 by Assumption [4.1{(ii). Indeed, suppcp || fu — fal
from a sequence of inequalities holding uniformly in P € P: (1)

1fu = fallp2 S 1Uu = Uallp2 + llgv, (2, X) = gus (2, X))

which we deduce using the triangle inequality and the fact that mz(z, X) is bounded away from
zero, (2) |U, — Uzl

P2 Ssuppep || Yy — Yal p2 follows

P2,

p2 < ||Yy — Yal|p2, which we deduced using the Holder inequality, and (3)
l9v. (2, X) = gus (2, X) | 2 < [|Uu — Ual| 2,

which we deduce by the definition of gy, (2, X) = Ep[Uy| X, Z = 2] and the contraction property of

the conditional expectation. ]

D.2. Proof of Theorem The proof will be similar to the proof of Theorem and as in

that proof we only focus the presentation on the first strategy.

STEP 0. (Preparation). In the proof a < b means that a < Ab, where the constant A depends on
the constants in Assumptions 4.1 and |4.2| only, but not on n once n > ng = min{j : ; < 1/2}, and
not on P € P,. We consider a sequence P, in P, but for simplicity, we write P = P,, throughout
the proof, suppressing the index n. Since the argument is asymptotic, we can assume that n > ng

! on points (&, W;) for i =1, ..., n.

in what follows. Let P,, denote the measure that puts mass n~
Let E,, denote the expectation with respect to this measure, so that E, f = n~* Som oy f(&, Ws), and

Gy, denote the corresponding empirical process v/n(E, — P), i.e.

an = \/ﬁaEnf - Pf) = n_1/2 Z <f(§z= Wz) - /f(s7w)dpf(3)dp(w)> .
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Recall that we define the bootstrap draw as:

np=Vn(p"—p) = (\/17—1 ;&JZ(WiO = (aniﬁ) ,

ueU
ueU

since P[¢1] = 0 because ¢ is independent of W and has zero mean. Here ¢f = (QZ"})VGW, where

FLW) = (¥050.my W80 (0), 6 5, (W B (1), 6 (W, 30)}, s @ plugrin estimator of the
influence function 1.

STEP 1.(Linearization) In this step we establish that
Gop = Znp—Grp=op(l), for G p:=(Guétl)ucy, nD=E2U)Y, (D.4)
where (¢ p = (u,p(Dn,Byp) is a linearization error, arising completely due to estimation of the

influence function; if the influence function were known, this term would be zero.

For the components (v/n(7; —Jv))vey of vn(p* — p) the linearization follows by the represen-

tation,

V(v —Av) = Gnéiby, — (v — w)Gné,
~—_——
Iy
for all V € V, and noting that supy¢y, | 1| = supyey |3y — 1)||Gné| = Op(n=1/2), for V defined
in (D.3) by Theorem and by |G,¢| = Op(1).
It remains to establish the claim for the empirical process (\/ﬁ(&’{/uj (2) — av,; (2)))ueu for z €
{0,1} and j € J. As in the proof of Theorem 4.1, we have that with probability at least 1 — A,

hy € Hyn = {h = (Gv(0,-),gv (L, ),mz(0,),mz(1,-)) € Gy (0) x Gy (1) x M(0) x M(1)}.
We have the representation:

V(@ (2) = v (2)) = Gultt. + Guléfy . — Efnyvial — (@ (2) — av(2))Gaé,

1% (=)
where supycy .cqo13(@v(2) —av(z)) = Op(n=1/?) by Theorem

Hence to establish supy-¢y, |11}, (2)| = op(1), it remains to show that with probability 1 — A,

sup ’Gn[éfﬁv Ve 'thvyV,Z” < sup ‘Gn(f)‘ = OP(1)>
2€{0,1},VeV ” fEETn

where

TIn = {fh,V,z — fhv,V,z Lz e {0, 1},V eV, he HV,n}‘

By the calculations in Step 1(e) of the proof of Theorem Jn obeys logsupg N (€, Tn, || - [|@.2) S
(slog p+slog(e/e)) V0. By Lemma|C.2] multiplication of this class by & does not change the entropy

bound modulo an absolute constant, namely

log Sgp N(ellJull@2, ETn: |l - ll@,2) S (slogp + slog(e/e)) VO,
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where the envelope J, for {7, is |£| times a constant. Also, Elexp(|{])] < oo implies that
(E[max;<,, |&]?])"/? < logn. Thus, applying Lemma with ¢ = 0, = C'6,n~"/* and the en-

velope J,, = C'|¢|, for some constant K > e

slogn

NG
< <\/ s62n=1/2log(p V n) + \/ s?n~1log?(p V n) logz(n)>

S (3011 +012) S (01/%) = op(1),

sup [Gu(f)] < <\/saglog(vavU;1)+

log(pVv KV 0n1)>
fesdn

for supsee s, 1fllp2 = supses, |fllp2 S on; where the details of calculations are the same as in
Step 1(e) of the proof of Theorem

Finally, we conclude that

I¢o,pllp < sup [Iy[+  sup |11y | = op(1).
vey Vev,ze{0,1}

STEP 2. Here we are claiming that Z* , ~p Zp in D, under any sequence P = P,, € P,, where
Zp = (Gph)yecy- We have that

sw |Ep,h(Z; p) ~Eph(Zp)| < sup |Ep,h(G;p) — Eph(Zp)| + Es, (I plio A 2)
heBL; (D) heBL; (D)

where the first term is 0 (1), since G}, p ~p Zp by Theorem w and the second term is op(1)
because [|(; pllp = op(1) implies that Ep(||(; pllp A 2) = EpEg, (|, pllp A 2) — 0, which in turn
implies that Ep, (|[¢;; pllp A 2) = op(1) by the Markov inequality. [

D.3. Proof of Corollary This is an immediate consequence of Theorems and
B.4 ]

APPENDIX E. PROOFS FOR SECTION 5

E.1. Proof of Theorem In the proof a < b means that a < Ab, where the constant A
depends on the constants in Assumptions but not on n once n > ng, and not on P € P,.
Since the argument is asymptotic, we can assume that n > ng in what follows. In order to establish
the result uniformly in P € P,, it suffices to establish the result under the probability measure
induced by any sequence P = P,, € P,. In the proof we shall use P, suppressing the dependency

of P, on the sample size n.

Throughout the proof we use the notation

B(W) := max sup
J€ldol,kEldg+dt] O, x Ty, (Zu) ucld

r = 7 (Vsnlog(an) +nsunt log(an) ) (E.2)

aukEP[@buj(WmV) | Zu]|, (E.1)
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Step 1. (A Preliminary Rate Result). In this step we claim that with probability 1 — o(1),
sup ng — 0y < -
ueU

By definition

IEntou (W, 0, hu(Z0))|| < (B (W, 0, hu(Zu))| + €n for each u € U,

which implies via triangle inequality that uniformly in v € U with probability 1 — o(1)
| PluWe, B b Z))]| < en + 28 + 28 S 7 (:3)

for I} and Iy defined in Step 2 below. The < bound in (E.3) follows from Step 2 and from the
assumption €, = o(n~'/2). Since by Assumption (iv), 2*1(\|Ju(§u —0,)|| Aco) does not exceed the
left side of (E.3) and inf,c mineig(J,,.J,,) is bounded away from zero uniformly in n, we conclude

~1/2

that sup,,cy, ||§u — 0y < (infyery mineig(J),J,,)) Tn S Th.

Step 2. (Define and bound I; and I3) We claim that with probability 1 — o(1):

Iy = sup ‘ Enwu(Wm Ovﬁu(zu)) - Enwu(WU7 07 hu(Zu))H S, Tn,
€O, ,ucld

I, = sup ‘ En%(Wu, 0, hu(Zu)) - Pwu(Wm 0, hu<Zu))H S Tn-
€Oy, ucld

To establish this, we can bound I; < I, + I1p and s < 14, where with probability 1 — o(1),

h, = sup |Bva (W0, 1(20)) = Pu(Wa, 0, 0(Z,)|| S 70
0€0y,ucl ,h€HynU{hy}

Ly = sup | Pou(We, 0,0(20)) = Pu(Ws6, hu(Z2))]| < 70
0€0y uel ,heHynU{hyu}

These bounds in turn hold by the following arguments. In order to bound Iy; we employ Taylor’s
expansion and triangle inequalities. For h(Z,u,,6) denoting a point on a line connecting vectors
h(Z,) and hy(Z,), and t,, denoting the mth element of the vector t,

dg dy
1 < PamP u'Wu,H,iLZ, 7.79 Zu hm Zu _hum Zu
o S NN s PP B0V 5205 0012 (b Z2) — hun(Z0))

< dodi||Bllp2 max [1hm — huml| P2,
UEU,hEH yn,mE[d¢]

where the last inequality holds by the definition of B(W) given earlier and the Holder’s inequality.

By Assumption(ii)(c), | Bllp2 < C, and by Assumption SUDyers heHun,meldy] 1m—Pumll P2 S
Tn, hence we conclude that Iy, < 7, since dy and d; are fixed.

In order to bound I, we employ the maximal inequality of Lemma to the class

F1 = {¢uj(Wu,9,h(Zu)) 1] € [d@],u eEU,0 €Oy, h € HynU {hu}},



58

defined in Assumption[5.3|and equipped with an envelope Fy < Fjp, to conclude that with probability
1—o0(1),

L, < n_1/2< sp log(ay) + n_l/anné log(an)) < Tn.

Here we use that log supg N (|| Fil|Q,2, 1, [|-lg,2) < snlog(an/€)VO0 by Assumption |Follpg < C
and sup ez, HfH%D2 <o’ HFOH%2 for ¢ < 0 < C by Assumption (i); an = n and s, > 1 by

Assumption [5.3} and (E.2).

Step 3. (Linearization) By definition
VB (Wa, b i Z) < ok VB (W, 0, B Zu))]| + enn /2
Application of Taylor’s theorem and the triangle inequality gives that for all u € U

| VAE M6 (Was O, hu(Z0)) + Jun/m(Bu = 0u) + Dol = )

< enV/n + sup ( inf /nlEntpu(Wa, 0, hu(Za))|| + [T (u)]| + [ 1T (u )H) =op(1),
ueld \ 0€6y

where the terms II; and 115 are defined in Step 4; the op(1) bound follows from Step 4, €,1/n = o(1)
by assumption, and Step 5; and
dg
Duo(hu — ha) ( Z VnP [&m [V (Wats O e Z0)| Za) (R (Z2) — hum%))}) =0,
j=1
by the orthogonality condition. Conclude using Assumption (iv) that

NE o (Was s hu(Za) + v/(By, = 0,)|| < 0p(1) sup(mineg(J,Ju) /%) = op(1),

ueU

sup
ueU

Furthermore, the empirical process (—v/nEyJ, 19y, (Way, 0u, hy(Z4)))uey is equivalent to an em-

pirical process G, indexed by
Fp = {zﬂu] 2 J € [dgl,u EU},

where 1), is the j-th element of —.J, 14, (Wi, 0y, hy(Z,)) and we make explicit the dependence of
Fpon P. Let M = {My;i, : j,k € [dg],u € U}, where M,y is the (j, k) element of the matrix J, 1.
M is a class of uniformly Holder continuous functions on (U, d;) with a uniform covering entropy
bounded by log(e/€) V 0 and equipped with a constant envelope C, given the stated assumptions.
This follows from the fact that by Assumption [5.2{ii)(b)
e (Mg = Magel <177 = T = 197 (Fu = Ja) T3
< | = Jallsup TP S flu— a2, (E.4)
ael

and the constant envelope follows by Assumption [5.1[iv). Since Fp is generated as a finite sum
of products of the elements of M and the class Fy defined in Assumption the properties of
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M and the conditions on Fy in Assumption (ii) imply that Fp has a uniformly well-behaved

uniform covering entropy by Lemma [C.2] namely

sup logsup N(e||[CFyllg,2, Fp, - llg.2) < log(e/e) VO
PEP:Un;nO'Pn Q

where Fp = CFp is an envelope for Fp since sup ez, |f| < supyey ||y 1 supser, |f| < CFy by
Assumption [5.2{i). The class Fp is therefore Donsker uniformly in P because suppep || Fp|pq <
C'suppep || Follp,q is bounded by Assumption (ii), and sup pep |[tu — ¥allp2 — 0 as dy(u,u) — 0
by Assumption b) and . Application of Theorem gives the results of the theorem.

Step 4. (Define and Bound I and I13). Let I1i(u) := (I11;(u ))d9 and [r(u) = (I1y(u ))J 1

where

IIl] Z \fP al/kal/rp[wu](wu?yu( usJ ))|Z ]{Vur( u)_Vur(Zu)}{ﬁuk(Zu)_Vuk(Zu)}]a

rk=1

1155 (u) = G () (Waas s he(Z0)) — g (W s hu(Z2))),

where vy (Zy) = (uk(Zu), = (0l hi(Z0))s Du(Z) = Our(Zu)2, = (0, hu(Z4))s dy =
dg + dy, and ©,(Zy, j) is a vector on the line connecting v, (Z,) and v,(Z,).

First, by Assumptions (ii)(d ) and m the claim of Step 1, and Holder inequality,

max sup |I] nP [C|0(Zy) — vr (Zu)||Vk(Z4) — vk (Zu
ey Tt rkzlf 91(20) = v (ZAZ0) ~ s (2]

< CVnd; max 17 = vkl b2 Sp Vi = o(1).
€ldy ’

Second, we have that with probability 1 — o(1),

max sup |/ 12;(u)| S sup |Gn(f)]
J€lde] ueu feEF2

where, for ©,, :={0 € 0, : ||0 —0,| < C7,},
f? = {¢UJ(WU7 07 h(Zu)) - 7vbuj(‘/v1u 9’11,7 hu(Zu)) : j € [d9]7u € U, h € Hun7‘9 € eun}
Application of Lemma with an envelope Fy < Fpy gives that with probability 1 — o(1)

1
fsup 1Gn(f)| < 7'7?/2 sp log(an) + n1/2s na log(an), (E.5)
cF2

since supsez, |f| < 2supper, |f| < 2Fy by Assumption n; | Follpqy < C by Assumption (i);
logsupg N (el F2llg.2, F2, |l - lg2) S (snlogan + snlog(an/e)) V O by Lemma because Fp =
Fi1 — Fo for the Fy and F; defined in Assumptions [5.2(i) and and o can be chosen so that
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2
supger, [[fllp2 <o S 722 Indeed,

sup Hf‘|12f’,2 < sup P (P[(ij(Wua V(Zu)) — Yuj(Wa, Vu(ZU)))QIZuD
feFs j€ldgl,ueltd wEOun X Hun
< sup P(Cllv(Zu) = vu(Zu)[*)
Ueu,ljegun X?‘Lun
= sup Cllv —vullpa < sup Cllv —vullpe S 70
UEUVEO yn X Hun UEUVEO yn X Hun

where the first inequality follows by the law of iterated expectations; the second inequality follows
by Assumption [5.2{ii)(a); and the last inequality follows from o € [1,2] by Assumption the
monotonicity of the norm || - ||p, in a € [1,00], and Assumption

Conclude that using the growth conditions of Assumption with probability 1 — o(1)

max sup | Tz, (u)| < 78/%1/s, log(an) + n_l/ann% log(an) = o(1). (E.6)
JEldo] uet

Step 5. In this step we show that

sup inf v/nl|Entou(Wa, 0, hu(Zu))]| = op(1).
ueld €O

We have that with probability 1 — o(1)
nf VBt (W, 8, Ru(Z0) | < VAl Eatbu(Was B, B Z0)

where 0, = 0, — J; ' Epthy(Wy, 04, ho(Z4)), since 6, € O, for all u € U with probability 1 — o(1),
and in fact sup,y |0u — 0ull = Op(1/4/n) by the last paragraph of Step 3.

Then, arguing similarly to Step 3 and 4, we can conclude that uniformly in v € U:
\/EH}Enwu(Wua Q_uvﬁu(zu))n < \/ﬁ”Enwu(VV?u oua hu(Zu)) + Ju(gu - au) + Du,O(?Lu - hu)H + OP(l)
where the first term on the right side is zero by definition of 6, and Du7o(71u — hy) =0. [
E.2. Proof of Theorem STEP 0. In the proof a < b means that a

<
~
A depends on the constants in Assumptions but not on n once n > ng, and not on P € P,,.

In Step 1, we consider a sequence P, in P,, but for simplicity, we write P = P, throughout the

Ab, where the constant

proof, suppressing the index n. Since the argument is asymptotic, we can assume that n > ng in

what follows.

Let P,, denote the measure that puts mass n~! at the points (&, W;) for i = 1,...,n. Let E,
denote the expectation with respect to this measure, so that E,f = n=! Yoy f(&, W), and Gy,
denote the corresponding empirical process /n(E, — P), i.e.

an = \/ﬁ(Enf - Pf) = n_1/2 Z (f(flv WZ) - /f(37w)dpﬁ(8)dp(w)>'
=1
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Recall that we define the bootstrap draw as:

x " 1 ¢ o . — "
* = (B~ 6) = (ﬁ;@wu(wm) = (Gugdu) -

uel

where ¢y (W) = =T, 0u(Wa, Ou, hu(Z)).

STEP 1.(Linearization) In this step we establish that

Gipi=Zpp—Grp=op(l) mD=2U)", (E.7)

where G2, i= (Gu€Bu)uctss and Bu(W) = —J; 0u(Wa, O, hul ).

With probability 1 — 4, hy € Houns 0, € Oun = {0 €O, :0—0.]| <Cr}, and J, € Ty, so that
16, pllp < supsez, [GnlEf]l; where

Fy = {0 Ous s Ju) = thuy 5 € (o], w € U0 € O o € Huns T € T

where LZuj (O, hu, Jy) is the j-th element of —.J; 14, (W, 0., hu(Zy)), and &uj is the j-th element of
—J Y9 (W, 0y, ho(Zy)). By the arguments similar to those employed in the proof of the previous

theorem, under Assumption [5.3| and the additional conditions stated in the theorem, F3 obeys

log sgp N(e||F3llg.2, F3: || - ll2) S (snlogan + splog(an/€)) VO,

for an envelope F3 < Fy. By Lemma multiplication of this class by £ does not change the

~

entropy bound modulo an absolute constant, namely
g sup N6l €173 2. €. l02) 5 (52 lg 0 + 3 o8 )V 0.
Also Elexp(|¢])] < oo implies (E[max;<, |&[?])'/? < logn, so that, using independence of (&),
from (W;)™; and Assumption [5.2(i),
I max & Fo(Wi)llpp.o < || max &llp, 2| max Fo(Wi)|[p .0 S n'/logn.
<n <n <n
Applying Lemma [C1]

spnt/1logn

Jn
/2

for supeer, 1fllp2 = supser, (Ifllp2 S on S m'", where the details of calculations are similar to
those in the proof of Theorem Indeed, with probability 1 — o(dy,),

sup HfH%D,Q S ZEBHJJWQ sup P(P[(¢uj(WU=V(Zu)) _wuj(WwVU<ZU)))2‘ZU])

sup |G, (f)| = Op <Tg/2 snlog(an) +
fe&Fs

log(an)) =op(1),

fers je[dG]vuequEGunXHun
+ sup Hju_l - ‘]u_1||2 sup P (Pwuj(wuv V(Zu))2|Zu])
uel JE[do]  ueU ,VEO yn X Hun
S sup v = vullpo + 70
UEUVEO yn X Hun
S sup v —vullpo+ 70 S 70

UEUVEO yn X Hun
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where the first inequality follows from the triangle inequality and the law of iterated expectations;
the second inequality follows by Assumption (ii)(a), Assumption (i), and sup,ey ||/t —
J7 2 £ 7@ by the assumptions of the theorem and the continuous mapping theorem; the third
inequality follows from a € [1,2] by Assumption the monotonicity of the norm || - ||po in
a € [1,00], and Assumption and the last inequality follows from |v — v
definition of ©,, and H,,. The claim of Step 1 follows.

P2 S Tn by the

STEP 2. Here we are claiming that Z) p ~p Zp in D = ¢>°(U)% , under any sequence P = P, €
Pp, were Zp = (Gpthy)uey- By the triangle inequality and Step 1,

swp [Ep,h(Z; p) = Bph(Zp)| < sup |Eg,h(G;p) = Eph(Zp)| + Ep, (G pllo A 2),
heBL; (D) heBL; (D)

where the first term is 0}(1), since G}, p ~p Zp by Theorem B.2, and the second term is op(1)
because [|(; pllp = op(1) implies that Ep(||¢; pllp A 2) = EpEg, (¢, pllp A 2) — 0, which in turn
implies that Ep, (|[¢; pllp A 2) = op(1) by the Markov inequality. [

E.3. Proof of Theorem This is an immediate consequence of Theorems and
B4 n

APPENDIX F. PROOFS FOR SECTION 6

Proof of Theorem[6.1]. In order to establish the result uniformly in P € P, it suffices to establish
the result under the probability measure induced by any sequence P = P,, € P,. In the proof
we shall use P, suppressing the dependency of P, on the sample size n. To prove this result we
invoke lemmas in Appendix F. These lemmas rely on specific events (described below)
and Condition WL. We will show that Assumption [6.1] implies that the required events occur with
probability 1 — o(1) and also implies Condition WL.

Let \/I\/uO,jj = {E,[|f;(X)C¢u|?]}"/? denote the ideal penalty loadings. The three events required to

occur with probability 1 — o(1) are the following: E; := {¢, > sup,cy ||7ul|p, 2}, and where ¢, :=

slog(pVn)/n; Bz = {A/n 2 vVesupyey |V BalGuf(X)]lloo}s Bz i= {000 < Uy < LUy},

for some 1/\/c < 1/{/¢ < ¢ and L uniformly bounded for the penalty loading ¥, in all iterations
k < K for n sufficiently large.

By Assumption iv)(b) Ej holds with probability 1 — o(1).

Next we verify that Condition WL holds. Condition WL(i) is implied by the approximate sparsity
condition in Assumption [6.1|i) and the covering condition in Assumption [6.1f(ii). By Assumption
We have that d, is fixed and the Algorithm sets v € [1/n, min{log™! n, pn®~1}] so that v = o(1)
and ®1(1 —v/{2pn?}) < Clog"/?(np) < C8,n'/% by Assumption (1) Since it is assumed that
Ep[|f;(X)Cul?] = ¢ and Ep[| f;(X)¢u|?] < C uniformly in j < p and u € U, Condition WL(ii) holds.
Condition WL(iii) follows from Assumption [6.1iv).

Since Condition WL holds, by Lemma the event Es occurs with probability 1 — o(1).
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Next we proceed to verify occurrence of E3. In the first iteration, the penalty loadings are defined
as Wy = {En[|f;(X)Yu?]}V/2 for j = 1,...,p, u € U. By Assumption [6.1} ¢ < Ep[|f;(X)¢u]?] <
Ep[|f;(X)Yy|?] < C uniformly over u € U and j = 1,...,p. Moreover, Assumption (iv)(b) yields

sup max |(E, — EP)Hfj<X)Yu|2” < 0p and supmax|(E, — EP)HfJ(X)CuP” < On
ueld ISP ueld ISP

with probability 1 — A,,. In turn this shows that for n large so that ¢, < ¢/4 we have E|

(1= 200 /) B[ £5(X)Cul?] < En[l£5(X)Yul?] < ({C + 0n}/{e = 0n B[l £5(X)Cul’]

with probability 1 — A,, so that f\/ﬁug < \i'u < L\Tfuo for some uniformly bounded L and ¢ > 1/+/c.
Moreover, ¢ = {(Ly/c+ 1)/(v/el — 1)} sup,cy H\Tl;()lHOOH\T/uoHOO is uniformly bounded for n large
enough which implies that oz as defined in in Appendix is bounded away from zero
with probability 1 — A,, by the condition on sparse eigenvalues of order s¢,, (see Bickel, Ritov, and
Tsybakov (2009) Lemma 4.1(ii)).

By Lemma since A € [en!/2log!?(pVn),Cnt/21og"/?(pVn)] by the choice of v and d,, fixed,
cr < Cy/slog(pV n)/n, sup,ey W 0]le0 < C, we have

~ 1 v ~ 2] vV
sup | £(X) (B — 6.)|p 2 <<9w/f—9§93**92 and supneu——eunls:Cﬂ\/f—i¥59——@l.
ueU n = n

In the application of Lemma by Assumption [6.1](iv)(c), we have that min,eca @max(m) is
uniformly bounded for n large enough with probability 1 — o(1). Thus, with probability 1 — o(1),
by Lemma we have

- ney 2 ,
supsu<0[ —i—\/g} < Cs.
ueU A

Therefore by Lemma the Post-Lasso estimators (gu)ueu satisfy with probability 1 — o(1)

~ _ [slog(pVn ~ _ [s2log(pVn
Sup | F(XY @ — 0.2 < O 2L sup |3, — 6,1, < Gy 2B E V)
n=i n ueU n

for some C' independent of n, since uniformly in u € U we have a sparsity bound || (gu —0u)|lo < C"s

and that ensures that a bound on the prediction rate yields a bound on the ¢;-norm rate through

the relations [[o[ly < v/[[vffolloll < v/wllollf(X) v]le, 2/ /Gmin ([[v]o)-

In the kth iteration, the penalty loadings are constructed based on (%k))ueu, defined as \/I}ujj =
{EL[] f;(X){Yy — f(X)’gka)}\Q]}l/z for j =1,...,p, u € U. We assume (gi(ﬁ))ueu satisfy the rates
above uniformly in w € Y. Then with probability 1 — o(1) we have uniformly in v € U and

2ndeed, using that ¢ < Ep[|fi(X)¢u|?] < Ep[|f;(X)Yul?] < C, we have (1 — 26,/¢)En]|f;(X)¢ul?] <
(1 = 260/ {0n + Er[|fi(X)Cul]} < Ep[Ifi(X)Cul?] = 0 < Ep[|fi(X)Yul’] = 6n < En[|f;(X)Yul?]. Similarly,
En[lf5(X)Yul?] < 8 + Ep[|f;(X)Yul?] < 60 + C < ({0n + C}/{c = 0 HE[ f;(X)Cul?].



{Enll £ (O (X) (6w = 0)}PIF2 + (Bl f(X )]}/

<
< Kl f(X) (B — 00) 2, 2 + Kullrullp, 2 < Oy 2282V
< 051/2 < qu](2051 2/ )

[Wujj — Yuojsl

where we used that max;<, j<p|f;(Xi)| < K, as., and K2slog(p V n) < §,n by Assumption
(iv)(a), and that inf,cy j<p (I\/quj > ¢/2 with probability 1 — o(1) for n large so that d,, < ¢/2.
Further, for n large so that (267’571,,/ 2 /c) < 1—1//c, this establishes that the event of the penalty
loadings for the (k + 1)th iteration also satisfy é\fl;& < \T/; 1< L\/I}Jol for a uniformly bounded L
and some ¢ > 1/{/c with probability 1 — o(1) uniformly in u € U.

This leads to the stated rates of convergence and sparsity bound. ]

Proof of Theorem [6.3. In order to establish the result uniformly in P € P,, it suffices to establish
the result under the probability measure induced by any sequence P = P,, € P,. In the proof we
shall use P, suppressing the dependency of P, on the sample size n. The proof is similar to the
proof of Theorem [6.1] We invoke Lemmas [G.6}, [G.7] and [G.8 which require Condition WL and some
events to occur. We show that Assumption implies Condition WL and that the required events
occur with probability at least 1 — o(1).

Let \T/uo,jj = {En[|fj(X)Cu|2]}1/2 denote the ideal penalty loadings, wy,; = Ep[Yu | Xi](1 —

Ep[Yyi | Xi]) the conditional variance of Y,,; given X; and 7,; = 7,,(X;) the rescaled approximation

error as defined in (G.5). The three events required to occur with probability 1 — o(1) are as
follows: Ey := {c, = sup,cy ||Fu//Wullp, 2} for ¢, := C/\/m where C” is large enough;
Ey :={\/n > \/csup,ey H\I’uOlIEn[(u F(X)]|lso}; and Eg 1= {00, < W, < LW}, for £ > 1/{/c and
L uniformly bounded, for the penalty loading \Tlu in all iterations k < K for n sufficiently large.

Regarding E1, by Assumption [6.2[(iii), we have ¢(1 — ¢) < wy < 1/4. Since |ry(X;)| < 8, as.
uniformly on uw € U for i = 1,...,n, we have that the rescaled approximation error defined in
satisfies |7, (X;)| < [ru (X )|/{c(1 —¢) — 26, }+ < C|ry(X;)] for n large enough so that §, < ¢(1 —
¢)/4. Thus |7y /\/wy|lp, 2 < Cllru//Wullp, 2 Assumptlon(iv)(b) yields sup, ey ||7u//Wallp, 2 <
C'/slog(p V n)/n with probability 1 — o(1), so 3 occurs with probability 1 — o(1).

To apply Lemmato show that Es occurs with probability 1—o(1) we need to verify Condition
WL. Condition WL(i) is implied by the sparsity in Assumption [6.2fi) and the covering condition
in Assumption [6.2)(ii). By Assumption we have that d, is fixed and the Algorithm sets v €
[1/n, min{log ™" n, pn®~1}] so that v = o(1) and ®~1(1 —~/{2pn®}) < Clog'/?(np) < C8,n/® by
Assumption (1) Since it is assumed that Ep[|f;(X)¢u[?] = ¢ and Ep|| f;(X)(u|?] < C uniformly
in j < pand u € U, Condition WL(ii) holds. Condition WL(iii) follows from Assumption [6.1iv).
Then, by Lemma the event Eo occurs with probability 1 — o(1).
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Next we verify the occurrence of E3. In the initial iteration, the penalty loadings are defined as
\/I\lujj = HE.[|f; (X)P}/% for j=1,...,p, u € U. Assumption (iv)(c) for the sparse eigenvalues
implies that for n large enough, ¢ < E,[|f;(X)|*] < C’ for all j = 1,...,p, with probability 1—o(1).

Moreover, Assumption iv)(b) yields

sup max (B, — Bp)[|f5(X)Guf]] < b (F.1)
with probability 1 — A,, so that (I\’quj is bounded away from zero and from above uniformly
over j = 1,...,p, u € U, with the same probability because Ep[|f;(X)(,|?] is bounded away
from zero and above. By and Ep||f;(X)Cu|?] < 1Ep[|fj(X)[?], for n large enough, we have
E\/I}uo <0, < L\Tluo for some uniformly bounded L and ¢ > 1/+/c with probability 1 — A,,.

Thus, ¢ = {(Ly/c+1)/({y/c — 1)} sup,ecy ||\/I\’;01HOOH(I}uOHOO is uniformly bounded. In turn, since
inf ey minj<,, wy; = ¢(1 — ¢) is bounded away from zero, we have Roe > Mmga by their
definitions in and . It follows that xog is bounded away from zero by the condition
on s/, sparse eigenvalues stated in Assumption iv)(c), see Bickel, Ritov, and Tsybakov (2009)
Lemma 4.1(ii).

By the choice of v and d,, fixed, A € [en'/2log!/2(pvn), Cn'/?1log!/?(pvn)]. By relation (G.4) and
Assumption (iv)(a), infycrq Ga, > Rag/{y/sK,}. Under the condition K2s%log?(p V n) < d,n,
the side condition in Lemma holds with probability 1 — o(1), and the lemma yields

~ 1 vV ~ 2] vV
supr(Xv%eu——euﬂwna=<<7\/fi¥4f——ﬁl and supueu——eum.<<9w/f—i¥§3——93
ueU n ueU n

In turn, under Assumption (iv)(c) and K2s%log?(pVn) < §,n, with probability 1 —o(1) Lemma
implies

ney

2
sup s, < C” [T + \/5} <C0"s

uel

since miny,e Amf Pmax(m) is uniformly bounded. The rate of convergence for 0, is given by Lemma
namely with probability 1 — o(1)

~ _ Jslog(pVn ~ _ [s2log(pVn
Sup [ FXY (@ — 0,2 < O 2L sup 3, — 6,1, < Gy 2B E V)
ueU n weU n

for some C' independent of n, since by (G.20) we have uniformly in v € U

MU(éu) - Mu(HU) MU(@L) - Muwu) < %H@ugqu - %|’\/I}u§uul < %H{I}u(é\uTu - Hu)”l

<
< C'slog(p vV n)/n,

sup,ey [|1En[f(X)Cullloo < Cy/log(p VvV n)/n by Lemma Gmin(Su + Syu) is bounded away from
zero (by Assumption [6.2iv)(c) and $, < C”s), infuey ¥u({6 € RP : ||§]o < Sy + su}) is bounded
away from zero (because inf, ey min;<, wy; > ¢(1 — ¢)), and sup,cy [Wouolloe < C with probability
1—o(1).
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In the kth iteration, the penalty loadings are constructed based on (5§k))ueu, defined as \/I\'ujj =
En[|f;(X){Yy — A(f(X)’gq(Lk))}|2]}1/2 for j=1,...,p, u € U. We assume (@S’“))ueu satisfy the rates

above uniformly in v € . Then

allf COTAG X)) = AF(X)0u)}PIFY2 4+ {15 (X)ral2) 1
Wl COLFXY (B8 — 0,)}PIMY2 + {Eu[| f5(X )y 2]} /2
FX) O 02l 2 + Knllrullp, 2 Sp Ky 2082

n

[Wujj — Puojjl

—~
= =

=

n

5n < (20571/9) (I\’UOjj

INCININ N

Q

and therefore, provided that (204, /c) < 1 — 1/+/c, uniformly in u € U, f‘/l\’uo <V, < L\Tluo for
¢ > 1/+/c and L uniformly bounded with probability 1 — o(1). Then the same proof for the initial
penalty loading choice applies to the iterate (k + 1). [

APPENDIX G. FINITE SAMPLE RESULTS OF A CONTINUUM OF LASSO AND PosT-LASSO
ESTIMATORS FOR FUNCTIONAL RESPONSES

G.1. Assumptions. We consider the following high level conditions which are implied by the
primitive Assumptions and For each n > 1, there is a sequence of independent random
variables (W;)?_,, defined on the probability space (€2, Aq,Pp) such that model holds with
U C [0,1]%. Let dy be a metric on U (and note that the results cover the case d, is a function of n).
Throughout this section we assume that the variables (X;, (Yui, Cui := Yui — Ep[Yui | Xi])ueu) are
generated as suitably measurable transformation of W; and u € U. Furthermore, this section uses
the notation Ep[] = 1> | Ep[], because we allow for independent non-identically distributed
(in.i.d.) data.

Consider fixed sequences of positive numbers §, \, 0, €, \ 0, A, 0, £, = o0, and 1 < K, <

0o, and positive constants ¢ and C' which will not vary with P.

Condition WL. Let T, := supp(6,), v € U, and suppose that: (i) for s > 1 we have
supyey 1Oullo < s, log N(e,U,dy) < dylog(l/e) vV 0; (ii) uniformly over w € U, we have that

{Ep(lfi OGP & ~1/1 _ du 1/6 i , 2 - )
I?SE{EP[\fj(X)Cu‘z]}l/zq) (I —=~/{2pn™}) < 6un'/® and 0 < c < Ep[[f;(X)Cul*] < C, j=1,...,p;
(#13) with probability 1 — A,,, we have n'1<a><:||€)‘“(Xi)||OO < Ky, suE 1?3;{|(En — Ep)[£;(X)2¢2]| < 6n,

kN ue X
du—H) sup maXEn[fj(X)Z(Cu_Cu’)2] < (5n7 sup HEn[f(XXCu_Cu’)]HOO < 5nn

dy(u,u’)<1/n ISP dy(u,u')<1/n

log(pVn

The following technical lemma justifies the choice of penalty level A. It is based on self-normalized
moderate deviation theory. In what follows, for u € U we let ‘Tluo denote a diagonal p X p matrix

of “ideal loadings” with diagonal elements given by (I}quj = {En[fj?(X)Cg]}l/Q forj=1,...,p.

Lemma G.1 (Choice of \). Suppose Condition WL holds, let ¢ > ¢ > 1 be constants, v €
[1/n,1/logn], and A\ = ¢//n® 1 (1 —~/{2pn®}). Then for n > ng large enough depending only on
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Condition WL,
fm(vn>cwy@AE4ﬂxmmm>>1—7—4m
ue

We note that Condition WL(iii) contains high level conditions on the process (Y, (y)uecys- The

following lemma provides easy to verify sufficient conditions that imply Condition WL(iii).

Lemma G.2. Suppose the i.i.d. sequence ((Yui,Cui)uecu, Xi),© = 1,...,n, satisfies the following
conditions: (i) ¢ < max;j<, Ep[fj(X)?] < C, maxj<, | f;(X)| < Ky, sup,ey maxi<y, |Yui| < By, and
c < sup,ey Ep[¢2 | X] < C, P-a.s.; (ii) for some random variable Y we have Y, = G(Y,u) where
{G(-,u) :uw e U} is a VC-class of functions with VC-index equal to C'd,, (iii) For some fized v > 0,
we have Ep||Yy — Yy|? | X] < Lu|u — /|” for any u,u' € U, P-a.s. For A := pnK,Bun" /Ly, we
have with probability 1 — A,

o B0 Gl S {/ e G bt |

sup  maxE,[f;(X)*(Cu — Gu)?] S Lan™” {1 4 HilosniGs) | Ky log<an5>}
dy (w,u’)<1/n ISP

sup max|(E, - Ep)[2(X)¢2)| § /Crtellostmwkan) g g (HAIKLE 100 (11, )
ueld ISP

where A, is a fired sequence going to zero.

Lemma allows for several different cases including cases where Y, is generated by a non-
smooth transformation of a random variable Y. For example, if YV, = 1{Y < u} where Y
has bounded conditional probability density function, we have d, = 1, B, = 1, v =1, L, =
sup,, fy|x(y | ¥). A similar result holds for independent non-identically distributed data.

In what follows for a vector § € RP, and a set of indices T' C {1,...,p}, we denote by dp € RP
the vector such that (07); = d; if j € T and (d7); = 0if j ¢ T. For a set T, |T| denotes the

cardinality of 7. Moreover, let
Acu :={6 € R” : [|org[l1 < cf|dr, [|1}-
G.2. Finite Sample Results: Linear Case. For the model described in (6.1) with A(t) = ¢

and M(y,t) = %(y — t)? we will study the finite sample properties of the associated Lasso and
Post-Lasso estimators of (6,)yey defined in relations (6.2)) and (6.3)).

The analysis relies on the restricted eigenvalues

: [ (X) ]|, 2
= inf D G.1
e usehen ol (G-1)
maximal and minimum sparse eigenvalues
IF(X)'S1IE, 2 IF(X)3]I3, -
. = i —_ d x = — e
Pl = e o e = R T

Next we present technical results on the performance of the estimators generated by Lasso that
are used in the proof of Theorem
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Lemma G.3 (Rates of Convergence for Lasso). The events ¢, > sup,ey ||7ul|p,.2, Wy < U, <
LUy, u €U, and \/n > CSUP,ey H@;&En[f(X)Cu}HOO, for ¢ > 1/, imply that uniformly in v € U

. 205 (L+1) -~
1f(X) (O — 0u) B2 < 2¢ + n(m)\l\lfuo\oo

C
~ Ms(L+1) < 1 vl
wu_euh@(1+26){fcr+ s ( C)m,w”w}+<l+) l¥uglloc 7
2¢

Nkgkog 2¢ be—1 M7
where € = Supy ey W0 [|ool [ Wuolloo (Le + 1)/ (e = 1)

The following lemma summarizes sparsity properties of (é\u)ueu‘

Lemma G.4 (Sparsity bound for Lasso). Consider the Lasso estimator §u, 1ts support T, =
supp(6y), and let 5, = ||0yl|o. Assume that ¢, > supyey |7ulle, 2, A1 = esupyey 1950 Enlf (X)Cu]ll oo
and 0¥,0 < Wy < LYy for allu e U, with L >1> € > 1/c. Then, for co = (Le+1)/(lc—1) and

€ = 0 SUP,cy ||\ffu0||oo||‘f’;01”oo we have uniformly over u € U

ne,

2
~ 2 . Vs, = T—1)2
5 < 1665 (i, (i) ) | %55+ LBl 1012

~ 2
where M = {m eN:m> 3208¢max(m) SUDyey |:7l§7 4 %f”‘l’uoﬂoo} H\I/:LOngO} .

Lemma G.5 (Rate of Convergence of Post-Lasso). Under Conditions WL, let 0. be the Post-Lasso
estimator based on the support Tu Then, with probability 1 — o(1), uniformly over u € U, we have
for 8, = |T,|

S, lo V ndutl) :
C'\/ « log(p )||‘I’u0Hoo‘|‘ min _ [|[Ep[Y, | X|— f(X)'0|p, 2

IEp[Yy | X] = f(X)0ullp, 2 < =
n ¢min(3u) supp(0)CTy,

Moreover, if supp(@\u) C Ty for every u € U, the following events ¢, > sUPyey ||7ullpn,2; Wy <
U, < LUy, u €U, and N\/n > CSUP,ey ||(I\l;01En[f(X)Cu]||oo, for ¢ > 1/, imply that

. 1\ 2A\y/s ~
sup  min _ |Ep[Yy | X] — f(X)0|p, 2 < 3¢ + <L+ C) fsup 40| co-

u€U supp(0)CTy nke weld

G.3. Finite Sample Results: Logistic Case. For the model described in (6.1)) with A(t) =
exp(t)/{1 + exp(t)} and M(y,t) = —{1{y = 1} log(A(t)) + 1{y = 0} log(1 — A(¢))} we will study
finite the sample properties of the associated Lasso and Post-Lasso estimators of (6,)yeys defined
in relations and . In what follows we use the notation

Mu(0) = En[M (Yo, F(X)'0)].
In the finite sample analysis we will consider not only the design matrix E,[f(X)f(X)’] but also

a weighted counterpart E,[w, f(X)f(X)'] where wy; = Ep[Yu; | Xi](1 —Ep[Yu | Xi]), i =1,...,n,

u € U, is the conditional variance of the outcome variable Y.
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For T, = supp(0y,), su = ||fullo = 1, the (logistic) restricted eigenvalue is defined as

\/ X)'6
Re := Inf min lv/wuf (X) ”P"’Q.
UEU 6EAc,y |07, |l

(G.2)

For a subset A, C RP, u € U, let the non-linear impact coefficient (Belloni and Chernozhukov,
2011; Belloni, Chernozhukov, and Wei, 2013) be defined as

] Ey, [wa| f(X)8]2)

4= 584, TR [wa f(X)5]7]

(G.3)

Note that g4, can be bounded as

3/2 1/2

oo = g B[l PO B [l (X0
A 0l B [l FXVOPT 7 s, maxicn /(X0 [oe 11

which can lead to interesting bounds provided A, is appropriate (like the restrictive set Ay,
in the definition of restricted eigenvalues). In Lemma we have A, = Ag, U{d € RP :

31
6C|“I/uo lloo n

16l < —72*% XH\/Zj—uHmeH\/wuf(X)’éH]pmg}, for u € U. For this choice of sets, and provided
that with probability 1 — o(1) we have fc > ¢ > 1, sup,ey ||7u/v/Wallpn2 S V/slog(pVn)/n,
SUPy, ey H\T’;olHoo < 1 and /nlog(pVn) S A, we have that uniformly over u € U, with probability
1—-o0(1)

_ 1 K2g ()\/n) (EC — 1) K2g
qa, = A 2 . (G4
%WWM@W”®MMMMWWM Vel f X (EY

The definitions above differ from their counterpart in the analysis of ¢1-penalized least squares
estimators by the weighting 0 < wy; < 1. Thus it is relevant to understand their relations through

the quantities

— i W@ (X)0lp, 2
Yuld) = min e 5

Many primitive conditions on the data generating process will imply 1, (A) to be bounded away

from zero for the relevant choices of A. We refer to Belloni, Chernozhukov, and Wei (2013) for
bounds on %,,. For notational convenience we will also work with a rescaling of the approximation

errors 7, (X ) defined as
Pui = Tu(X;) = Ail( A(f(Xi)IQU) + Tui ) — f(Xi)lew (G.5)

which is the unique solution to A(f(X;)'0, + 7.(X;)) = A(f(X;)'04) + ru(X;). It follows that
|7ui] < [Fui] and thatlﬂ |Tuil < |7uil/ infoce<r,,; A’(f(X;Hu) + 1) < |rwil {wui — 2|7uil }+-

Next we derive finite sample bounds provided some crucial events occur.

24The last relation follows from noting that for the logistic function we have infocicr,, A'(f(X10.) + t) =

min{A’(f(X{0.) + 7ui), A’ (f(X{0.))} since A’ is unimodal. Moreover, A'(f(X;0.) + 7ui) = wu; and A'(f(X[0.)) =
A(f(X0u)[1 = A(f(Xi0u))] = [A(f(Xi0u)) + rui — ruil [l = A(f(Xi0u)) = Pui + Tui] = wus — 2[rus] since |ry;] < 1.
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Lemma G.6 (Rates of Convergence for ¢1-Logistic Estimator). Assume that

An > csug ||‘TJ;01En[f(X)Cu]”OO
ue

for ¢ > 1. Further, let E\/I\/uo < U L\f/uo for L 21 > { > 1/c, uniformly over v € U,
¢ = (Le+1)/(be — 1) sup,ey II‘I’uollooll‘If oo and

60||\ll Hoon’

Au = A2é,u U {(5 : H5H1 gc

7w/ v wUHPny

Vwuf(X) I, 2}

nRa Wy,

Provided that the nonlinear impact coefficient qa, > 3 {(L+ )||‘Ifu0Hoo

for every u € U, we have uniformly over u € U

VG = 0.2 <3 (2 + D ualo 2

Wy,

} and

1. ~ /s N
}{(Lﬂnwm VS g }
P,,2 ¢ Nka2g P,.,2

The following result provides bounds on the number of non-zero coefficients in the ¢1-penalized

Ty

NTH

Kog be—1 )\

u

B — 0.l < 3 { (L+26)y5 | 6c)| Ut |se m

estimator gu, uniformly over u € U.

Lemma G.7 (Sparsity of ¢;-Logistic Estimator). Assume )\/n > csupueuH@;&En[f(X)Cu]Hoo
for ¢ > 1. Further, let Vg < U, < LUy for L > 1 > £ > 1/c, uniformly over u €
U, co = (Lec+1)/(bc — 1), ¢ = cosupuEuH\IluoHooH\If Yoo cmd Ay = Doz, UL = |01 <
Slisle 8 1 /o 3, ol F(X) B, 2}, anquu>3{<L+ 1 uolocns + 987/ VTulle, 2 |

for every w € U. Then for 5, = H¢9u||0, uniformly over u € U,

R co = Vs |7/ v/Wullp,2 ]
Sy < <erré1n ¢max(m)> |:¢(Au) {3||\Ilu0||oo/_€2é C \ }:|

~ " 2
where M = {m eN:m>2 { T(AT) SWPueu {BHII/U()HOOR—Q + 286%@}] } )

Moreover, if sup, gy maxi<y |f(Xi)’(§u —0y) — Tuil <1 we have

ot 2
5o < (i Gma)) 463 {31 ol L2 o g VT2

meM 2¢

where M = {m € N:m > 8c§sup, ey |:3H\I]u0”005 + 28~M} } .

Next we turn to finite sample bounds for the logistic regression estimator where the support
was selected based on ¢1-penalized logistic regression. The results will hold uniformly over v € U

provided the side conditions also hold uniformly over U.



71

Lemma G.8 (Rate of Convergence for Post-¢;-Logistic Estimator). Consider 0., defined as the post
model selection logistic regression with the support T, and let 3, := |T,|. Uniformly over v € U we

have
w (6, — 0y — Vu + sullBa [£(X)Culll o Tu
VW f(X) (0 — 0u) |, 2 < \/5\/0v{Mu(0u) Mu(é)u)}+3{ TN R, +3‘ N m}

provided that, for every w € U and A, = {6 € RP : ||d]|o < 5y + Su},

> G{MHEn[ﬂpmnm +3‘
wu(Au) ¢min(5u + Su)

Ty
VWu

Comment G.1. Since for a sparse vector & such that ||§]o = k we have ||6]1 < VE[d]| <
VE[ f(X)'0|lp, 2/+/Pmin(k), the results above can directly establish bounds on the rate of con-

vergence in the /1-norm.

} and qa, > 6\/0 V{ M (6,) — My(6,)}.
Pp,2

G.4. Proofs for Lasso with Functional Response: Penalty Level.

Proof of Lemma[G.1]. By the triangle inequality
supyey |50 Bnlf (X)Cullloo < maxueue [0 Enlf (X)Cullloo ~
+ Supueué,u’eu,du(u,u/)ge H\I];OlEn[f(X)gu] - \IJ;’%)]EN [f(X)Cu’] HOO
where U¢ is a minimal e-net of . We will set € = 1/n so that [U¢| < n%.
The proofs in this section rely on the following result due to Jing, Shao, and Wang (2003).
Lemma G.9 (Moderate deviations for self-normalized sums). Let Z1,..., Z, be independent,
zero-mean random variables and p € (0,1). Let Spp = Y01 Zs, V2, =0 Z2,

1/{24u}

M, = {:LZE[Z?]} /{iZEUZiPW} >0

__K®
and 0 < £, < n2C+W M,. Then for some absolute constant A,

'P(|Sn,n/vn,n| > )
2(1 = &(x))

0 < < 2(2+p)
e 12 ) = = e’l’L

— 1.

_ 1‘ <
For each j = 1,...,p, and each u € U, we will apply Lemma with Z; := f;(Xi)Cui, and

i = 1. Then, by Lemma the union bound, and [U/¢| < n%, we have

En[f5(X)2¢]

Pp | sup max
uele ISP

e )) < 2pn® (v/2pn®) {1 + o(1)}

<AL+ 0(1))

(G.6)

provided that max,, j{Ep[|f;(X)Cu*]"3/Ep[| £;(X)Cu?]V/2 @1 (1—~/2pne) < 6,08, which holds
by Condition WL (under this condition there is ¢, — oo obeying conditions of Lemma )
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Moreover, by triangle inequality we have

sup 10 Enlf(X)Gul = tEalf (X)Gu] oo
ueU u €U, dyy (u,u’)<e
< s @ - T Bl Bl (X) G @)
welc uw' el dyy (u,u’)<e N
+ sup En [£(X) (G = Cu)llloo 1 ¥ 76 ll oo

w,u’ €U, dy (u,u’)<e

To control the first term in 1D we note that by Condition WL, (I\,uojj is bounded away from

zero with probability 1 —o(1) uniformly over u € Y and j = 1,...,p. Thus we have uniformly over
ueElU and j=1,...
!(‘I’uolﬂ U0, Yu0is| = [Wuoz; — Warogsl/Warogy < ClWu0z; — Vo] (G.8)

with the same probability. Moreover, we have

sup  maxj<p {Ealf5(X) G — {Ealf5(X)?C1H?

u,u/ €U, dy (u,u’)<e (Gg)
< sup maxjcp{ B [f5(X)*(Cu — Cu)?}1/2.

u,u/ €U, dy (u,u’)<e

Thus, with € = 1/n, relations (G.8) and (G.9)) imply that with probability 1 — o(1)

sup  [[(Wig — Wg) uolloe S sup max{E,[f;(X)*(Cu — )]}/
w,u' €U, dy (u,u’)<e ' €U, dyg (uu')<1/n ISP

By (G.6)

sup [ E0 Bl (X)Clloe < Oy log(p v nif)

uel
with probability 1 — o(1), so that with the same probability

sup (%0 = ¥rt) Waolloo | W0 Enlf (X)Cul oo
wel € u' el dy (u,u’)<e

< sup max;j<p{En[f;(X)?(Cu — Cur)?]}/2C"y loglpvn™ ™) < 24

w,u’ €U, dyy (u,u’)<1/n

s

where the last inequality follows by Condition WL.

Since € = 1/n, the last term in (G.7) is of the order o(n~'/?) with probability 1 — o(1) since by
Condition WL,

sup HEn[f(X)(Cu - Cu’)]”oo < 5nn_1/2
w,u! €U, dy (u,u’)<1/n

with probability 1 — A,,, and noting that by Condition WL sup,,<;, H(I\/;&HOO is uniformly bounded
with probability at least 1 — o(1) — A,,.

The results above imply that is bounded by o(1)/y/n with probability 1 — o(1). Since
2/log(2pn« /v) < ®71(1 —~v/{2pn®}) by v/{2pn?} < 1/4 and standard (lower) tail bounds, we
have that with probability 1 — o(1)

etz s EX0G) - EAE0G

uwelUe,u' €U, dy (uu’)<e

and the result follows. [
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Proof of Lemma[G.3 We start with the last statement of the lemma since it is more difficult (others
will use similar calculations). Consider the class of functions F = {Y, : u € U}, F' = {Ep[Ys, | X]:
ueU},and G = {2 = (Yy — Ep[Y, | X])? : u € U}. Let F be a measurable envelope for F which
satisfies F' < B,,.

Because F is a VC-class of functions with VC index C’d,,, by Lemma (1) we have
log N(e[[Fllgz2, F: Il - l.2) S 1+ [dulog(e/e) v 0. (G.10)
To bound the covering number for 7' we apply Lemma and since E[F' | X] < F, we have

FLll-

logsup V(e 0z2) < logswp N(51Fllgz, .11 -llgz) (G.11)

Since G C (F — F ’)2, G = 4F? is an envelope for G and the covering number for G satisfies

()
log N (€|4F?[l02.G. Il - llg2) < 2log N(5[12F |2, F = F', |- lo2)
( i)
< 2log N ([ Fllgz2, F, I - llge2) + 21og N(£lIFllQa2, 7', || - l@,2)

(423)
< dlogsupg N(§[FllQ.2: F - l@2),
(G.12)
where (i) and (ii) follow by Lemma [C.2)(2), and (iii) follows from (G.11].
Hence, the entropy bound for the class M = Ujc,M;, where M; = {f7(X)G}, j € [p] and
envelope M = 4K2F?, satisfies

(a)
M, llg2) < logp+ maxjcp, log N(el[4AK2F?| g2, My, || - [l0.2)

Q.2)

©)

< logp + 4logsupg N(g[Fllg2, F, || - lg.2)
(d)

< logp 4+ [(1+ dy) log(e/e) V 0],

log N (e

()
< logp+log N(e||4F? 2,6, | - |

where (a) follows by Lemma[C.2|(2) for union of classes, (b) holds by Lemma [C.2{2) when one class
has only a single function, (c) by and (d) follows from and € < 1. Therefore, since
SUP,cyy Maxj<p Ep| ij(X )¢?] is bounded away from zero and from above, by Lemma we have
with probability 1 — O(1/logn) that

2RB2
Py ey maxjp (B — Bp)[f2(X)C2)| S/ (rtelloslpkEBE) | (L) KEBL 1o (1 B2 ).

using the envelope M = 4K2B2 v = (', a = pn and a constant o.

Consider the first term. By Lemma we have with probability 1 — O(1/logn) that

s EFO(G— G)lle = sup }max\G () — )]

dy (u,u')<1/n (uu')<1/n VTV ISP

(14+du)Ln log anan 22 (14dy)KnBr log(pnK, Bn i)
v + —

2/\
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using the envelope F' = 2K, B,, v = C’, a = pn, the entropy bound in Lemma and 02
L,n" < F? for all n sufficiently large, because L,n~" \, 0 and

sup  maxEp[fj(X)’(Cu— )Y < sup  maxBp[f;(X)2(Yy - Yu)?

dy(uu')<1/n ISP dy(uu')<1/n ISP

< sup  LpJu—u/|"maxEp[f;(X)*] < CL,n™".
dy (uu)<1/n J<p

To bound the second term in the statement of the lemma, it follows that

sup  maxE,[f;(X)*(Cu —Cuw)Y] = sup  maxE,[fj(X)X(Ep[Yy — Y | X))
dy(uu')<1/n ISP dy(uu/)<1/n ISP
< sup  maxE,[f;(X)’Ep[|Y, — Yl | X]]

dyg(uw')<1/n ISP

< maXEn[fj(X)Q] sup Ln|u_u,’l/
i<p dy (! )<1/n

(G.13)
where the first inequality holds by Jensen’s inequality, and the second inequality holds by assump-
tion. Since ¢ < max;<,{Ep[f;j(X)?}'/? < O, the result follows by Lemma which yields with
probability 1 — O(1/logn)

log(pnK2) K2
maxjc | (Bn ~ BP0 S 42 4 B tog(pni), (G4

where we used the choice C <o =C'< F=K2 v=0C, a=pn. [ ]

G.5. Proofs for Lasso with Functional Response: Linear Case.

Proof of Lemma[G.3 Let S\u = @\u — 6,. Throughout the proof we assume that the events ¢ >
supyey Enlr2], A\/n > csup,ey ||\I';(}En[§uf(X)]||oo and (W0 < ¥, < LY, occur.

By definition of é\u,

~

) 22X~
0 € arg puin Eal(Y — F(X)0)%) + — [0,

and E\Tfuo < \Tfu < L\/I\/uo, we have

En[(f(X)/0)%] = 2En[(Yu = £(X)'0) f(X)]'00

= En[(Ya — f(X)0)%) — En[(Yy — £(X)'0,)?]

Wyl — 2Tyl (G.15)
2@, 11— 2 udurelh

2L Wuodur, |l — 2T uodure 1

NN N
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Therefore, by ¢ > sup, En[r2] and A\/n > csup,ey H\T/,;OIIEH [Cuf (X)]|loos we have

Eal(£(X)3,)?) - o -
< 2E, [Tuf(X)]/ + ( u()lE [Cuf( )]),( u05U)+%LH‘1’u05uTuH1_%EH‘I]uO&JTﬁ”l

w+2
< 26 {En[(F(X)/00)21}Y2 + 2010 0 En [Cuf (X)] oo | u0dull1 + 2L Wuodur, |1 — 226 uodurs |1
< 26 {En[(F(X)6)2] 12 + ”nwuoa h + 2L Wuodur, 1 — 20 Tuodure 1
< 26 {Bn[(F(X)0u)1}Y2 + 2 (L + 1) |Wuodur, 1 — 2 (€= 1) [ Wuodure -
(G.16)
Let I
&= s sup [ ol ol 3 -

Therefore if 6, ¢ Az, = {6 € RP 167¢lr < €0, [1}, we have that (L + 1) W u0dur, l1 <
(=13 H‘T’uoguzg!h so that
(B [(F(X)8.)41Y2 < 26,
Otherwise assume gu € Ag - In this case 1} the definition of kg, and ngTu Il < Vs ||SuTu I,

we have

-~

Eal(£(X)0.)%] < 26 {Ea[(F(X) 82 + 2 (L + 8) [ Tuoloov/S{E(F(X)0.)21} /2 /e

which implies

{Eal(F(X)'0u)°T}'/? < 2, + 22;/5 (L

C

1\ ~
+2) 1Bl (@17
To establish the ¢1-bound, first assume that 3 € Aoz . In that case

18ulli < 1+ 20) 8ur, |l < (1 + 28)v/S{Eal(£(X)'0u)2}/? /o
<(1+28) {28 4 2 (L4 1) ||Tyolloo |

nkekoe

where we used that ||guTuH1 < \/§||3\uTu||, the definition of the restricted eigenvalue, and the pre-

diction rate derived in (G.17)).
Otherwise note that ZS\u & Aoz ,, implies that (L + %) H‘/I\JuoguTqu < % (f — %) ||\f'u0§uT5||1 so that
(G.16) yields

1 2)\ 1 —~ ~
2 (f - ) [Fuodurgll < {Eal(F(X) TN (26— {BlF(XVBIN2) < &
where we used that max; t(2c, —t) < 2. Therefore

- 1\ - cl[Yyo lloo 7
\|5UHI<<1+26>H5UT;H1<<1+ )H\I/ oo 1P u0durs 11 < <1+2c>€c—1wf$

Proof of Lemma[G.4. Step 1. Let L, = 4co||\f/;01||oo ["ﬁT + g—f|\¢’u0||m} . By Step 2 below and the

definition of L, we have
Su < Pmax(3u) L. (G.18)
Consider any M € M = {m € N:m > 2¢max(m) sup,ey, L2}, and suppose 5, > M.
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Next recall the sublinearity of the maximum sparse eigenvalue (for a proof see Lemma 3 in
Belloni and Chernozhukov (2013)), namely, for any integer £ > 0 and constant ¢ > 1 we have
Gmax(Ck) < []Ppmax(k), where [£] denotes the ceiling of ¢. Therefore

R N s,
Sy < (bmax(MSu/M)LZ < ’V]\Z—‘ (bmax(M)Lz
Thus, since [k] < 2k for any k > 1 we have M < 2¢max(M)L? which violates the condition that
<

M € M. Therefore, we have 5, < M.

In turn, applying (G.18) once more with 5, < M we obtain 5, < ¢max(M)L2. The result follows
by minimizing the bound over M € M.

Step 2. In this step we establish that uniformly over v € U

ney \/5 ~
\/ X 4\/ ¢max Su H\II HOOCO )\ ?H\I’UOHOO .

Let Ry = (Tuty -y Tun)’s Yu = (Y1, -+, Yun)'s Cu = (Cuty -+, Cun)’s and F = [f(X1);...; F( X))
We have from the optimality conditions that the Lasso estimator 6, satisfies

En[U, ) f;(X) (Y — f(X)0,)] = sign(f,;)A/n for each j € T,.

Therefore, noting that ||\/1}_1\f'u0||oO < 1/4, we have
VEA = (U F (Y — FOL))z |
<O F Gz |+ (T F' R |+ (B FUF (0, — 6.)) 7 |l
< V5 T3 Cuollool| Vg F'Culloo + 11/ D (5u) 05 [l +
1y Binax (3) |05 oo | F (B — 04) |52,

< Vo (1) [T F o + /ey L ”°°{ E @ — 00)]l5, 2},

1/2

where we used that [[v]| < ||v||y’"||v|lec and

[(F'F(0u — )7, |

< sup |FFF0, -0, <  sup  ||0F|[F(0. — 6.)]
18]l 0<5u,||6]|<1 [18llo<5u,||6]I<1

< sup  {TFFSF(0, = 0.)] < nv/GmaxGu) Il (X) (0u = ), 2-

l16]l0<Su,[|8]1<1
Since A\/c > sup,ey H‘I’ VF'Cullos, and by Lemma we have that the estimate 6, satisfies
LF(X) B = )2 < 260 +2 (L4 2) 220 | 50 that

/P ) Ll [ 3 (L 4 1) 2By
(1-2)

<DL T [+ )]
(1-5)¢ A ke

VETRS
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The result follows by noting that (L + [1/¢])/(1 — 1/[lc]) = cof by definition of cp.

Proof of Lemma[G-3. Define m, = (E[Yu1 | Xi],-.,E[Yun | Xu])s Cu = (Cuts---,Cun)’s and
the n x p matrix F := [f(X1);...; f(Xyn)]'. For a set of indices S C {1,...,p} we define Pg =
F[S](F[S)F[S])~'F[S)" denote the projection matrix on the columns associated with the indices

in S where we interpret ﬁg as a null operator if S is empty.

Since Yy,; = my; + (u; we have

~ —

My, — Fau = (I — ﬁfu)mu — Pfu u
where [ is the identity operator. Therefore
Mo = Fu|| < (I = Py )mull + 1P, Cull- (G.19)

Since | F[T,]/v/A(F[T) F[Tu)/n) | < \/1/émin(34), the last term in 1' satisfies

1P5,Cull - < v/ 1/ minGIFIT) /v
V 1/¢m1n gu)\/gHF,Cu/\/»Hoo

By Lemma with v = 1/n, we have that with probability 1 — o(1), uniformly in v € U

IN N

I1F/Gu/ Ve < Cyflog(p v net 1) max (/. [1;(X)?G2) = C/log(p V e ) [T

The result follows.
The last statement follows from noting that the mean square approximation error provides an

upper bound to the best mean square approximation error based on the model T, w provided that

the model include the Lasso’s mode, i.e. fu - fu Indeed, we have

sup  min _ |[Ep[Y, | X] - f(X)0|lp,2 <sup min _ |[Ep[Yy | X] - f(X)'0lp, 2
uelU supp(0)CT,, weU supp(0)CTy,

<sup |Ep[Ya | X]— F(X) ulle, 2
uelU

<o +sup | F(X) 0 — F(X)0ullp, 2

ueld
2\
< 3¢ + <L+ ) \[supH\IlugHoo
Ke weu
where we invoked Lemma to bound || f(X) (6, — 0.)||p,.2- [

G.6. Proofs for Lasso with Functional Response: Logistic Case.

Proof of Lemma[G.0. Let 6, = 0, — 0, and S, = —E,[f(X){.]. By definition of 0, we have
My(8y) + 20,0, < Mu(ou) + Auxflueuul. Thus,

v ~ _ (G.20)
< *H‘I/u(Su,Tqu - %H‘I’u(su,T;!h < A7L||‘Ifuo<5u,TuH1 - %H‘I’uo%,Tng-
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Moreover, by convexity of M,(-) and Holder’s inequality we have

MU(‘/g\u) — My (0y) = OgMy(0y) > —%%H‘Tfuo%\h - HTU/\/WUHPMQH\/wuf(X)léuHPnQ (G.21)

because
|09 My (0,) 00| = 150,00 + {06 My(04) — Su} 6u| < |S6u] + {06 My (0,) — Su} 4|
< H‘I’ Sullool| Waodullt + [Iru/ valle, 2l vuf (X) Sulle,. 2
< 22 Tl + /vl 2l F X Bl 2 (@.22)
where we used that A\/n > csup,y ||\IJ 1Sulloe and that 9pM,(0,) = B, [{Cu + ru}f(X)] so that

{06 M () — Su} dul = [Bn[ruf (X)'0u]| < I7u/vwullp, 2llVwuf (X) dullp, 2 (G-23)

Combining (G.20) and (G.21)) we have

)\cf )\Lc+ 1
H\I]uﬂéu Tc”l

1 u0du Il + lIru/vulle, 2 Vo f (X) Sulle, 2 (G.24)

and for ¢ = %Jrll SUD 1 ||\I'u0||oo||‘11 Moo = 1 we have

. MH‘I’ ||oo
[0u,Tellt < €[[0uT, |1 + N o ru/vwallp, 2l Ve f(X) 6ullp, 2-

Suppose 6, & Agg .y, namely |0y 7ell1 = 2€||0y,1, ||1. Thus,

< (14 {28} D) |6urelh

< (14 280l + (U4 (28} ) 2 Lhalee s e, ofl Vi (X) bl 2
~y — nC\II oo

< (14 {28} ) durel + (1 + {28} )2 Wl /il Sl /B (X) bullp, 2

16ull1

The relation above implies that if §, & Agz

n c||¥ )
I8ull1 < S5 (1+ {2673 ARl 1 /T, 2l T (XYl 2 (G.25)
6c|| W o n .
< A= 8 /Tl 2l T (XY Bl = Ly

where we used that chl (14 {2¢}~1) < 6 since & > 1. Combining the bound with the bound
Ibuitls < LN f (XY 8l = Thas i 6 € Aasa

we have that ¢, satisfies
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. 6c) W oo .
For every u € U, since A, = Agz,, U{d : [|d]l1 < 0”40"01“ Sra/wyllp, 2llv/wa f(X) dp, 2}, it
follows that ¢, € A,, and we have

SIS (X)6ul13, 2 A { 5 IV f (X) bl 2

<) MuB) = Mo(0) — 0M(0)'50 + 2/ /Ta e, ol /T f (X) a2
<@ L+ D2 Pu0bur, 1 + 307/ Valle, 2lly/Tuf (X)8ullp, 2

<) (L + D)Wl {1y + I} + 3|1Fu/ /Wl 2| VW0af (X) e, 2
< {(L + DI Fuolloo 2 + 987/ Va2 } I1V/Bf (X)8ulle, 2

where (1) follows by Lemma with Au, (2) follows from (G.22) and |ry;| < |Tuil, (3) follows by

”\/I;uoéu,Tqu < H\TIUOHOOH% 1,|l1 and , (4) follows from simplifications and |ry;| < |Fyui|. Since
the inequality (22 A ax) < bx holdmg for z > 0 and b < a < 0 implies x < b, the above system of

o}

} =:I1I, forevery uweld.

the inequalities, provided that for every u € U

2. >3{< ) ol

Wy,

implies that

~ A
VA XY bl < 3{ (L4 DTl 2

Wy

The second result follows from the definition of Rog, (G.25)) and the bound on ||\/wy f(X) dup, 2

just derived, namely for every u € U we have

10ullt < 1{0u € Aggu}|0ullt + 1H{du & Agcu}dullr
< (14 28) 1, + 1 < {(1+2c>\mr 6el¥ig e

Ty

Ve

le—1 by

} 117,
Pp,2

Proof of Lemma[G.7. The proof of both bounds are similar to the proof of sparsity for the linear
case (Lemma |G.4) differing only on the definition of L, which are a consequence of pre-sparsity
bounds established in Step 2 and Step 3.

Step 1. To establish the first bound by Step 2 below, triangle inequality and the definition of
P(A,) we have

1) \/ Qbmax Su ||f 0 —0 ) - TUHPm?
c(n = Wy 9 —0q
: /”m i ot Gurtullns . 1,5,

uniformly in v € Y. By Lemma P(Ay) < 1 and ||ry|lp, 2 < ||7u//Wullp,,2 We have

’U, \

/\

=

Su

quax(?u)(df%% {3( )| Wop o X1 28cy|ru/\/@||m,n72}
P ) 5y {311l oo 22 + 2882 FeL el }

NN
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Let L, = % {3||\f/u0]|ook—‘/2i + 286%} . Thus we have

Su < Pmax(5u) L2 (G.27)
which has the same structure as (G.18) in the Step 1 of the proof of Lemma [G.4]
Consider any M € M = {m € N : m > 2@max(m) sup,ey, L2}, and suppose 3, > M. By the

sublinearity of the maximum sparse eigenvalue (Lemma 3 in Belloni and Chernozhukov (2013)),
for any integer k > 0 and constant £ > 1 we have ¢nax(lk) < [€]Pmax(k), where [¢] denotes the
ceiling of £. Therefore

R % s,
u S gbmax(MSu/M)Li < ’V]\Z-‘ Qbmax(M)Lg-

Thus, since [k] < 2k for any k > 1 we have M < 2¢nax (M) L2 which violates the condition that
M € M. Therefore, we have 5, < M. In turn, applying (G.27)) once more with 5, < M we obtain
Su < Gmax(M)L2. The result follows by minimizing the bound over M € M.

Next we establish the second bound. By Step 3 below we have

— _ 2c¢(n/A) = ~ -
V Sy < Cf — 1 V ¢max(5u)”\/ wu{f(X)/(eu - Qu) - TU}HPmQ
By Lemma [G.6| and that ||\/wu7ullp,.2 < [[Fu/y/Wallp,,2 we have
26 TL/)\ { H\Ilu()”oo A/n \f +28C‘|Tu/m"Pn, }

=3

Su

VG 5

<
< m2co {3H‘I’u0HooH +Qg~w}

Let L, = 2co {3\]\@“0\\00% + 286%}. Thus again we obtained the relation (G.18
and the proof follows similarly to the Step 1 in the proof of Lemma [G.4]

Step 2. In this step we show that uniformly over v € U,

)\
\/T n/ \/ Prmax(5u ”f 9 —0y) — 7"u||]P>,L,2- (G.28)

Let Ayi := Ep[Yui | Xi] and Sy = —En[f(X)Cu] = —En[(Yu — Ay) f(X)]. Let T, = SUPP(§U),
Su = 0ullo, 0u = O — O, and Ay; = exp(f(X;)u)/{1 + exp(f(X:)'0u)}. For any j € T, we have
[Enl(Ya = Au) f5(X)]] = TujgA/n.

Since (W, < (I\’u implies H(I\'_KI}uOHOO < 1/4, the first relation follows from

2VEL = (U EA[(Ya — Au) )7l

% 1\I’uoHooH‘1’u&E (Ya A ) f7, (X )]||+||‘If W0 loo W55 oo 1En[(Ru = Au) £, (XD
VEL/OIT 0 En G (X)]lloo + (1/ 01 5 oo SuPy o)<, o1 =1 EnllAu = Aul [£(X)6]
2V + Vmax G (/O ool £ (X) 6 = 7ulle, 2

uniformly in u € U, where we used that A is 1-Lipschitz. This relation implies (G.28]).

//\ IN N

Step 3. In this step we show that if max;c<y, | f(X;) (6u — 04) — 7ui] <1 we have

Vo < oGV (X B = 82) = o2 (:29)
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Note that uniformly in v € U, Lemma establishes that |/AXm — Auil < wui2| f(X) 6y — Tl
since max;<p, | f(X;) 0y — Tui| < 1 is assumed. Thus, combining this bound with the calculations

performed in Step 2 we obtain

2AVG < AF + (2/OI1V i oo v/ Pmax (5u) IV@a{ £ (X) 80 — Fu}|Es 0
which implies (G.29)). [

Proof of Lemma[G.8 Let 5y = 0, — 0, and 1, = H./wuf(X)’Squmg and S, = —E,[f(X)u].
By Lemma with A, = {6 € RP : ||d]|o < Sy + Su}, we have

12 A {%tu} < Mu(0,) = My(6,) — 3Mu(0,)8 + 2|70/ /W2, 2Fe
< Mu(0u) — Mu(6u) + [[Sullool[0ullr + 3||7:U/\/wu”IP’n,2tu

(0 (Bu) + {wumu)\/m+ 17u/ /a2

where the second inequality holds by calculations as in (G.22]) and Holder’s inequality, and the last
inequality follows from
. _ - V3u + 54 : Vet se VS (X) dulle,2
10ullt < V8 + sulldullr < = 1f(X) bullp, 2 < = -
h “ e ¢min(3u + Su) ! ¢min(5u + Su) ¢U(AU)

by the definition ), (A) := minge 4 %.

Recall the assumed conditions g4, /6 > { VEutsulSulloo | 3Hfu/\/wuH]pn72} and Ga,/6 >

Pu(Au)\/ Gmin (Butsu)
VMu(B.) — Mo (0,). I 32 > {q%fu},then

B, < Lo [y (0u) - Mu0) + 2223,

so that £, < \/0 V {M,(8,) — M,(6,)} which implies the result. Otherwise, we have

V8u + 5ullSullco
Au) ¢min(§u + Su)

since for positive numbers a, b, ¢, inequality a® < b+ ac implies a < Vb + ¢, we have

i <¢§¢0v{Mu<éu>—Mu<eu>}+3{ el +3||m/\/mpn,2}-

52 < (M) — Ma(6,)} + { o + 3!!fu/¢@\lpn,z} ,

Au) ¢min(<§u + Su)

G.7. Technical Lemmas: Logistic Case. The proof of the following lower bound builds upon

ideas developed in Belloni and Chernozhukov (2011) for high-dimensional quantile regressions.

Lemma G.10 (Minoration Lemma). For any u € U and § € A, C RP, we have

Mu(lgu + 5) - Mu(eu) - aaMu(eu)lé + Q_HFU/MHPWLQ \/“Tuf(X)/(SHanQ
> {HVEf O8I, o} A { B aas (X5, o}
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where
B [wal (X))
Ga, = inf

sedy By [wy|f(X)6]3]

Proof. Step 1. (Minoration). Consider the following non-negative convex function

Fu(0) = My(6u + ) — Mu(0u) — 0pMu(04)'0 + 2||70/v/wull,, 2]l v/wu f (X) 0 p,, 2-
Note that if g4, = 0 the statement is trivial since F, () > 0. Thus we can assume g4, > 0.
Step 2 below shows that for any § = 5 € R? where t € Rand § € A, such that ||\/wy f(X)'8||p, 2 <
da, we have
Fu®) > IVl (X532 (.30)
Thus covers the case that § € A, and ||\/w,f(X)'d||p,.2 < qa,-
In the case that 6 € A, and ||\/w,f(X)0|p,2 > Ga,, by convexityiﬂ of F, and F,(0) = 0 we

have

q q wf(X)'
( (RS PN N I 65 R
un || V wuf(X) 6||Pn72 3
where the last step follows by ((G.30)) since
IV f (X)lp,.2 = G, for § = 5

) s .
lvwuf(X)0]p, 2
Combining (G.30) and (G.31]) we have

Fu0) > { GIVERF OO 01B, f A { S VA XY Bl

Step 2. (Proof of ) Let 7y; be such that A(f(X;) 0y + Tui) = A(f(X3) 04) + 7ui = Ep[Yui |
X;]. Defining gui(t) = log{1 + exp(f(X:)0u + Fus + tF(XiV )}, Guilt) = log{1 + exp(f(X;)0 +
tf(X:)'0)}, Aui :=Ep[Yui | Xi], Awi = exp(f(X;)'04)/{1 + exp(f(X;)0,)}, we have

M, (8, +8) — M, (6,) — 9pM,.(6,)'5 =
= E, [log{1+ exp(£(X) {0 + 1)} — Yuf (X)' (6 + 8)]
~Ex [log {1+ exp(£(X)'0,)} = Yuf (X)'0u] = En [ (R = Ya) F(X)'5]
— By [log{1+ exp(F(X)'{0 + 61)} — log{1 + exp(£(X)'0,)} — Auf(X)'0]
= En[gu(1) — §u(0) — 3, (0)]

= Ep[gu(1) — 9u(0) — 93,(0)] + En[{gu(1) — 9u(1)} — {3u(0) — 9u(0)} — {3,(0) — g,(0)}]
(G.32)

Note that the function g,; is three times differentiable and satisfies,

9ui(t) = (F(Xi) 0)Nui(t), giis(t) = (F(X:)'0)*Aui(t)[1 — Awi(t)], and
gut(t) = (f(X3)/0)* Aus (£)[1 — Aws (0)][1 — 2A4(2)]

251f ¢ is a convex function with ¢(0) = 0, for a € (0,1) we have ¢(t) > ¢(at)/a. Indeed, by convexity, ¢(at-+ (1 —
@)0) < (1 = a)p(0) + ag(t) = ag(t).
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where Ay;(t) := exp(f(X;) 0u + Tui + £ (X;)'8) /{1 + exp(f(X;) Ou + Tui + tf(X)'5)}. Thus we have
lgi(t)| < | f(X)'0]gl.(t). Therefore, by Lemmas and we have

gui(1) = gui(0) — g (0) > LA fexp(—| £(X,)'0]) + | £(X:)'3] — 1} a3
> g { O _ L) (G-33)

Moreover, letting Yy (t) = Gui(t) — gui(t) we have

10 (0] = [(F(X3) ) {Aui (1) — Aui(D)}] < |F(X3)'0] |Fuil
where Ay;(t) := exp(f(Xi)'0u + t£(X;)8)/{1 + exp(f(X;) 0y + tf(X;)'8)}. Thus
En[{gu(1) = 9u(1)} = {94(0) = 9u(0)} = {34,(0) — 9o (0)}]| =
= ‘En[’ru(l) - Tu(o) - {Au - Au}f(X),(S” (G34)
< 2E,[|7u] |£(X)'8]].
Therefore, combining with the bounds (G.33|) and (G.34) we have

My(0y + 0) — My(0y) — 0gMy(0.)'0 > %En [wu|f( ) d ] [wU|f( ) |3]
—QHFu/\/UTuHPn,zH\/UTuf( )olle,.2,

which holds for any § € RP.
Take any § = t3, t € R\ {0}, 0 € A, such that ||\/w,f(X)'d|p, 2 < Ga,. (Note that the case of

d = 0 is trivial.) We have
L 13/2 -
Enfw f(X)822 = ||\ f (X)8llp,0 < Ga, < B [wal FXYOR] " /By [wal £(X )]
= By [walf(X)37]? /B [wal ()51
since the scalar ¢ cancels out. Thus, E,[w,|f(X) ]3] < E,|w.|f(X)'8|?]. Therefore we have

B [wal S(XY5P) = 4En [wal F(X)5F) > 5B

3
Mu(eu + 5) - Mu(eu) - 60-]\411(91),(S Z %]En [wu|f(X)/5|2] - 2”%”]}”%2” vV wuf(X)/(SHPn,Q,

which establishes that Fy(6) := My (0u +6) = Mu(0u) — 0pMu(0u)'0 + 2/ 7=, 2|l Vwu f (X) 6 ]lp,, 2
is larger than 1E, [wy|f(X)'6|?] for any 6 = o, t €R, 6 € A, and ||\/wuf(X)|p, 2 < Ga,- [

n [wal f(X)'8]%] and

Lemma G.11 (Lemma 1 from Bach (2010)). Let g : R — R be a three times differentiable convex
function such that for allt € R, |¢"'(t)| < Mg"(t) for some M > 0. Then, for all t > 0 we have

9O fexp(—at) + Mt~ 1} < g(t) — 9(0) — g O < L2

{exp(Mt) + Mt —1}.
Lemma G.12. Fort > 0 we have exp(—t) +t—1 > Jt* — 13,

Proof of Lemma[G.13 For t > 0, consider the function f(t) = exp(—t) + t3/6 — t?/2 +t — 1.
The statement is equlvalent to f(t) = 0 for t > 0. It follows that f(0) = 0, f/(0) = 0, and
1" (t) =exp(—t) +t—1 >0 so that f is convex. Therefore f(t) > f(0) +¢f'(0) = 0. (]
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Lemma G.13. The logistic link function satisfies |A(t + to) — A(to)| < A'(to){exp(|t|) — 1}. If
[t| <1 we have exp(|t]) — 1 < 2|t].

Proof. Note that |A”(s)| < A'(s) for all s € R. So that —1 < d%log(A’(s)) = /1\(,,—((5)) < 1. Suppose
s > 0. Therefore
—s < log(A/(s +tg)) — log(A'(to)) < s.
In turn this implies A’(tg) exp(—s) < A'(s + to) < A'(to) exp(s). For ¢ > 0, integrating one more
time from 0 to ¢,
A (t0){1 — exp(—t)} < A(t +to) — A(to) < A (to){exp(t) —1}.
Similarly, for ¢t < 0, integrating from ¢ to 0, we have

A(to){1 — exp(t)} < A(t +to) — A(to) < A'(to){exp(—t) — 1}.

The first result follows by noting that 1 — exp(—|t|) < exp(]t|) — 1. The second follows by

verification. -
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Table 1: Estimates and standard errors of average effects

Specification Net Total Financial Assets Total Wealth
Series approximation Dimension Selection LATE LATE-T LATE LATE-T
Indicator 20 N 11833 16120 8972 12500
(1638) (2224) (2692) (3572)
{1685} {2238} {2597} {3376}
Indicator 20 Y 14658 16895 13717 13711
(1676) (2265) (2726) (3645)
{1685} {2306} {2640} {3471}
Indicator plus interactions 167 N 11856 16216 9996 12131
(1632) (2224) (2675) (3428)
{1683} {2198} {2767} {3385}
Indicator plus interactions 167 Y 14653 16969 12926 13391
(1693) (2316) (2709) (3715)
{1680} {2307} {2711} {3700}
B-spline 27 N 11558 15572 8537 11431
(1573) (2140) (2625) (3502)
{1516} {2194} {2499} {3347}
B-spline 27 Y 11795 15956 8826 12016
(1632) (2172) (2674) (3520)
{1513} {2086} {2751} {3636}
B-spline plus interactions 323 N 40333 86032 31021 58152
(17526) (46158) (12449) (32123)
{17092} {47065} {11692} {33342}
B-spline plus interactions 323 Y 12337 16099 9706 10042
(1629) (2227) (2649) (3586)
{1618} {2120} {2627} {3468}
Many series terms 3009 N 4.82E+05 -6.66E+13 4.12E+05 -1.26E+14
(1.26E+06) (2.06E+14) (2.18E+06) (5.51E+14)
{7.51E+06} {2.07E+14} {7.41E+06} {5.76E+14}
Many series terms 3009 Y 9728 8741 10816 16768
(2131) (4004) (3302) (6061)
{2155} {3934} {3326} {6128}

Notes: The sample is drawn from the 1991 SIPP and consists of 9,915 observations. All the specifications control for age, income, family size,
education, marital status, two-earner status, defined benefit pension status, IRA participation status, and home ownership status. Indicators
specification uses a linear term for family size, 5 categories for age, 4 categories for education, and 7 categories for income. B-splines specification
uses cubic b-splines with 1, 1, 3, and 5 interior knots for family size, education, age, and income, respectively. Marital status, two-earner status,
defined benefit pension status, IRA participation status, and home ownership status are included as indicators in all the specifications. Many series
terms specification in addition to the common indicators uses cubic b-splines with 30 and 45 interior knots for age and income, a 5th degree
polynomial in education, a third degree polynomial in family size, and all the two-way interactions, and drops the terms that are redudant as
described in the text. Analytical standard errors are given in parentheses. Bootstrap standard errors based on 500 repetitions with exponential

multipliers are given in braces.
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FiGure 1. LQTE and LQTE-T estimates based on low-p indicators specification.
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Ficure 2. LQTE and LQTE-T estimates based on high-p indicators plus interac-
tions specification.
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Ficure 3. LQTE and LQTE-T estimates based on low-p b-spline specification.
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FiGURE 4. LQTE and LQTE-T estimates based on high-p b-spline plus interactions specification.
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