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A Rejection probabilities using the 7-ratio

A.1 Notation for Appendix

This appendix collects proofs of the results claimed in the text. In the interest
of being self-contained, we recapitulate our general notation. For a representative
observation, the model is

Y = XB+u
X = Zn+v

for an outcome Y, a single endogenous regressor X, and a single instrument Z.
While suppressed, the model above allows for constants and covariates, as long as
we interpret the triple (X,Y,Z) as the residuals from a regression on any covariates
W and a constantP? N

The IV estimator itself is f = Z'Y / 7'X, where bold denotes a vector, the first-

stage estimator is T = Z/X/Z/Z, and the reduced-form estimator is 7;5 =7'Y/7'Z.
Note that we write the reduced-form coefficient as 73 because the reduced-form
coefficient is numerically equal to the product of 7 and 8. The IV fitted residual

is # =Y — Xf, and we analogously write v and € for the fitted residual from the
first-stage and reduced-form regressions; population analogues we denote by v and
€, respectively.

Throughout we will be examining HAC variance estimators. Consider, for ex-
ample, the first-stage estimated variance, given by

W@ = 22 Ve - o2

In the display above, we are using the notation ?N() to convey the estimated vari-
ance for a parameter. In contrast, we write 1% (Zv) (without a subscript of N) as a uni-
fying notation for the “meat” of the sandwich variance estimator in order to cover
the multitude of approaches to variance estimation encountered in applications:
homoskedastic standard errors, heteroskedasticity-robust standard errors, clustered
standard errors, two-way clustered standard errors, time-series approaches such as

32 Algebra and the partitioned inverse theorem shows that ignoring covariates and constants leaves
point estimates and fitted residuals (and thus variance estimators) the same, as long as we reinterpret
the trio (X,Y,Z) as the residuals from a regression of each of them on W. This is a simple exten-
sion of the same point made in the regression context by Theorem 4.1 of Lovell (1963) and is an
application of Theorem 6.1 of Newey and McFadden (1994).



Newey-West (1987), or yet other HAC approachesPEJ Moreover, and slightly less
standardly, we will use a similar notation for covariance.

Beginning with Lemma 5, below, we will invoke three high-level assumptions
that we now state.

Assumption 1 (Asymptotically Finite First-Stage). nyvVZ'Z 2y yz.

Note that in the main text, we wrote the true first stage parameter as 7, but here
we clarify that in a weak IV framework, the asymptotic sequence is one in which
the parameter 7 shrinks towards zero. In this appendix, we clarify this with notation
by writing 7y, where the parameter sequence satisfies Assumption 1.

. . . (Ze\ a . 62 o
Assumption 2 (Asymptotic Normality). NG (Z’V) — N(0,X), withX = (68 sz > :
Ev v

Assumption 2 is sufficient to imply that the first-stage and reduced-form esti-
mators are consistent and asymptotically normal.

Assumption 3 (Consistent Variance and Covariance Estimators).
V(Z&)/N-V (Z'e/VN) L 0

V(z9)/N -V (z/v/\/ﬁ) LA

C(7&,20) /N~ (Z'e/VN.Zv/VN) % 0

33For example, if the variance matrix of the errors is taken to be spherical, we would use

V(Zv) = 62 (Zz$>

where 62 = %):,- \712, and the sum is over the data. In contrast, if the errors were taken to be het-

eroskedastic, then we would use
V(z0) =Y 75}
i

If a clustered approach is taken, with groups indexed by j and observations within group indexed by
i, we would instead use

(7o o oSyl

V(Z9) =Y ZV VL]

J

where Z; is the stack of instruments for group j, V; is the stack of estimated residuals for group

J, and the sum is over the clusters j. For two-way clustering (e.g., Cameron, Gelbach, and Miller
2011) or time-series approaches (e.g., Newey-West 1987), the results are mutatis mutandis.



Assumption 3 simply states that the variance estimators being employed are
consistent. In the main text, we write V}, in place of limy_,. V(Z'e/v/N) and
analogously for v. This is to simplify exposition; we do not necessarily require that
limit to exist, but instead require the milder form stated in Assumption 3.

A.2 Relationship between IV and reduced-form variance esti-
mators

Lemma 1 (Relationship Between IV and Reduced-Form Variance Estimators).

L {30 (aB) 2860757 + BTu(d)

~

VN(B) =

PROOF: In the just-identified case with a single endogenous regressor, the stan-
dard formula for the estimated IV variance reduces so that

~

W(B) = (ZX)"'V(za)X'Z)™' =V(zi) /(Z'X)?

Similarly, the estimated variances and covariances for the reduced-form coefficient
73 and the first-stage coefficient 7 are given by

V() = V(z8)/(Z'Z)?
W(m) = V(Z9)/(Z'Z)
Cyv(nB.%) = C(2&,29)/(Z'Z)?

where € =Y — 27?[\3 and V= X — Z7 are the reduced-form and first-stage ﬁtted
remduals respectlvely For a representatlve observation we have € =Y — X [3 +
X ﬁ Znﬁ — i+ 9B, and since B does not vary by observation, we have uu’

2B£v + Bzvv which in turn implies that the middle factors of the various
sandw1ch variance estimates are all functionally related:

V(zi) = V(z&)—2BC(Z8&,Zv)+ B2V (Zv)

Putting these results together, we see that

BC(T JZV) =, V(ZD)

z/x)h =~ V(za) V(zg) ,
(Z/7.)? (Z/7.)?

#hB) = () W= = 1z
= (np) — 2BC(np,7) + BVx(7)
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and the result follows after dividing both sides of the above by 2. X
Lemma 2 (z-test for IV).

where se(-) = \/Vy(-) is notation for the estimated standard error of a parameter.
PROOF: The result follows immediately from Lemma 1. X

Remark (Dependence on f3y). Note that while we follow standard econometric
practice and write 7 for the estimated z-statistic, it of course is true that the z-statistic
depends on the parameter value being tested (i.e., By). For statistics other than the
t-statistic, we will emphasize dependence on fy by writing them as functions of f3.
Note that in our notation, By is not necessarily the true parameter value, but could
also be a hypothesized (but false) parameter value, i.e., there is no reason to assume

B = Po.

Remark (Form of the F statistic). In the just-identified context, we have

. 2 (@z)7'zX)? (@X)?

V(r) (Z2)-WV(Z)(Z'Z)"'  V(ZD)

and

T 7’X

A~

V(%) - V(Z9)

where ]/‘\ is the signed ¢-test on the exclusion of the instrument in the first-stage
regression. Note that in this context F' is the same as the “effective F statistic”
described in Olea and Pflueger (2013).

A.3 t-ratio form of Anderson-Rubin statistic

Lemma 3 (Similarity of the AR-statistic and the ¢-statistic). The AR test statistic
can be written as in a form that is similar to the formula for the t-statistic for the
structural parameter, but with a variance estimator that imposes the null:

7B —Po)  _ 7(B — po)
(@B —Po)) \/Vy(xB) — 2BeCy (7B, T) + BFVx(R)
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PROOF: For any given approach to variance estimation, the AR test of the null
hypothesis = By can be obtained by: (1) forming the residual uy =Y — X 3y, (2)
regressing ug on Z, and (3) using an F test to test the null hypothesis that the coef-
ficient on Z in that regression is zero, where the F test adopts the desired approach
to inference for the original IV model@

This gives rise to concepts of the AR coefficient and the AR standard error, by
which we mean simply the coefficient and standard error from the regression in that
third step, respectively. Consider each in turn. The AR coefficient is

! — ~
LOCXR) — 2p—7py= 7B po)
where the last result follows since the reduced-form coefficient 7?23 is tlle product
of the first-stage coefficient 7 and the estimated structural parameter 3. The AR
standard error can be thought of in two ways. First, and more standardly, let i
denote the fitted AR regression residual. Then the estimated AR standard error is
the square root of

RPN . V(Zap)
2'2)"'V(zZiup)(Z'2)" =
Second, since the AR coefficient is a linear combination of the reduced-form and
first-stage coefficients, as shown above, it is the square root of

Vv () — 2BoCn (7B, %) + BV ()

The lemma follows from the second result. We will use the first characterization of
the AR standard error in Lemma 4, below. X

In light of Lemmas 2 and 3, it is not surprising that there is a numerical equiv-
alence allowing one to obtain 7 from 74g(fy) and other quantities, the subject to
which we next turn.

341f covariates are part of the model, then the degrees of freedom for the F test should be adjusted
to reflect the dimension of the covariates W that were partialled out in the first step.



A4 Fromigg(fy) to?

Lemma 4 (Dependence of 7 on Z4x(So), p(Bo) and f).

fZ — fiR(ﬁO)
1— 2/\ ;;\R(Aﬁo) ?/%R(IBO)
P(ﬁo)—f + 7
where
C(Ziiy, Z7)

\/V (Zip) \/V

and as emphasized in the second remark after Lemma 1, f is the t ratio test on the
exclusion of the instrument in the first-stage regression, i.e., F= f We emphasize
that Lemma 4 is not an approximation, but instead a numerical equivalence.

PROOF:  We first note that the structural residual combines the AR regression
residual with the first-stage residual. To get there, note that the AR residual is

fip =Y —XPBo—Z7(B — Bo)

That is, the outcome for the AR regression is ¥ — X Bo and the predicted value is
Zn( ﬁ’ Bo). Then we add and subtract X By and Z7I(B Bo) from u to obtain

i = Y—XB =Y —XB+Xpo—Xpo+Z7(B ~py) ~ Z(B — o)
= up—v(B —Po)

As in the proof of Lemma 1, and for the same reasons, we can use the result above
to re-write the meat of the IV variance estimate:

V(zii) =V (Ziio) — 2(B — o)C(Ziio, Z9) + (B — Bo)*V (Ziy)

Next, note that 72 and 73 ,(Bo) differ only to the extent V (Z&) and V (Ziip) differ:

o _ _(B—p?

— =

V(Zu)/(Z'X)?

2y — BB (B-py
V(Ziy)/(Z'Z)?  V(Zup)/(Z'X)?




Then, using the above result on V (Zii), we obtain

2 _ V(Zip) _ V(Zip)
2(Bo) V(Zi)  V(Zip)—2 (B Bo)C(Ziio, Zv) + (B — Bo)2V (Z7)

1—2p(Bo) (B — ﬁO)\/ +(B- ﬁo)

Finally, note that

) _ AG-p) V@D [V
f /V (Ziio) / (Z'Z) r

and the result follows.

A5 From7tor3,

Lemma 5 (Dependence of 74 on 1, ﬁ and F ).

2
Be=——=
142042
+2p JE + 7
where
~ C(Zi, Zv)
p = —
\V(zi V(2
PROOF: The proof is similar to Lemma 4, but with some subtle differences. First,

note that since iy = i+ (/3\ — Bo)v, we can write
V(Zi)

f2e(Bo) Y(Zﬁ) _ _ _
2 V(Ziy)  V(Za)+2(B — Bo)C(Zii, Zv) + (B — o)V (Zv)

The result follows after dividing top and bottom by V (Zi) and recognizing that

<)

(Zv)

(Zu)

- (5-»)

<0

S



Note that unlike Lemma 4, the dependence is (1) on F as opposed to fand (2) on
the (generalized) correlation between the IV residual and the first-stage residual, as
opposed to the (generalized) correlation between the AR residual and the first-stage
residual. X

A.6 Rejection probabilities for tests based on 7-ratio

We next derive an asymptotic version of Lemma 3.

Lemma 6 (Limiting Distribution of 7> Under Weak IV Asymptotics). Under As-
sumptions 1, 2, and 3, we have

l2
. Aiilfgi e = )
1 =2p (o) + 4~

where

= lim (
P(BO) =1 N—>oo\/V]%/ \/V Z/

and tagr(Bo) and f are distributed jointly normal with unit variances, correlation
p(Bo), and means that are given below.

PROOF: We will show that regardless of whether [ is the true parameter or not,

N A(Bo)
(1) + (1) et 3, 1)

where
oy
M) = (B—P) oty
Tizz
fo = “£
o,

v

from which the result follows.
Since € = u -+ vf3, the AR outcome ug =Y — X By can be written as

up = XB+u—XPBo=(Zr+v)(B—Po)+u=Zr(B—Po)+v(B—Po)+e—vB
= Zr(B—Bo)+&e—vPo



which means the AR coefficient is given by

(Z'2)'Zvg = (Z'Z)'Z' [Z'7n(B — Bo) + € — Vo]
= (B —Po)+(Z'Z)"'Z (g — Pov)

The AR standard error is the square root of the estimated variance of the above, i.e.:
(Z'Z)"'V ((z’z>*1/2z’(e - Bov)) = (2'Z)7" (62 — 2BoGey + B252)
and therefore the AR statistic is given by

v (B — Bo) + (Z'2)'Z (e — Byv)

ur(fo) =
(@2)71 (62~ 2By5e, + B 52)
_ IgN—1/2gt (o
ﬂZZ(ﬁ ﬁ()) + (Z Z) Z (8 ﬁ()V) +0p(1)
\ 02 —2Boses + B30 /52 —2Boe, + BF5?
Similarly,
7 (2/72)7'2'X @)Ly +v) (Z72)~'22 (Z' 7y +v)
@z Ve \J@n) V(@) ) o;

Some algebra shows that

S Oev — Bo0?

¢ (iar(Bo).f) = NN Al

and that the first term in the above is equal to p(f).
Putting these results together, we have

'2)"'2Z (e o)
- B A(po) Z7) Tt
(’AR(B‘)) Jo 112p(ﬁo)A(ﬁo)+A2(Bo)> = | Vo EmoBal | L, 1)

- @z) 27y
f=Jo N
and joint asymptotic normality of (74z(Bo), f) of the stated form follows from As-
sumption 3 and the continuous mapping theorem. X

10



Figure A1: Combinations of E[F], p for Pr[t? > 2.58%] < 0.01

E[F]

10
|

* Rejection probability < 0.01 ~ ======----- p =0.4354

EIF]
Vertical axis scale uses the transformation 1—'1;[71 Shaded region represents all combinations of
+0

E[F], p such that the rejection probability is less than or equal to 0.01. Dashed line is the maximum
p such that the region to the left is shaded.

A.7 Some numerical findings and other results derived from the
rejection probabilities

Result 1a. In addition to the IV model in (), consider the restriction that E [F] > F.
The smallest value of F such that Pr [t2 > 1.962] <.05is 142.6.

Result 1b. In addition to the IV model in (), consider the restriction that |p| < p.
The largest value of p such that Pr [tZ > 1.962} < .05 is 0.565.

Result 1c. For the 1 percent level of significance, there exists no F such that

Pr [tz > 2.582} <0.01 forall E [F] > F, and the largest p such that Pr [tz > 2.582] <
0.01 forall |p| < p is 0.43. The full set of values of |p|,E [F| for which Pr [t* > 2.58%] <
0.01 is illustrated in Figure[Al

11



Result 2a. Pr[{? > 1.96?} N{F > 10}] < 0.113 for all values of p,E [F). This

implies that confidence intervals are 31‘/ +1.96-SE (31\/) when F > 10 and (—oo, o)
when F < 10, and should be interpreted as 88.7 percent confidence intervals.

Result 2b. Pr[{r* > 1.96?} N{F > 104.7}] < 0.05 for all values of p,E [F).
Result 2¢. Pr[{r* >3.432} N{F > 10}] < 0.05 for all values of p.E [F].

Result 2d. Let AR be the statistic of There exists no finite threshold F such that
Pr{r*>1.96*} N{F > F}|+Pr[{AR > 1.96*} N {F < F}] <0.05 for all values

of p,E[F].

Derivation of Results 1a-b-c, 2a-b-c-d:

Recall
*tig
I =2poftar + 13z

Lemma 7. For py = %1, suppose f = f5 + potag. Then, for g > 0,
(—oo, A1V [f3 o) iflfol <4va

{tar 12 (f§ + potartar) 2 4} = (o, [L1U{="Y0YU[f, ) if|fg] =4va
(—eo, fAl VLS5 51U fa ) i If5]>4y/a

tz(fatAR) =

where
. Pofs =/ fs2+4lfsIva _ pofy P4 va
fa = 2 /N 2
L pofs =524l IVa s+ 4va
fB = 5 ; /g = >
PROOF: 1
12 (f§ + Potar, tar) = sz(Pof()k +14r)* 3R
0

Let T = min{—pof;,0} and T = max{—pof;,0}. Note t*(f; + potar,tar) is a quar-
tic polynomial, monotonically decreasing on (—eo, T) and (—%, 7) and monoton-

ically increasing on (7, —%) and (7,0). So the solutions to (f; + Potar,tar) = q

12



are as follows:

{fa. i} if |[f5] <44
{tar : 2 (f§ + Potarstar) = q} = {fX,fXa—pong} if |51 =44
{fi.f f5: f5) if1f51 > 4/q

The result follows. X

Remarks:

1. This result characterizes the rejection region for Wald when pp = £1 under
the null and alternative.

2. Our asymptotic approximation is based on: ( ‘AR > ~N (( 1 ) , ( I po ))
f fo po 1
When py = £1, f = fo — pot1 + pPotar- So, Lemma can be used to charac-

terize the corresponding Wald rejection region with fij = fo — pot1. Note that
under the null, #; = 0 and fy = fo.

3. Under the null, f; = fo, so define

—Pofo—\/f§+4|fo|\/6_1. _ —pofo+ 1/ f§+41folva

fa = > Ja 7
f —pofo— /13 —41folva ; —pofo+1/13 —4lfolv/a
B = 5 ; B = 5
Then,
D(fa) +1—D(fa) if | fo] <4./q

r = 2 = )
P12 ) {cp(fA>+1—q><fA>+<1><fB>—<I><fB> i |fol > 4/g

where @ denotes the standard normal c.d.f.

4. This result can also be used to characterize {14 : t> > ¢, f> > F} by inter-
secting the set given with (—oeo, —V/F — pofilU [VF - Pofy o).

Corollary 1. Under the null,

13



(a) Prf() pPo= l(tz > q, fz > F) Prff(),p()zfl(l‘2 > Q7f2 > F) = Pr*f(),po=l(l‘2 >

q,f* > F)
(b) limg 0 Prsy o1 (12 > q. f> > F) = 1 - [@(VF) — &(—VF)]
(c) limgy o Pry po—1(* > q,f2 > F) =1—[®(/q) — P(—/q)]

PROOF:

(a) Subscripting ¢t with pg to denote its direct dependence on pg, note that t/%o (fg +
Potar,tar) =12 o (= (f5 +Potar)star) = 12 o (—f5 -+ (—po)tar),tar) and £ = (f5 +
potar)* = (—f§ + (—po)tar)?. The first equality follows.

Next, 15, (f5 + Potar:tar) = t5,(—f5 + Po(—tar), (—tar)) and f* = (f5 + potar)* =
(—f5 +po(—tar))?. Under the null, #; = 0 and t4g ~ N(0, 1) is symmetrically dis-
tributed about zero. The second equality follows.

(b) Note that fy, fa — 0as fo — 0. The result follows.
(©)

7 —pofo+ /3 +41folv/a [ Pofo++/f§+41folva 2,/q
= -
2 pofo+ /1 +41folv/a P0|§—g|+ l-l—é‘lf—\f

Hence, limp—1 f,—se0 fa = 1/q. Similarly, limp 1 g, 0 fa = —o0; limp—1_ fy—e0 f3 =
—/G: limpy—1 fy—see f5 = —o0. When pg = 1, as fo — o0, VF — fo — —oo, 50
that the rejection probability is determined by f4 and fp asymptotically. Result (c)
follows. X

Remarks:

1. Note that results on rejection probabilities for Wald follow setting F' = 0,
Prfmpo(t2 >q) = Prfoypo(t2 = %fz > 0).

2. By part (a), under the null, to characterize Pry, 5 —+1 (t2 >q,f2>F ), it suf-
fices to focus on the case pp = 1 and fy > 0.

3. From (b), by choosing F' close to zero, the worst case rejection probability
for {t*> > q, f> > F} is arbitrarily close to one.

4. By parts (a) and (b), limg, o Prfmpozil(tz >q)=1

14



Corollary 2. Under the null, there exists fo > 0 large enough that for any fo > fo,

(a) if g <4, then
d

2 2 n .
a_f\OPrfo,p()Zl(t Z Q7f Z F) > O’

(b) if g > 4, then
0

2
O—,—fOPffo-,po:l (t

v
o
~
[\S]
v
T
A\
=]

PROOF:
Set po = 1. As fo — o0, Pry, po—1 (12 > q) = @(f4) + 1 — P(fa) + P(fz) — D(f3)-
Define v = fio So v | 0as fy —> . From the Proof of Lemma for fo > 0, we

= 2./4 . = -2
have f4 = Ry Ewryd Similarly, fp = oy V=N
dfa —4q /s —4q

I I+ /Txd g2 /Txavg v (1+/1-avyg)’/1—4v/g
Letw=4v,/q.

9 [1-®(fa) +@(fp)] = ‘P(fB)%J? _¢(ﬁ‘)%

v

B ¢(f)% 17(1+\/1—4v\/21)2\/1—4v\/51¢(f14)

- VBT, (1+/T+40,/q)*\/T+4/q 9 (f5)

B - |ofs (1+VT—w)2/T—w ~1 1

= —0(fp) N [1_(1+m)2\/mem(2q{(1+\/m)2+(1+M)2D]

Using a first-order expansion of the bracketed term in the final expression above,
we find that as w | 0,

d ~ ~ - |9f
() ()] = —0(s)| 22| [(4— a2/ + o(v)]
_|af
= [lg-92vva+o0n)] - 07| 22
Notice from the Proof of Lemma lll, limp)—1, f)——so0 fA = limp,—1 fy—se0 fB = —°.

Correspondingly, it is straightforward to show that the terms ®(fx) and &( /) do
not have a first-order effect on the derivative above (for cases pg = 1 and fo — oo,
or po = —1 and fy —> —oo).

15



So, under the null, for g # 4, as fy — oo,

J J ; 7
a_ﬁ)Prf07pO:1(t2 24) = 57 [®Ua) + 1= ®(fa) + 2 () - ()]
— _izi [P(fa) +1—P(fa) +D(fp) — P(f5)]
fe v
L [@(f) +1- @(F2) + () — @(fs)]
= (-a) [2vas(n| %2] ] +o0
- b

This established the result for the Wald rejection region. The generalization to
{t* > q, f> > F} is straightforward and follows the argument above, as ®( f) and
®(fp) are still the dominant terms in the derivative. X

Remarks:

1. Putting Corollary [Ifc) and Corollary 2] together, we see that the rejection
probability for Wald with py = 1 asymptotes to 1 — [®(,/q) — P(—,/q)] as
fo — . When g < 4, the Wald rejection probability approaches its asymp-
tote from below. This means that for large enough f, Prfoﬂoozl(t2 >q) <
1 —[®(,/q) — ®(—/q)]. Given Corollary Eka) and continuity of the Wald
rejection probability, there exists a value fy such that Pry, po—11(t? > ¢) =

1= [®(yq) = 2(=vq)]-

2. When g > 4, the rejection probability for Wald with pg = £1 is decreasing as
it asymptotes to 1 — [®(,/g) — P(—,/q)]. Generally, there will not be a value

of fy such that Pry, o —41(t* > q) = 1 — [®(,/q) — P(—/9)).

3. g = 4 corresponds to test size 4.55%. So, g < 4 corresponds to test size >
4.55%, and g > 4 corresponds to test size < 4.55%.

Derivation of Result 1a: We use numerical evidence to verify that for a given
Jfo > 0, the largest null rejection probability occurs with pg = 1. As discussed in
Remark 1 above, taking ¢ = 1.96> < 4, Corollary a) and Corollary c) then
tell us that there exists fo such that Pry, p,—1 (1> > q) < 1—[®(,/q) —P(—/9)] =
.05. From Lemma we have Pry, o1 (17 > q) = ®(fa) + 1 — D(fa) + [®(f5) —
®(f3)]1{|fo| >4,/q}. Given the formulas for f4, fu, fs, and fp above, it is straight-
forward to solve for the smallest fj such that Pry, p,—1(t*> > ¢) = .05 and verify that

16



a P o= 1(2 > g) > 0 for any larger fp (so that Pry, 5 —1 (> > g) must be smaller
than its asymptotic value of .05 for all larger fp). The solution is fy = 11.9. Hence
E(F) =E(f?) =Var(f)+[E(f))* =1+ (11.9)> = 142.6. X

Derivation of Results 1b and lc: Taking ¢ = 2.58% > 4, Corollary b) says
that for large enough fo, Prfw():](t2 > ¢q) > .01. We verify that the derivative
aifoPr fo.po=1 (t2 > ¢) < 0 for large enough fj and then verify the inequality numeri-
cally for any smaller values of fy. The findings in Results 1b and 1c for pg < 1 are

obtained numerically.
X

) 4./q if F<4,/q
Define ¢* = —=F—, and ¢ 2

VF+yq’ T if F > 4q
Lemma 8. Under the null, for F > 0,
if0< fo<or,
0 _
5%Hﬁﬂhwﬂqu22F)>o,
and if 9* < fo < §,

PROOF: For 0 < fy < ¢7, —fo-i-\/f > fa(fo), and for fy > ¢*, —fo-l-\/f <
_ { F_ F<yq
falfo). Let ¢ =< va—VF

- [e3] F >q

L0 < fy < ¢, then —fy — VF < fu(fo)-
Moreover, af [—fo—VF] <0 and ffA(fo) <0 for fo > 0. For 0 < fy < ¢, we
can show that [f3(fo), f(fo)] N ((—ee, —fo—VF]U[—fo+VF oo o)) = 0. Hence,

2o ooy ) 1= (= fo+ VF)+@(—fo - VF) if0< fo<¢
Pl‘fo,P():l(t ZQ7f EF)—{ —(I)(f_A(fo))—Fq)(—fO—\/f) 1fq)*<f0<£p .
For 0 < fp < ¢7,

J 2

g%mﬁﬂszquQzﬁwzm—ﬂ+v?»—m—m—v?w>o
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since | — fo + VE| < |- fo —VF|. And, for ¢* < fo < @, 3%0[1 —D(falfo)) +
®(—fo—VF)] < 0and 71— D(fa(fo)) +P(fa(fo))] < 0. The result follows.

Remarks:

1. Lemma (8| characterizes a local maximum in Prfw)ozl(t2 > q,f?> > F). The
maximum occurs at fy = ¢*, which is the smallest maximizing point for fj >
0.

2. Importantly, note that the derivative of Pry, o —1 (t* > q, f> > F) is discontin-
uous at fo = ¢*, so this maximizer is well separated, which is useful for our
numerical analysis.

3. We know the asymptotic value of this rejection probability by Corollary [I{c).
In addition, numerical experimentation shows another bounded local maxi-
mum can sometimes be the global maximizer when g > 4, as might be ex-
pected given Corollary

Prf0:¢*,po:1(f22(]7f22F>:1 qD(\/_\/—I:_\/_> ( \/\/__-F\/%F>

o P =1 (P 2,17 2 F) <0 and 5 Prj—ge o1 (P > q.f* >
F) <0

o limz o Pry—¢- p(,ﬂ(f2 >q,fP>F)=1

o limy_ Pry_¢: o1 (> > g, f> > F) =1—D(,/q).

e Clearly, Pry—g¢+ p— (t2>q,f>>F ) cannot be a global maximizer over
fo > 0if Pryy—ge g1 (1> > ¢, f*> > F) < 1 = [®(,/q) — P(—/q)]

Size Calculations
Equation (6) is a key step in our size calculation results. We use Lemma [§and

numerical evidence to verify that Pry, —¢« o =1 (t> > q, f> > F) is a global maximizer
over foy,po. To achieve a size y test, we solve

ol
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Note that the expression on the righthand side is monotonic decreasing in both F
and g, so that solving this equation for F or g is straightforward.

Derivation of Result 2a: Set 7 = 10 and ¢ = 1.962. Then, y = 0.113/9] X

Derivation of Result 2b: Set ¢ = 1.96% and ¥ = .05. Then, solve for F yielding
F=104.7. X

Derivation of Result 2¢: Set 7 = 10 and y = .05. Then, solve for ¢ yielding
q=34. X

Derivation of Result 2d: Let fy = ¢*. Then,

_of N,
- <\/f+\/q te VF+/q
2 2 F 2 2 _ 7 ifF<]
Prpp—gr po=1 ({17 2 ¢, f" 2 F}U{tig 2 ¢,/ <F}) = /e
q
1-o( M) o yg
iftF>1
VFq -
Note that 1 — & (m +®(—/q) > 1 —®(\/q) +P(—+/q). When F =1, the
. . . _ Fq
expressions in the bracket above are equal. Since we already know 1 —® ﬁ+\/c7> +

P (%) is decreasing in F', we can conclude that for all F,

Pr—g+ po=1 ({* > ¢, /2 > FYU{tir > ¢, /> < F}) > 1 = ®(\/q) + (—/q).

Plugging in ¢ = 1.96 yields the stated result. X

A.8 Power curves: AR, tF, and step functions (c*, F*)

Figure|A2|contains the power curves for the eight remaining scenarios as described
in the text. A black diamond represents the rejection probability from 250,000
Monte Carlo simulations, each with a sample size of 1,000.

33To be precise, we set ¢ to the 95% quantile of the X12 distribution.
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Figure A2: Power Curves
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B The tF critical value function: Existence, Unique-
ness, Size Control

B.1 Existence and Uniqueness

Define d = (CID_1 (1 — %) )2, b=3d— %2 + %3, and consider the functional equation
in F and cq(-)

2
_ F F
® (¢<ﬁmm>“>>+mw]) @
2
@ (o (VF- vt ~0-9) v

. 2
L /ca (F)+\/1?:|
_ F ’
| ]<¢<ﬁ_7(m+\/ﬁ> —(1—Ot)>]

Lemma 9. There exists a function cq(+) satisfying (7)) for F € (d,d + 8] for some
0 > 0 with the following properties:

(i) calF) =~ (#g—b) =O(F=d)asF Ld

(ii) Let ¢q satisfy (7)) for F € (d,d+5]f0rsome 5 > 0 with ¢a(F) = Fd—_sd —b+
o((F—d)~") as F | d. Then, cq(F) = ¢o(F) for F € (d,d + 8] and some
61 > 0;

(iii) cq € C* on (d,d+§];

(iv) Forany k > 0, there exists 8 > 0 such that co(F) > k for F € (d,d + 6], and
ca(F) is decreasing for F € (d,d + 8] for some &3 > 0.

PROOF:  To show the desired existence, we will transform equation (7)) to put
it into canonical form for results from the dynamical systems literature. Once in
canonical form, we find that (7)) is a degenerate case to which the standard stable
manifold theorem does not apply. New results from |[Fefferman (2021) obtained for
our case provide the desired existence and uniqueness.
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Based on (7), define the map T : (F,y) — (v,n) where

2
V(F7y) =

-1 __F )4 _F
P <c1><\/F ﬁ+ﬁ> (1 a)>+ﬁ+\/f

() 0 a) e ) )]

B

n(Fy) =

We will show existence of an invariant curve for the map 7'. In particular, a function
cq exists such that T(IT) C IT where IT = {(F,cq(F)) |F € (d,d + 6]} for some
0 > 0. Since T(IT) C I1,

N(F,ca(F)) = ca(V(F,ca(F))) ©)

for all F € (d,d + 6]. Given the definitions of v and 7, (9) is exactly (8), so ex-
istence of the invariant curve for T yields a function cq(-) satisfying (7). We now
turn to obtaining the desired invariant curve for 7.

We will transform 7" to obtain an equivalent map with an approximation in
canonical form. Let ¢ (F) = (F —d)cq(F).

(t+d)vi
VZHA/t(t+d)

_ -l _ Hdve
gh(t,z) = @ (@(vt%—a_l \/E-F\/I(ITC_Z)) (1 a))

h(t,z) =

g(t,z) = gh(t,z) +h(t,2)

§(Fz) = [g(F—d2)]

(¢(F —d,2)>—d) [g(F —d,z)]* [gh(F — d,z)]?
[W(F —d,z))?

C(F7Z) =

These functions define a dynamical system iterative map: T* : (F,z) — (§,8)
with a fixed point at (d, d’ ). Taking standard expansions in ¢ and Lagrange remain-
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ders, we obtain

d d3? 1 d* ],
ht,z) \/Z\/E T {\/Z+z3/2}t

3/2 5/2 . 207 1\2
1 &P d ]H[‘Z 1 d(dﬂl)}g/z

3 d*?
i—i—* t2+rh(t,z)t5/2

gh(t,z) = —\/d - \C/lzﬁ +

+ — —
2d  z z VZ z
1 1 3yd , &P =3d"7 11d°7 1347 ,
T —ap T, @17 S NV N D
4vd  8d3/ 2z z 4z 127
+rgh(t,z)t5/2

where the remainder terms 74(t,z) and rg;(f,z) can be bounded for 7 in a non-
negative neighborhood of zero and z in a neighborhood of d°.

Corresponding expansions for gh(t,z), & (F,z), and §(F,z) follow. Re-centering
the fixed point to the origin by the change of variables T =& —d, (t = F — d),
u=¢— d?, u=z—d’, and then expanding in u in a neighborhood of zero yields:

t(tu) = t — gﬁ/z — %utJrRT
3
utu) = —u+ {—6d+dz—%}t 2(2+d) w/t + O(|(Vt,u)]?)

where Ry = Y, 7, (t,u)(v/7)'u*~* and the remainder terms 7, (¢,u) can be bounded
for ¢ in a non-negative neighborhood of zero and u in a neighborhood of zero. The
form of the remainder R; allows ¢ to be factored out in 7:

2
T=t [1-2;1/2—%% (gfl(t,u)(\/;)luz_l)]. (10)

. ¢ _ 2 )
Now, we can apply one more set of set of transformations X = vt X = Eﬁ’

- 2 3 ~
Y=u+bt,and y = u + b7, where b = 3d — % + % is chosen to eliminate the X?
term from the y equation.

d’ (11)
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This mapping and its inverse:

3
d (12)
Y = 5+ Q2+d)i5+0((%9)I)
are in form for direct application of the results in Fefferman (2021).

Applying the above series of transformations directly to the map T : (F,y) —
(v,n) in (8) yields the mapping ¥ : (X,¥) + (%,7) given by

o2 d’ 4 3

= d\/ <4X+d d2X2(Y+d )—b> —d (13)
o= & =X +d, 4 (Y+d°)-b)—d d—z)@rd i(f/+d3)—b +b|-d’

y - 4 d2X2 = = 77 4 7742)2,2 “ “w

So W is the mapping approximated by and the inverse ¥~! : (X,Y) — (x,y) is
approximated in (12).

By Fefferman (2021) Theorem 1.1, there exists a function ¢ that:
(a) generates an invariant curve for W, for I' = {(%,&(%)) | % € [0,8]}, ¥(T) C f‘
(b) is tangent to the x-axis near the fixed point at the origin, ¢(X) = O(%*) as &
and
(c) is infinitely differentiable on [0, §] for some & > 0.
This theorem also delivers uniqueness in the following sense. Let ¢ be a function
such that £ 5¢(%) — 0 as £ | 0 and define I = {(&,&(%)) | % € [0, 8]} for & > 0. If
¥ (") ¢ I, then & = ¢ on [0, §] for some & > 0.

Given the function ¢ that defines an invariant curve for ¥, we define a corre-
sponding function for 7'

¢(3VF=d)+d’
ca(F)= Fd —b.

(ISV] S}

for F # d such that ¢ (%\/F——d> is well defined. Then, ¢y will inherit the smooth-
ness properties of ¢ on this domain proving (iii). Consider F such thatd < F < d +
%252, and define y = ¢ (F). Now apply the map T yielding (v,n) as given by (8).
To show that ¢ defines an invariant curve for 7, we need to show that 1 = cq (V).
LetX =2\/F—dand Y = (y+b)(F —d) —d°. By the definition of ¢4, ¥ = ¢(X)
and X € EO, 8]. Define (%,7) = W(X,¥) as in (8). Then, the result in [Fefferman
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(2021) shows that = &(%) and % € (0, §]. Notice that v = %2324—4 € (d,d+ %252]
and

_ (~+d3)—b—i(‘(”)+d3)—b—_<% - d>+d3—b— (v)
1= gV Te) 7= gt Te v—d R

as desired. This invariance shows that ¢ satisfies (7)) for F € (d,d + 5 52] Also,

note that by the definition of ¢, &(¥) = O(#) directly implies cq (F) — (Fd—jd — b) =

O(VF—d)asF |d.

Next, we show uniqueness of ¢y. Consider a function

Ca € {c (F—d)" lc(F)— (Fd3d b)] —>0asF¢4}

such that 7' (IT) C IT where I1 = {(F,¢u(F)) | F € (d,d + 452]}f0rsom66>0 Set
é(x) = [ca (—xz + d) + b} ( > Similar to the argument above, 7 (IT) C IT
implies that ¥(I") C T for " = {(&,&( )) | % € (0, 51} By the uniqueness result in
Fefferman (2()21) it follows that ¢ = ¢ on (0, 5] for some & > 0 and hence &g = cq

on (d,d+ 752].

Now, we show that cy(F) is decreasing for F € (d,d + &3] for some &3 >
0. Since & (%) is continuous on [0, 5], it is also bounded. In particular, &' (%) <
k on [0,68], for some k > 0. Since &(%) = O(3), there exists §; € (0,8] such

that ¢(x) > —%—3 for % € [0,8;], and hence —d & <%\/F—c_l> < ‘13—4 for F € (d,d +

2 = . 2 — 8 . . 4
%512]. Let &3 = mln{%&;g%}. Then, F € (d,d+ 8] implies /F —d < % and
& <§\/F —4) VF—d <% Then, for F € (d,d+ &),

E’(j«ﬁF—d)\/F—d—d6<§«/7F—d>—d4<d34+d34_d4_ e
d(F —d)? d(F—d? — 3(F—d)?

chy(F) = <0.

Lastly, take any k > 0. Set & = min{ é‘f:b 5 62}. For F € (d,d+ &), 0 <
%x/F—c_i < &, which implies E(éwF—_) 43 ,and F —d < 3(kjb) implies
—d® + (k+b)(F —d) < —43—3. Hence, E(%wF—_) > —d? + (k+b)(F — d) which

can be re-arranged to yield cq (F) > k, so (iv) is proven. X

|
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The function cy(F) given in Lemma |§] is well specified for a neighborhood
F € (d,d + d8]. To be useful as a critical value function for controlling the size
of the test statistic 2, ¢y needs to be extended to F > d+ 8. In practice we start
this extension by applying the map 7! (defined in the proof of Lemma @) Sup-
pose (F,y1) =T~ (d+ 8,cq(d+§)). We can define co(F) on (d + 8, Fy] so that
T V{(F,cq(F))|F € (d,d+3]}) = {(F,caq(F))|F € (d,Fi]}. One could continue
to iterate this map and extend the function c,. However, at some point the mapping
T will no longer characterize size of the critical value function under p = 1 (see
Property 1(c) in the definition of #F). Our approach will be to stop iterating and
simply flatten the critical value function before encountering this problem. Poten-
tially other approaches could be taken, so we make the following assumption that
accommodates a wide range of possibilities.

Assumption 4. Suppose cq (F) is ‘well-defined for F > d. Assume that for some
0 >0, ¢y is decreasing on (d,d+ 6] and ¢ (F) < cq(d+ 0) for F > d + 9.

From Lemma Ekiv), we know that ¢y, as given by that result, is decreasing
for some segment local to d, so the key property supposed in Assumption H] is
a ceiling on the extended critical value function. That is, the behavior of ¢y as
it asymptotes at d is provided formally by Lemma [9] and it is straightforward to
directly check Assumption (4| for the whatever approach is taken to extending c.
For our extension approach, we verify the ceiling in Assumption 4] numerically and
find it to be trivially satisfied.

Lemma 10. Suppose Assumption 4| holds, and suppose cq(+) satisfies (7)) for F €
(d,d + 8] for some & > O with properties given in Lemma(9 Then, for some & > 0,

Pryy p—1(t> > ca(f?)) = for0< fo <& (14)

PROOF: Given cq(+) satisfying (7)) for F € (d,d + 8], we can set

Jo

F
 Vea(F)+VF

and
fro= o (@(VF-fo) - (1-a)) +fo
F

_ F
= @ 1<q)<\/f— M+ﬁ>_(l_a)>+ ca(F)+\/1?'(15)
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The definitions of fy and £~ and equation (7)) ensure that
F(VF — fo)?
fs
(1—a) = ®(VF - fo) —@(f* — fo)
(fL)Z(fL _ fo)z

Co Ly2 = .
((77)7) 7

ca(F) =

When p =1,
2o S So)
P(p) = LU
fo
and we can see that f = \/F and f are intersection points of () and ¢4 (f?). Next
we will show that these points of intersection fully characterize the set { f|¢>(f) >
co(f?)} for small values of fj.

For F € (d,d+ 6], fo= ﬁ is monotonically increasing in F and ¢y (F) —

% as F' | d since by Lemma @iv). Sod < F<d+ 5 implies 0 < fp < 50 where
Sy = d+9 —. Take a value fp € (0, 50] There is exactly one value of

Vea(d+8)+v/d+5 .
FE(d d+5] suchthath—W. :
fo € (0, 51] there is a well-defined f~ from (15)) such that (f¥)? € (d,d + 9.

Let & = m1n{31 Vd}. Since cq(f?) is undefined (or infinite) for 2 <d,
co(f?) cannot intersect ¢2(f) for 0 < f < fy if fo € (0, 5,]. From the definitions,
we know that F > f2 and fL < fo. For any fy € (0,8,], ca(f?) and £2(f) do not
intersect on f € (0, f) and so we must also have f= < 0.

Again consider any value fj € (0, 52] with corresponding F and f~. For f > fo,
t2(f) is strictly increasing and cq(f?) is decreasmg for f € (fo,F|]. For f > F,
t2(f) > 2(VF) = ca(F) > co(f?). Similarly, £2(f) < cq(f?) for f£ < f <0 and
t2(f) > cq(f?) for f < fL. It follows that {f|£2(f) > cq(f2)} = {f < fFYU{f >
VF } and

Choose &; € (0, 8] such that for each

Pryp-1(? = ca(f?) = 1= ((VF — fo) = ("~ o)) =
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B.2 Non-existence of ''smaller' critical value function

Corollary (non-existence of “smaller” critical value function): Consider any
alternative function & (F) satisfying properties 1(a) and 1(c), and such that
k(F) <cq(F) for all F , with k(F) < cy (F) for some value of F. Then k(F)
cannot control size to be a.

PROOF: Since both ¢ and k satisfy Property 1(a), there are F. and F;, such that
cq(F) = é(F,F,) and k(F) = &(F, F}). By supposition there is some point Fj such
that k (F1) < co (F1).

Suppose there does not exist F| < £, with k (F}) < cq (F1). Then, we must have
k(F) = cq(F) for all F < F, and there must be an F| > F. with k(F}) < cq (F1).
In this case, F,, < Fy and &(F, F.) > &(F, F}), otherwise cq and k would be identical
functions. But this would contradict £ being determined by the maximization in
Property 2. We conclude that there does exist F| < F. with k (F}) < cq (Fy).

Define

F
fo = ~
" Vel )+ VA
2
And recall that when p = 1, 12(F) = F(‘/i—;fo) Fixing fo = f3, 12(F1) = cq (F1) >
0

k(F1), where cq and k are continuous and non-increasing at F}, and #2 is continuous
and strictly increasing at F (since F1 > f} ). It follows that there exists an € such
that 0 < € < Fy —d and k(F) < t*(F) < co (F) for F € [F| — €,F,). Then, [F| —
g,F) C {F|t*(F) > k(F)} while [F; —&,F})N{F|t*(F) > cq(F)} = 0. Since
k(F) < cq(F) forall F, {F |t*(F) > cq (F)}U[F| —&,F) C {F|t>(F) > k(F)}.
Finally,

But this contradicts k controlling size at level o. We conclude that there does not
exist a “smaller” critical value function than cq. X

B.3 tF: Size control for |p| near 1, small f

Result: Under the null hypothesis, for any arbitrarily small departure from
|p| = 1 there exists a neighborhood of values f; near f; = 0 such that all rejec-
tion probabilities Pr, 7 [tz > cq (F)] are smaller than the intended significance
level o.
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PROOF:  Below, the proof involves focusing on small fj, using the change of
variables o= /1 — p? and considering the derivative of the rejection probability
with respect to o, evaluated at o= 0. We find that the first derivative is zero for f
small. We therefore compute the second derivative at p= 0, and then take a Taylor
series expansion of this second derviative expression to find that in a neighborhood
of fo = 0, this second derivative is negative, which implies that when one departs
slightly from |p| = 1, then the rejection probability will decline, leading to size
control in this “corner” of the nuisance parameter space. Below, we suppress o to
simplify notation.
We begin with our relationship

2= T
f2=2ptarf +15p

which expresses 72 as a function of t4z, f, and correlation p.
Under the tF procedure, rejection occurs in the event that

Fiir— (f* = 2ptarf +13g) (%) > 0

where ¢ ( f2) is our critical value function, and where f and t4g are bivariate nor-
mal with unit variances and mean vector (fp,0) (under the null hypothesis), with
correlation p.

We do a change of variables

X = f—PIar

and note that x and 4 are by construction uncorrelated and therefore, by bivariate

normality, independent. x has mean f; and variance 1 — p2.

Substituting, we now have rejection occurring when

(x+ piag)*12p — ((x+ptAR)2 —2ptar (X + Ptar) +t§R> c ((x—|—ptAR)2> >0 (16)

‘We now have

P[> ()] = [ 1-®((p.2)
+(r1(p.2)
FUE> @03 (0:2) - (12 (p.9))] o (jf = ;’,2> G
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where ry,r2,r3,r4 are functions of x and p that are implicitly defined by the r; that
satisfy

(x—l—prj)zrf — ((x+prj)2 —2prj(x+pr;j) +r$> c ((x+prj)2) =0

r; gives the 14 coordinate of any point on the critical value boundaries, as a function
of p and x. Since the equation defines a (near) quartic polynomial in r;, we can
expect up to four roots of the equation. z is the variable of integration for the
random variable x.

We now do two changes of variables

x— fo
V1-p?

o=1/1-p?

where we will be focusing on a neighborhood, without loss of generality, of p = 1
(and equivalently a neighborhood of o= 0).

tag and U are also independent; U is a standard normal random variable. With
this change of variables we substitute and now have

U=

P[> e(%)] = [ 11— (0 fo)

—’_q)(fl|< (Qau>f0>)
+ U fot oul > Z{P(r5 (0,u, fo)) — P (r5 (0. u, f0)) ] ¢ (u) du

where we have r’ (0,u, fo) = (\/ 1— 0%, fot o u) for j =1,2,3,4, and 7 is defined
as the value of u that separates the regions where there are 4 or 2 roots. Note that,
using the change of variables, each of the r; also satisfy the equation

F(Q7rj7u7f0) = <fO+QI/t+ \/l—gzrﬁf)z(rﬂf)Z
—((fo+gu+\/1—92r§)2—2 — 01} (f0+QM+\/ —0*r 2)
((fo—kgu—km 2)

Derivatives: first and second derivatives

We now take both the first and second derivative of the rejection probability with
respect to p, evaluated at p= 0, and with fy “sufficiently small”. Here, “sufficiently
small” corresponds to small enough fj so that the derivative terms below associated
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with r5 and r; will be zero.
Thus, with sufficiently small fy, the first derivative of the rejection probability

is

IPr [t > c(f?)] e ar;
— [ -0t

do /oo { d o

ari

o0 T 0w

and the second derivative is

aZP 2 2 I or: 2 82*
r“a}cw)}=/;[a¢vm(5%)<ﬂwa>a§

=/_°;[¢<r E <3—f;>2 o }
—¢0D{ﬁ< g }]

We then take the following steps:

1.

Using implicit differentiation, obtain the first and second derivatives of r;
with respect to ¢. These expressions will be functions of r}f, o,u, fo,c(+), and

().
Evaluate these derivatives at p= 0. The expressions will be functions of

r;f,l/l,f(),C('), and C/(')

. Because ¢= 0 is equivalent to p = 1, we can replace rj = f; — fo, where

/7 1s the corresponding f-coordinate on the critical value boundary. This
substitution results in functions that involve f7,u, fo,c(-), and ()

We use the fact that at o= 0, that for every associated fy there are f; that
()"
2 2
() <((5))

involve f7,u,c(-), and ()

satisty fo =

, substituting this in leaves expressions that
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2 2
5. We make another substitution: § = ¢ (( fj*) ) [( fj) —q] which implies

iz S0 S . o ,
that ¢ (( ) ) = e ((f*)z_qy. This substituion leads to expressions

that are functions of f7,u, & (-), and {'(-)

6. Another change of variables, using 7 >0 as f; = /72 +¢gand f; = —\/m,
leaving expressions that involve 7,u,{,{’, and g.

7. Collect powers of u, integrate out u, noting U is standard normal, so that
[u?¢ (u)du = 1. This leaves expressions that involve 7,{, and {’, and g. At
this step, we have found that the first derivative of the rejection probability
for fy sufficiently small as described above is equal to zero.

8. Take a first order taylor series expansion in 7 around 7 = 0, and note from
property (i) from Lemma |§] that as 7 tends to zero, ¢ tends to ¢ and {’ tends

3 . . . .
to—(3g— %+ %) . This means that the linear approximation for the second

derivative (with respect to p) is a linear function with constants and linear
coefficient depending on ¢ only.

9. Specifically, the second derivative is

_ MT] (17)

¢ (vVa) [—2 (\/?1+q%> 7

This means that we can always find a small enough 7 = /F — ¢ so that the second
derivative is negative. Since we are at o= 0, for each of these small values of 7,
there is a corresponding fj

T +q
Ve(?+q) +VT+q

(fo and 7 are one-to-one with sufficiently small 7, because

fo=

(2 R, P 27

" (Ve@ra+vra)

for all small postive values of 7, since ¢’ is negative).

So this means that you can always find a neighborhood (0, 7)) such that for
all values of 7 in the neighborhood, the second derivative will be negative, and
therefore, you can always find a neighborhood (0, f;) such that for all f in the
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neighborhood, the second derivative will be negative. We have cross-checked the
expression in by numerically computing rejection probabilities for p values
close to 1 and f = 0. X

C Conditional Expected Length: AR and ¢F
C.1 Limiting Distribution of AR and ¢F' confidence sets

Derivation of inflation factor ~————

7
To derive how much we inflate the 2SLS confidence interval to obtain the AR
interval length, we use the relationship

fi B f2f2
R — 4 Iy N
f242pVFET 412

and solve
P2
X = <q
f242pVEi+12

for 7.
f2f2—q(f2+2ﬁﬁf+f2> <0
2R gf?— q2pV i —gi* <0
(2 =a)i*~ (2apVE)i-qf* <0

which is a convex function in f when f? > g. So the 7 that satisfies the inequality is
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an interval in this case, with endpoints

(203VF) |/ (205VF) +4(7 )P
2(f2—q) -
(qﬁ\/f) £ qgVE\/ap*+ 2 —q -
(/*—q) N
(abVF) £ yaVF PP —a(1-5)
(/*—q) N

(8)+ a1 2P

(-#)

Since

then the AR interval is given by

(s a7 (B o)y
s (3%)+<ﬂq3 T (B) 2 p b (qpf)(qqz )
F F
Ny Sy (U] ~Japr yay1- )
L ) peps VN

Since the half-length of the 2SLS confidence interval is /g4 [Vy <[§ > , then the in-
flation factor to obtain the half-length of the AR interval is
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Derivation of limiting distributions of the (1 — «) confidence intervals L;y, L4z, L:r

. t 12 1
by Ly = Wn_a\/ 1-2p ARJEﬁ )+ A’}(f ) 77 VVa (18)
o F\/F—qi_q(1—p2
LARiLARE \F\/ 7 f1-a(l=P )L1v
—ql-o

R F
Lir 4 Lir = L()le

qdl—a

where
52 = (—1ar (B)+pf)’

(f2—2ptar (B) f +13 (B))
AV (ﬂs) _2BAC (H&n) + BRAV (7)

1/
@ AV (%)

Limiting Distribution of Ly

Throughout this proof, when we consider the statistics 7 and 74, they have
<[§ - ﬁ), the estimator minus the true value of the parameter 3, in the numerator.

By definition we have

Vv (7;1\3) —2BCOVy (@ﬁ) + B2y (%)

ﬁ-Z

Liv =24
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We first note that

Vv (7;[\3) —2BCOVy (@ﬁ) + B0y (%) <l§ —ﬁ>2

2 i?

- 1—2;3IAR+’;§ (B ﬁ)

1wl (i (7B) — 2BV (7B.2) + B0 (2)

far

2 72
i B\ () (W (7B) —2BCOVy (7B.%) + 520 (7))
:<1‘2”7 F) I (2)
(1_2p’f‘_R+fiTR)lA(A” (=B) ~2COV (:?B,ﬁ)+ﬁZVN<ﬁ>)
P Vv (%)

The result follows under Weak-IV asymptotics, by the continuous mapping theo-
rem.
Limiting Distribution of L,
By definition,
. JealF)
Lip = ——L
Vai-a
The result follows under Weak-IV asymptotics, by the continuity of ¢y (-), and the
continuous mapping theorem.
Limiting Distribution of 74z
We have shown above that the (1 — ) AR confidence set is an interval if and
only if ¥ > q1_q. If F < q1_¢, then the confidence set is the whole real line except
for an interval of length Lar.
We have shown above that L4z is related to Iy by the relationship

\/1_6]1?1 1_52
. ( )IAJIV

Lar =

Note that, by definition
C(Za,Zv)

Qv

V (za)V (Z9)

where 7 and ¥ are the IV and first-stage residuals.
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The following numerical relationship can be derived

fz fzfz
1+2ﬁﬁ+}%  PaopVERR

2
IAR =

Using this equation, we solve for p and take its square, to obtain

00 200 0 )2
2 (t J? = aRt* — 3 f7)

T e )RR

We can now substitute in the numerical relationship

2 2270
2 AR S TAR

= = = ~
AT i 295 Ff 22
1— zpf/a?ze + 48 J2=2pfuur+13g

and with some simplification, one obtains
A A2
2 _ (_ZAR + Y f )
(2 —2piarf+12e)

which, under Weak-IV asymptotics and the continuous mapping theorem, con-
verges in distribution to

v

<2 _ (—tar+pf)°
(f2—2ptarf +13g)

So Lar converges in distribution to

Lag = [— T Ly =

C2 E [LAR‘F > Cll—oc] = o0
Conditional Expected Length of AR interval. Let

Q = plimN iy EB) CV(’(’?)

cov mﬁs) A

the asymptotic variance-covariance matrix of the reduced form and first-stage
coefficients, be positive definite. Then E [Lsg|F > ¢] =
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From above, we have

\/F\/F—qlfa(l— \/ tAR tAR 1
2\/ «
F=qia e\ T R R

Lag =

_ VI —qia(l— )\/f2 2ptarf + 135
SRV 7 Y
with
tAR P
(( ) )
Vo = L, ﬁ)v =
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‘We will show that

E|2yq1- an qulql, )\/f p;fff tARx/%IF>q1_a]= (19)

oo a(-pt)

2\/q1_
PrF>q1 o / / Ve )V (VT —a) * X —qi-a

x2 —2pxy+y?
—a Vads,p (x,y)dxdy >

1 yre , \/xz—‘]la (1 —ﬁ(m)z)
Pr{F > qu]/,g /(Wmm%) e X —qi-q

2
%—’—y\/ Q@s.p (x,y)dxdy >

\/ ‘11 a(l—ki)

1 /Hf /
SR 2\/q1- koks v/ Vodxdy >
PrlF>qi-al )y  J(yara.vaiate) * X —qi-a
yte \/Cllfa_‘hfa(l—kl)
O T — 2\/q1- kokz/Vodxdy =
pr[F>CI1—a}A /(\/qlan/qla+5) he X —qi-a eV Teday
yte Vai-a—q1-a(1—ky)
T 2vq1- kok3/Vodxdy >
PrF > qi-qf /> /(\/qlan/qluﬁ'g) * (X— \/611—05) (X+ \/6]1—04)

1 yte r 1 q1-aki
LY e /
PrlF>qi—al )y J(Vaiaaiate) (*—Va1-a) 2y/q1—a +€

k2k3 vV ngxdy —

where ¢y, , is the bivariate normal density with mean (fy,0), unit variances and

2
correlation p, and p (x,y) = %, with both € > 0 and y chosen below.

In (19), the first equality (lines 1 and 2) holds by definition. The first in-
equality (lines 2 and 3) holds because the region of integration in the third line
is a subset of the region for the second line. Deferring the second inequality mo-
mentarily, the third inequality (lines 4 and 5) holds because \/x2 —qj_q (1 —k;) >
V@1—a —qi1—a (1 — ki) because x> > gi_ in the region of integration. We expand
a term in the denominator from lines 5 to 6 and the final inequality follows be-

cause x+\/1qlfa > 2\/&% when x € (,/ql_a,./ql_a+8). The final line holds
because we will show it is equal to a positive constant multiplied by the integral
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1 . . . .
J (Va—avai—ate) (x— /a1 o) dx, which is infinite.
What remains is to show that the second inequality (lines 3 and 4) holds. Note

first that v/Vq > 0 due to the positive definiteness of Q. Furthermore, we will show
that there always exists an integrating region (\/q1_a, Vai-a +£) X (X’ y+ 8) that

lead to lower bounds ki, k;,k3 > 0 for p (x, y)2 A/ W and ¢y, p (x,y), respec-
tively, on the region (« /q—a>\/q1—at 8) X (X,X—I- 8).

1. p(x,y)* > k; > 0. Consider the quantity

(—y+px)°
(x —2pyx+?)

= 2
p(xy) =
We seek a region of x,y space that satisfies

(—y+px)?
(x> —2pyx+y?)

>k >0

We restrict x to be in the interval (1 /q1—0s\/q1—a + 8). We can keep the
denomiator positive by restricting

2px++\/4p?x> —4
2

y> sup
Xe(\/ﬁhfaa\/ﬁ]lfa‘*‘&‘)

In addition, we are seeking the values of y that satisfy
(—y+ px)2 —ky (x2 — 2pyx+y2) >0
y: = 2pyx+ pAx* —ky (x* —2pyx+y*) >0
Y (1—ki) =2pyx (1 —ki) +x* (p* — k1) >0

which is a quadratic inequality in y. We can choose 0 < k; < 1 so that the
function in the last line is convex in t4z. So we can additionally restrict

2px (1 —ki) +\/4p%2 (1= k1 =4 (1 — k)2 (0% — k1)
y> sup T(1—%
xe(Va—an/T1—a+€) (1—k)
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So by setting

/4022 —
y = max sup 2pxt ;P a 4,
xe(\/CII—a-,\/CIl—a+5)
2px(1—k1)+\/4p2x2(1—k1)2—4(1—k1)x2(p2—k1)
sup ;
xe(\/ql—aa\/‘Il—aJre) 2(1 _kl)

then for any y >y, and x € (\/q1_a;/q1—a + &) We have p (x,y)* >k >0, as
desired.

2_ 2 .
2. \/xzi’++y > ky > 0. We established above that for y > y the numerator
in the square root is positive. In the integrating region, the denominator

is positive as well. Let k; be the infimum of \/W over the region
(Var-a vai-a+€) x (y,y +€).

3. ¢5,p (x,y) > k3 > 0. The bivariate density is strictly positive. Let k3 be the
infimum of ¢y, , (x,y) over the region (,/g1—q,/q1—a +€) X (y,y+€)

X

C3 E [LtF|F > q1_(x] < o

Conditional Expected Length of ¢F interval: E [L;z|F > q_¢] < o°.
As shown above

L= Vo (F)
tF = ———

) 2, 1
2\/‘]1—05\/1_213%“‘%\/_}7 Vo

Val—o
_ _oplar G 1
—\/Ca(F)z\/l 2p e \/f\/VTz

The conditional expectation of interest is

1) t 1
E [2+/cq(F \/ 2%+%—F\/VQ]F>611,(X
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We start by considering the conditional expectation

1 l‘ 1
E |2\/cq (F \/ —2p AR L AR /Vo|F =F

Since ¢y (F) only depends on F, this is equivalent to

2\/cq (F')E \/1—2ptf‘7’?+t]§§f\/@F F'

Let us consider the expectation conditional on F

1 2ptAR tAR l
E = — S VWlF =F
\/F fF al

Consider the conditional expectation of the random variable inside the square root:

1 2pt 12
E|:—— PIAR AR|F F’}
F fF

which can be expressed as

(FI,) F'~20VFE [ta|F = F') + E [i34|F = F']|

£lale =)= o (/7))o (V7)1 (o (7 1)) ()
eliir =1 = (17 o (-YF7=4)) ) (-¥F)

-
(1 (o (T-0) ) (47)

Since each of these expressions is bounded on F’ > g;_q, E [% 2%“3 + tig R|IF = F’}

is thus bounded on F’ > g;_4 by some constant F. Due to Jensen’s 1nequa11ty, we
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obtain

1 2ptar  t3p ) _
2\/cq (F)E \/F_ - + A VValF = F'| <2\/ca (F)F

Therefore, for F' > ¢ _, the function E [L;r|F = F'] is bounded above by the func-

tion 24/cq (F')F. Therefore,

E[Lr|F > q1-o] = : /oo E[LrlF=F'lo(F)dF’

Pr(F > q1-a] Jg 4

1 “ N / /
< B F > g al /qlaz co (F)Fo (F')dF
where o is the density of F.

Finally, from the proof of Lemma [9] we know that ¢y (F) (F —q1_¢) is contin-
uous on (¢1—q,q1—q + €|. This function can be extended continuously at F = g _g
by the asymptotic approximation of Lemma [9] As this function is defined on the
compact set [q1_q,q1—a + €], it is uniformly continuous on this set.

and hence bounded above by some finite value M on [g|_¢,q1—q + €]. The
density @ is also bounded above by K in the same interval. Therefore

q1—a+E€ q1—aq+E€ \/M
co (F (F')dF' < / — Y= KdF' <
‘/‘Il—a ’ ( ) d1—-a \/F_q1—a
Since /cq (F') is bounded on (q1-q +€,0) by say M', then [7 .. \/ca (F')o (F')dF' <
M’ f;’iﬁs o (F")dF' <M’ < o, which completes the proof. X
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