Concrete

- **What is it ?**
- **Ancient history**
- **Recent history**
	- **Portland cement**
	- **Reinforced concrete**
	- **Pre-stressed concrete**
- **Properties of concrete**
	- **Heat of hydration**
	- **Creep**
	- **Strength**
	- **Durability**
- **New structures**
	- **Bridges**
	- **Shells**
	- **Dams**

What is Cement?

- **• Cement is a material capable of binding particles together**
- **• Portland cement is a mixture of calcium silicates and aluminum silicates that react with water to form a binder**
	- **Portland cement is a generic name , not a trade name , and has nothing to do with Portland**
	- **Modern Portland cement was invented in the 19th century , but related materials have been used in construction since Roman times**
- **• Mortar is a mixture of cement and sand**
- **• Concrete is a mixture of mortar and aggregate (i.e., stones larger than ~5 mm and usually smaller than 7 cm)**

Ancient History

• Lime (CaO) is made by heating limestone (calcium carbonate) above ~900˚C to drive off the carbon dioxide

 $CaCO₃ \rightarrow CaO + CO₂$

• Lime reacts with water to form calcium hydroxide (slaked lime)

 $CaO + H₂O \rightarrow Ca(OH)₂$

- **Lime plaster is made by compacting slaked lime on a surface (such as a wall** or floor) and allowing it to react with CO₂ in the atmosphere to form CaCO₃
	- **This material was in use 8000 yrs ago**
- **The ancient Egyptians used gypsum plaster (aka plaster of Paris)**
- **The ancient Greeks reacted slaked lime** with volcanic ash (mostly SiO₂ glass) **to make a cement to line cisterns**
	- **This material is the precursor of modern cement**

Volcanic Ash

Ancient History

- **From about 200 BC , the Romans developed cement technology based on slaked lime and volcanic ash from Mt. Vesuvius**
	- **The preferred deposits were near Pozzuoli , so the cement is called pozzolanic cement**
- **The ash is nearly pure silica glass , which is much more reactive than crystalline silica (i.e., quartz sand)**
- **The reaction produces calcium silicate hydrate gel called C-S-H with the approximate composition**

 $C - S - H \approx 3CaO \cdot 2 SiO, ∘ 3H, O$

• By the first century AD , concrete was used for major construction projects , such as the Pantheon

Roman Concrete

- **As in modern construction , the Romans used wooden forms and cast the concrete into them**
	- **In tall structures , dense stone was used as aggregate at the bottom and light stone was used higher up**

Roman Concrete

• Often , forms were built up using stone or brick

Roman Concrete

- **The Roman concrete had great advantages**
	- **It was strong and easier to use than stone for making smooth shapes (such as domes)**
	- **It could set under water , so it could be used for piers and pediments of bridges and aqueducts**
- **It also had some disadvantages**
	- **It takes a long time (up to a year) to reach high strength (so structures can sag before hardening)**
	- **The raw materials (viz., volcanic ash) are not widely available**
		- **When Herod built a harbor from concrete in Israel , he imported the materials from Italy on barges**
- **After the fall of Rome , concrete technology was lost in Western Europe until the 19th century**

Rebirth of Concrete

- **In 1756 , John Smeaton was commissioned to build the Eddystone Lighthouse off the Cornwall coast (England)**
	- **Contemporary mortars would not set under water , so he experimented with various local limestones**
	- **When limestones containing clay were fired , the resulting lime gained strength under water**
- **In 1824 , Joseph Aspdin patented Portland Cement (so named because it was said to resemble Portland stone - a high quality limestone quarried near Portland)**
	- **Made by firing clay and limestone (but at too low a temperature)**
- **In 1845 , Isaac Johnson made the type of cement now known as Portland cement**
	- **Fired at high enough temperature (~1500˚C) to make highly reactive calcium silicates**

John Smeaton, civil engineer and father of the English cement industry.
(Born 1724; died 1792.) The Eddystone lighthouse, off the coast of Cornwall,
stands in the background. Smeaton's structure stood for 123 years before

Portland Cement

- **Portland cement is made by heating limestone and clay to ~1500˚C to cause partial melting of the mixture**
	- **Products are not naturally occurring , as they are highly reactive with water**
- **Portland cement consists of three main ingredients (in increasing order of reactivity with water)**

$$
\bullet \qquad C_3S = 3CaO \bullet SiO_2
$$

$$
\bullet \qquad C_2^{\bullet}S = 2CaO \bullet SiO_2^{\bullet}
$$

$$
\bullet \qquad C_3^-A = 3CaO \bullet Al_2O_3
$$

- **Silica and alumina come from clay**
	- **Clay is naturally abundant mineral consisting of sheets of silica and / or alumina**
		- **Occurs in very fine particles , so it reacts easily with lime**
- **Product of hydration is the same C-S-H obtained from pozzolanic cements**

Electron micrograph of kaolinite; a stacked pack of plates is shown in the lower right corner. Micrograph by H. P. Studer.

Micrographs of portland cement clinker (835×). (a) Type I, high in 3CaO-SiO₂ (major gray phase is C₃S, dark gray phase C₃A, light gray phase C₃S, white phase mainly C₄AF); (b) type II, containing nearly equal pa Association.

Lattice image of C-S-H gel (AM is amorphous matrix, SRO is shortrange-ordered region, and NC is nanocrystalline region). See related feature article, "Mesostructure of Calcium Silicate Hydrate (C-S-H) Gels in Portland Cement Paste: Short-Range Ordering, Nanocrystallinity, and Local Compositional Order," by Dwight Viehland, Jie-Fang Li, Li-Jian Yuan, and Zhengkui Xu

Portland Cement

- **Advantages of Portland cement**
	- **Limestone and clay are widely available , so cement can be made locally (low transportation cost)**
	- **Convenient rate of hardening**
		- **Hardens in hours , so there is enough time to cast it**
		- **Gains most strength in 24 h (but continues to harden for years)**
	- **Durable and fire resistant**
- **Disadvantages of Portland cement**
	- **Weak in tension**
		- **Must be reinforced with steel (but steel subject to corrosion)**
	- **Porosity makes it susceptible to damage by frost and salts**

Pozzolanic Additives

- **Pozzolanic materials do not react with water , but they react with lime**
- **Advantages of pozzolans :**
	- **Retard reaction (important for dams)**
	- **Produce C-S-H from excess Ca(OH)**₂
		- **Improves strength**
		- **Reduces porosity (better durability)**
	- **Reduces cost of cement**
	- **Removes waste product from environment**
- **Typical pozzolans**
	- **Fly ash (from burning coal)**
	- **Blast furnace slag (from iron-making)**
	- **Volcanic ash (where available)**
	- **Rice husk ash (mostly in Asia)**

Scanning electron micrograph: (A)-ASTM Class C, (B)-ASTM Class F fly ash.

Rice-husk ash

Reinforced Concrete

 \bar{z}

- **Concrete is weak in tension , so it must be reinforced with steel**
- **Concrete cracks , but steel holds crack closed and prevents catastrophic failure**
	- **Friction between concrete and steel bar prevents crack surfaces from moving apart**

Indented wire, cold drawn.

Round deformed bar in twisted condition.

Possible shapes of hot rolled deformed bars.

Coulomb, Charles Augustin de

The Bettmann Archive

Steel Reinforcement

- **If beam bends enough to permit concrete to fail in compression , collapse is sudden**
- **Optimal reinforcement limits crack growth and prevents compressive failure**

Failure modes of concrete beams reinforced by different amounts of reinforcement: (a) an under-reinforced concrete beam (yielding of steel and compressive failure of concrete), (b) an over-reinforced concrete beam (compressive failure of concrete), and (c) a beam with the minimum reinforcement ratio (yielding of steel).

Pre - Stressed Concrete

- **If steel is pulled into tension before concrete is cast , then it compresses the concrete and provides additional strength**
- **Depends on fact that steel can be stretched much more than concrete before it fails**
	- **Requires good quality steel that does not creep (flow) under load , which would gradually release compression**
	- **Requires dense concrete to protect steel from water , since steel under tension corrodes rapidly**
- **Pre-tension applied in factory , then pieces transported to building site**
- **Post-tension applied on site , using cables or rods passed through channels cast into concrete**

Placing and vibrating concrete.

Long-stroke hydraulic jacks for stressing fendors.

Stressing stand fakes reaction of stressed fendoris.

Screeding and finishing surface of prefensioned concrete piles.

Hydration of Cement

- **Reaction of cement with water is hydration**
- **Hydration releases heat**
	- **If heat does not escape , concrete temperature approaches boiling point**
	- **Thick concrete bodies (such as dams) become very hot inside**

- **Cracking occurs if surface is much cooler than interior**
- **To prevent cracking , must remove heat from interior or insulate surface**

Thermal Stress

- **Increase in temperature causes materials to expand**
	- **Change in length** ∆**L / L is related to change in temperature** ∆**T by thermal expansion coefficient** ^α

$$
\frac{\Delta L}{L} = \alpha \Delta T
$$

• Different materials may expand by different amounts

• When two different materials are joined together , they are obliged to expand or contract equally

Thermal Stress

• If a thick body of concrete loses heat from the surface , then the inside expands more than the outside

• Stress at surface of plate with internal temperature variation

$$
\sigma_{\mathsf{x}} = \frac{E\,\alpha}{1-v} \big(\mathsf{T}_{\mathsf{average}} - \mathsf{T}_{\mathsf{surface}} \big)
$$

For concrete, modulus $E \approx 40$ GPa, Poisson's ratio ≈ 0.25 , $\alpha \approx 90$ ppm/°C, so

$$
\sigma_{\rm x} \, (\text{MPa}) \approx (T_{\rm ave}-T_{\rm surf})/2
$$

- **Since the tensile strength of concrete is only ~3-5 MPa ,** ∆**T exceeding ~10˚C could cause cracking**
	- **Cracking usually prevented by creep**

Thermal Stress in Composite

- **Material #1 is stretched by** (^α ^α **ave** − ^α**1**)∆**^T**
- Material #2 is $\bm{compressed}$ by $(\alpha_{\scriptscriptstyle 2}-\alpha_{\scriptscriptstyle ave})\Delta\bm{\mathit{T}}$
- **For thin bars of equal thickness, resulting stress in material #1 is**

$$
\sigma_1 = \frac{(\alpha_1 - \alpha_2) \Delta T}{\frac{1}{E_1} + \frac{1}{E_2}}
$$

where E¹ and E² are elastic moduli

- **Example:**
	- **Aluminum:** $\alpha = 23.6 \times 10^{-6} / ^{\circ}C$, $E = 70$ GPa
	- **Steel :** $\alpha = 11 \times 10^{-6}$ \degree C, $E = 200$ GPa

 σ_{AI} (MPa) ≈ 0.65 ΔT σ_{AI} (psi) ≈ 95 ΔT

∴ **100˚C change creates 65 MPa (9500 psi)**

Thermal Expansion Coefficients

Material Thermal expansion coefficient (ppm/˚C)

- **Expansion coefficient of concrete is average of stone and cement components**
- **Value matches steel quite well**

Creep

- **Young concrete deforms (creeps) under high load**
	- **Prevents cracking from thermal gradients**
	- **Causes sagging of arches and domes**
		- **Resisted by reinforcement**
	- **Causes loss of pre tension**
- **Creep rate decreases as concrete gets older and harder**
	- **Post tension easier to sustain**
- **Cause of creep deformation controversial**
	- **Squeezing water from layers of C-S-H**
	- **Slipping of particles**
	- **Dissolution and reprecipitation**

Strength

- **The intrinsic strength of a solid depends on the strength of interatomic bonds**
	- **Intrinsic strength of window glass is ~7 GPa (~ 1 million psi)**
- **Actual strength of brittle materials (glass , ceramics , concrete , stone) depends on surface flaws**
- **Stress at tip of flaw of depth c is** amplified by a factor of 2 $\sqrt[c]{c/a}$, where a is atomic bond length ($\sim 10^{-10}$ m)

σ**A** σ**A** c σ**C**

$$
\sigma_{C} \approx 2 \, \sigma_{A} \, \sqrt{c/a}
$$

Strength

- **Most common objects have invisibly small defects that control their strength , which is far below their intrinsic strength**
- **Example :**

If $c = 10^{-4}$ meter (\approx thickness of human hair) , then $\sqrt{c/a} = 1000$, so strength of **glass drops to ~7 MPa (1000 psi)**

- **Concrete contains tiny air pockets , and weak spots near surfaces of aggregate**
	- **Practical tensile strength of concrete is ~3 MPa (450 psi) , which is ~1000 times less than intrinsic strength**
- **Compressive strength of concrete is ~10 times higher than tensile strength , so concrete is used in compression**

Changes in gain of strength of cements with age between 1916 and the 1990s
(measured on standard cylinders of concrete with a water/cement ratio of 0.53

Durability

- **Concrete can be damaged by**
	- **Corrosion of reinforcing steel**
		- **Accelerated by chlorides (esp. from de-icing salts)**
	- **Freeze / thaw cycles**
	- **High temperatures (destroyed ~600˚C)**
- **To optimize durability**
	- **Minimize porosity**
		- **Low water / cement ratio**
		- **Add pozzolan (e.g., fly ash)**
		- **Dense aggregate**
		- **Surface coatings (e.g., silicone)**
	- **Avoid chlorides**
	- **Passivate steel (galvanize , epoxy)**

The relative volumes of iron and its corrosion reaction products

Diagrammatic representation of damage induced by corrosion: cracking, spalling, and delamination

Why Use Concrete ?

- **Raw materials are available everywhere**
- **Cost is low compared to metal**

ENERGY CONSUMPTION IN MANUFACTURE OF VARIOUS ENGINEERING SOLIDS

- **Energy invested per unit of stiffness or strength is 3 - 4 times less than steel**
- **Low cost and high performance of reinforced concrete permits**
	- **Longer spans (bridges)**
	- **Taller buildings**
	- **Thin shells**
	- **Huge dams**
	- **Casting of monolithic forms**

Concrete

- **Technology transforms nature**
	- **Clay + limestone** → **Portland cement**
	- **Concrete + steel** → **Reinforced concrete**
		- **Ancient materials combined into novel composite allows innovation**
- **Technology transforms society**
	- **Cheaper construction**
		- **Bridges connect isolated villages**
	- **Enabling technology for dams**
		- **Electrical power**
	- **Ubiquity of raw materials prevents monopolization of business**
- **Symbolism**
	- **Construction of forms not found in nature**