
1

On Secure Key Management in Mobile Ad Hoc Networks
Dahai Xu Jeffrey Dwoskin Jianwei Huang Mung Chiang Ruby Lee

Abstract—It is widely believed that although being more
complex, a probabilistic key predistribution scheme is
much more resilient against node capture than a determin-
istic one in lightweight wireless ad hoc networks. Backed
up by the surprisingly large successful attack probabilities
computed in this paper, we show that the probabilistic
approaches have only limited performance advantages
over deterministic approaches. We first consider a static
network scenario as originally considered in the seminal
paper by Eschenauer and Gligor [1], where any node cap-
ture happens after the establishment of all pairwise links,
and show that the deterministic approach can achieve a
performance as good as the probabilistic one. Whereas in
a mobile network, the probabilistic key management as
described in [1] can lead to a successful attack probability
(SAP) of one order of magnitude larger than the one
in a static network due to node fabrication attacks.
Finally, we propose two low-cost secure-architecture-based
techniques to improve the security against such attacks.
Our new architectures, specifically targeted at the sensor-
node platform, protect long-term keys using a root of
trust embedded in the hardware System-on-a-Chip (SoC).
This prevents an adversary from extracting these protected
long-term keys from a captured node to fabricate new
nodes. The extensive simulation results show that the
proposed architecture can significantly decrease the SAP
and increase the security level of key management for
mobile ad hoc networks.

I. Introduction

A. Motivation

Lightweight ad hoc networks typically consist of
nodes that are highly distributed with very limited
computation and energy resources. Examples include
portable mobile devices and tiny low-cost sensors used
for environment surveillance and emergency response.

Parts of this paper were presented at IEEE ISIT and GLOBECOM
2007. This work was supported by DARPA and NSF Cybertrust CNS-
0430487 and CNS-0636808.

D. Xu is with AT&T Labs - Research, 180 Park Ave, Building
103, Florham Park, NJ 07932, (email: dahaixu@research.att.com).

J. Dwoskin, M. Chiang and R. Lee are with Department of
Electrical Engineering, Princeton University, NJ 08544, USA, (email:
{jdwoskin, chiangm, rblee}@princeton.edu).

J. Huang is with Department of Information Engineer-
ing, Chinese University of Hong Kong, Hong Kong, (email:
jwhuang@ie.cuhk.edu.hk).

Providing secure communication over this kind of net-
work is a challenging task. Various key management
schemes have been proposed trying to provide a highly
secure communication environment in lightweight ad
hoc networks against various malicious attacks. Among
key management schemes, symmetric key predistribu-
tion schemes (e.g., [1]–[5]) are more suitable to the
light weight ad hoc network than asymmetric public-
key schemes (e.g., [6], [7]), because the former schemes
require less resource (e.g., battery, memory, computation
power) and there is no need for a trusted third party for
authorization.

There are two main approaches among the symmet-
ric key predistribution schemes: probabilistic (e.g., [1],
[5], [8]–[10]) and deterministic (e.g., [11]–[14]). In a
probabilistic approach, the keys in each node’s key
ring are randomly chosen from a large key pool. In
a deterministic approach, the key ring is chosen de-
terministically. In general, probabilistic approaches end
up with a large key pool, a larger key ring per node,
and poorer network connectivity than the deterministic
approaches.1 On the other hand, a typical deterministic
algorithm preloads each node with a single common
key and reaches connectivity of 100%. More related
references can be found in the recent survey [15].

It is often believed that a typical probabilistic scheme
is much more resilient against node capture than a
typical deterministic approach [1], [8], [9], [16], thus
making probabilistic schemes popular despite their clear
disadvantage on many other metrics when compared with
deterministic approaches. In this paper, we show that the
probabilistic approaches have only limited performance
advantages over deterministic approaches. Our perfor-
mance measurement is the Successful Attack Probability
(SAP). In particular, we consider an attack on a pairwise
link between two authorized nodes to be successful if
a compromised node can intercept and decipher the
information transmitted through that link.

1For example, the probabilistic scheme in [1] requires preloading
each node with 83 keys out of a key pool size of 10, 000, and achieves
a local direct connectivity of 50%.



2

B. Summary of our study between representative proba-
bilistic and deterministic schemes

The probabilistic scheme was first proposed in the
seminal and widely cited paper by Eschenauer and
Gligor [1], and we call the corresponding scheme the
EG scheme. It consists of three phases: key distribution,
shared key discovery and path-key establishment. In the
key distribution phase, each node is loaded with k keys
randomly chosen from a large key pool of size m, where
k � m. The shared key discovery is the procedure of
establishing a pairwise link between two neighbor nodes
if they share one or more key(s). Finally, in the path-
key establishment phase, a pairwise link is established
between any two neighbor nodes who do not share any
key but can establish a path between them through one
or more relay nodes. In this case, a path-key is sent from
one node to its neighbor through the relay(s), and then a
link is established similarly to the shared-key discovery
phase.

A representative deterministic scheme uses only a
single common key, and each node is preloaded with
the same initial key. After the deployment, each pair
of neighbor nodes exchange messages encrypted by the
common initial key to derive a unique (or even random)
key for all later communications between them.

Throughout the paper, we will compare the perfor-
mance of probabilistic and deterministic key manage-
ment schemes based on the EG scheme [1] and single
common key scheme. We will show that the probabilistic
scheme is not significantly better than the deterministic
scheme measured in terms of SAP. We will also discuss
in the Appendix how other probabilistic schemes based
on the EG scheme do not change our conclusion. Since
single common key is one of the simplest deterministic
schemes, any further improvement over it (e.g. [14]) will
only enhance our conclusion.

We will consider two network scenarios: static net-
work and mobile network. In a static network, all pair-
wise links have been established before an adversary
captures any node. This is the case previously considered
in [1]. This could happen, for example, if all nodes are
deployed almost at the same time and remain stationary
after deployment. In contrast, in a mobile network,
an adversary can capture a node before all pairwise
links have been established. This is true for a network
where nodes are constantly on the move and need to
establish new links. This includes, for example, a sensor
network of buoys floating freely on the ocean to gather
environmental data [17], or a network consisting of
sensors moving around in an unknown environment to
form reasonable coverage [18].

In a static network, the single common key deter-
ministic scheme can achieve almost perfect resiliency
against node capture (i.e. SAP ≈ 0). This is because
the initial common key can be deleted permanently
from all nodes after the establishment of all pairwise
keys (as in [11]). Since all pairwise keys are randomly
generated and known only to the corresponding two
neighbor nodes, they cannot be deduced by a captured
node even if the common initial key is disclosed. In the
EG scheme, however, the SAP equals k/m with only one
captured node where each neighbor node pair uses one
of the shared keys to encrypt the communication. It is
possible to reduce the SAP to almost zero as in the single
common key case if two neighbor nodes also generate
a random key for future communication. In short, the
deterministic scheme can achieve performance as good
as the probabilistic approach in a static network, but with
much lower complexity.

In a mobile network, the single common key deter-
ministic scheme could lead to an SAP as high as 100%
if the common initial key is obtained by an adversary
before any link is established. However, we show that
the EG algorithm is also quite vulnerable in this case,
and may lead to a value of SAP one order of magnitude
larger than the one in the static network case (e.g.,
as high as 60%), especially when the adversary can
fully utilize the keys obtained from several compromised
nodes. The intuition for the surprising result in this case
is as follows. In the static network, there is only one
way to attack a link successfully, i.e., knowing the key
with which the communications on that link is encrypted.
In a mobile network, however, a compromise node can
also attack a link by acting as a relay during the path-key
establishment phase. By intercepting the key information
that is being relayed, a compromised node can figure
out the key which the two authorized nodes will use
for future mutual communication. This new man-in-the-
middle attack opportunity can significantly increase the
value of SAP for a probabilistic approach, since nodes
frequently use a relay for link establishment.

After re-examining the performance difference be-
tween probabilistic and deterministic key predistribu-
tion schemes, we propose two secure-hardware-based
techniques, specifically targeted to the sensor-node plat-
form, that protect long-term keys for both deterministic
and probabilistic key management schemes for mobile
networks. This ensures that protected secrets cannot
be extracted from a captured node. This is the first
step towards building a comprehensive low-cost secure-
hardware design for sensor nodes.

The contributions of this paper are:
• SAP analysis: An analysis of various security at-



3

tacks on the secure key management in mobile
lightweight ad hoc networks, with a focus on the
probabilistic approach (i.e., EG scheme).

• Sensor-mode Secret-Protecting (SP) architecture:
Two new secure architectures that defend against
node fabrication attacks for sensors with very lim-
ited or moderate capabilities, and enhance the secu-
rity of mobile sensor network key management.

• SAP reduction: Extensive simulation results show-
ing how node fabrication attacks increase the SAP
and how our new architecture reduces SAP to an
insignificant level.

The rest of the paper is organized as follows. In
Section II, we calculate the values of SAP in both
static and mobile networks, with a focus on the prob-
abilistic approach (i.e., EG scheme). In Section III,
we propose processor architecture based techniques for
securing secret keys and critical software on a node.
In Section IV we analyze the security of the proposed
architecture under several specific attacks. In Section V,
we validate the analytical results from Section II and the
security improvement of the proposed architecture with
simulations based on a C++ simulator. We conclude in
Section VI.

II. Fragility Analysis for Probabilistic Key
Management

In this section, we first review the results in [1], where
the successful attack probability (SAP) is calculated for
a static network. We then consider a mobile network,
and show how the value of SAP is significantly larger.
We only consider the attacks on the pairwise link be-
tween two authorized nodes that are within each other’s
communication range. The SAP will be even higher
if A and B are far away and can only be connected
with a multi-hop path, since a successful attack on
any hop will jeopardize the confidentiality of the whole
communication.

The establishment of a link requires two neighbor
nodes, A and B, to be able to encrypt the communication
over such a link using a common key. This could be
achieved in two ways:
(i) A and B share a key within their preloaded key

rings, thus can establish the link directly.
(ii) A and B do not share a key initially, and need

to exchange additional information through one or
more relay nodes, with whom the pairwise links
have already been established. For example, A can
randomly choose an unused key from its key-ring
and send it to B through the relay node(s). Then A
and B can use this key to encrypt the pairwise key
between them.

TABLE I
Summary of Notation

Notations Meaning
A↔ B A and B establish a pairwise link between them

A↔ Ch ↔ B A and B communicate through one node in Ch

A ⊗ B The link between A and B is successfully attacked
A�B A and B share at least one key

(A�B)�C C has all the keys (≥ 1) shared by A and B
At least one node of Ch has all the keys (≥ 1)

(A�B)� Ch
shared by A and B
At least one node in Ch shares at least one key with

(A, B)�Ch
A and at least one key with B
Exactly r nodes out of Ch, each of which shares

(A, B)�Ch
r at least one key with A and at least one key with B

In either case, SAP of the link between A and B is
defined as

S AP � P(A ⊗ B|A↔ B), (1)

where A ⊗ B denotes the event that the link between A
and B is successfully attacked, and A ↔ B denotes the
event that A and B establish a link between them. Since
a link can only be attacked if it has been established, we
have (2) and (3) below.

P(A ⊗ B ∩ A↔ B) = P(A ⊗ B) (2)

S AP =
P(A ⊗ B)
P(A↔ B)

(3)

All the notation used in this section is defined in Table
I to enable a cleaner presentation of later derivations. A,
B and C denote three generic nodes, and Ch denotes a
set of h nodes. Each node is preloaded with a key-ring
of k randomly chosen keys out of a key pool of size m.

A. SAP for a static network

If a compromised node wants to attack an established
link, it needs to know the key that is used to encrypt
the link. Therefore a compromised node can successfully
attack an existing link with probability k/m, as stated in
[1].

B. SAP for a mobile network

In a mobile network, a compromised node C can
attack the link between A and B in three ways:

(i) If A and B share a key initially and establish the
link directly, then C needs to know the key chosen
by A and B to encrypt the link.

(ii) If A and B do not share a key initially and use C
as a relay, then C can get the desired information
while relaying the information between A and B. A



4

first communicates with C via encrypted messages
protected by shared key Kac. C decrypts this with
Kac giving it access to the plaintext message, and
encrypts this with Kcb, a key it shares with node B,
then sends the re-encrypted message to B. This sets
C up as a man-in-the-middle eavesdropper between
A and B, since C can see the plaintext of all
messages going from A to B.

(iii) If A and B do not share a key and do not choose C
within the relay path, C can still attack the commu-
nication between A and B by either eavesdropping
on the links along the relay path or attacking the
eventual pairwise link established between A and
B, if it has any of the keys used for these links.

Overall, the value of SAP depends on the number of
compromised nodes and authorized nodes within both A
and B’s communication range, as well as how A and B
choose the relay nodes. To simplify the analysis, we only
consider cases (i) and (ii), and further assume only one
node relay in case (ii). In the simulation in Section V,
we calculate SAP for all three cases.

It will be useful to know the probability of sharing
at least one key between any two nodes in the network.
Denote δkm as the probability that any two nodes A and
B do not share any key, then

δkm � P
(
A�B

)
=

(
m − k

k

)/(m
k

)
, (4)

where A�B denotes A and B share at least one key.
The value of δkm can be either accurately calculated as∏k−1

i=0 (m− k− i)/(m− i), or approximated using Stirling’s
approximation for n! as in [1], i.e.,

δkm =

(
m−k

k

)
(
m
k

) ≈ (1 − k
m )2(m−k+0.5)

(1 − 2k
m )m−2k+0.5

. (5)

Then the probability of A and B sharing at least one key
is

P(A�B) = 1 − δkm. (6)

For example, if k = 83,m = 10000, P(A�B) ≈ 50%.
Next we derive the value of SAP based on the number

of authorized users and compromised users within both
A and B’s communication range. We start with the
simplest case, where there is only one compromised node
available. We then consider the case where there are h
compromised nodes. Finally, we consider the case with
h compromised nodes and g authorized nodes.

1) Scenario I: only one compromised node C is within
both A and B’s communication range: Depending on
whether A and B share a key initially, they may establish
the pairwise link with or without the relay of C. The

probability of successfully establishing the link is (7)
and the probability of attacking the link is (8).

P(A↔ B) = P(A�B) + P((A�C ∩ B�C) ∩ A�B), (7)

P(A ⊗ B) ≥ P((A�B) �C) + P((A�C ∩ B�C) ∩ A�B). (8)

Here ((A�B) �C) means that A and B share at least one
key, and all the shared keys between A and B are within
the key-ring of node C. Since we ignore the case where
C only knows a subset of the shared keys between A
and B, where C still has a chance to successfully attack
the link between A and B, we have an inequality in (8)
instead of an equality.

Let us calculate each term in (7) and (8). We know
the value of P(A�B) from (6). Also,

P(A�C ∩ B�C|A�B)

= 1 − P(A�C) − P(B�C) + P(A�C ∩ B�C|A�B) (9)

= 1 − 2δkm +

(
m − 2k

k

)/(m
k

)
(10)

= 1 − 2δkm +

(
m − k

k

)/(m
k

)
·
(
m − 2k

k

)/(m − k
k

)
(11)

= 1 − 2δkm + δ
k
m · δkm−k (12)

Define
φk

m � P(A�C ∩ B�C|A�B), (13)

we then have

P(A�C ∩ B�C ∩ A�B)

= P(A�B) · P(A�C ∩ B�C|A�B)

= δkmφ
k
m. (14)

Thus from (6), (7) and (14)

P(A↔ B) = 1 − δkm + δkmφk
m, (15)

Meanwhile,

P((A�B) �C)

=

k∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
(
k
i

)
·
⎛⎜⎜⎜⎜⎜⎜⎝
(
m−k
k−i

)
(
m
k

)
⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
(
m−i
k−i

)
(
m
k

)
⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ (16)

≥
(
k
1

)
·
⎛⎜⎜⎜⎜⎜⎜⎝
(
m−k
k−1

)
(
m
k

)
⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
(
m−1
k−1

)
(
m
k

)
⎞⎟⎟⎟⎟⎟⎟⎠ (17)

= k

⎛⎜⎜⎜⎜⎜⎜⎝ k
m − 2k + 1

·
(
m−k

k

)
(
m
k

)
⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
(m−1)!

(k−1)!(m−k)!

m!
k!(m−k)!

⎞⎟⎟⎟⎟⎟⎟⎠ (18)

=
δkmk3

m(m − 2k + 1)
, (19)

whereas in (17), for simplicity we ignore the event that
A, B and C share more than one key. Define

γk
m � P((A�B) �C),



5

we then have

S AP =
P(A ⊗ B)
P(A↔ B)

≥ γk
m + δ

k
mφ

k
m

1 − δkm + δkmφk
m
. (20)

2) Scenario II: h compromised nodes are within both
A and B’s communication range: We use Ch to denote
the set of h compromised nodes. Since

P((A, B)�Ch ∩ A�B)

=P(A�B) · P((A, B)�Ch|A�B) (21)

=P(A�B) · (1 − (1 − P(A�C ∩ B�C|A�B))h) (22)

=δkm · (1 − (1 − φk
m)h), (23)

then using a similar argument as in Scenario I, we have

S AP ≥ P((A�B) � Ch) + P((A, B)�Ch ∩ A�B)

P(A�B) + P((A, B)�Ch ∩ A�B)
(24)

≥ 1 − (1 − γk
m)h + δkm · (1 − (1 − φk

m)h)

1 − δkm + δkm · (1 − (1 − φk
m)h).

(25)

3) Scenario III: h compromised nodes and g autho-
rized nodes are within both A and B’s communication
range: In this case, if A and B do not share any key
initially and need to communicate through a relay, a
successful attack can happen if one compromised node
is chosen as the relay. Assuming there are a total of a
qualified relays (i.e, nodes who can establish pairwise
links with both A and B), b out of which are compro-
mised nodes. Denote µb

a as the probability of A and B
picking a compromised node as the relay, which can have
different values depending on the specific attack models
(details in the next subsection).

The probability of having r useable relays out of all
h compromised nodes when A and B do not share keys
is

P((A, B)�Ch
r |A�B)

=

(
h
r

) (
P(A�C ∩ B�C|A�B)

)r (
1 − P(A�C ∩ B�C|A�B)

)h−r

(26)

=

(
h
r

)
(φk

m)r(1 − φk
m)h−r. (27)

Similarly, the probability of having w useable relays out
of all g authorized nodes when A and B do not share
keys is

P((A, B)�Cg
w|A�B) =

(
g
w

)
(φk

m)w(1 − φk
m)g−w. (28)

Then the probability of sending a message through a
compromised node given the existence of h compromised

nodes, g authorized nodes and A, and B do not share any
key is

P(A↔ Ch ↔ B|A�B)

=

h∑
r=1

g∑
w=0

µr
r+w(P((A, B)�Ch

r |A�B) · P((A, B)�Cg
w|A�B))

(29)

=

h∑
r=1

g∑
w=0

µr
r+w

((
h
r

)(
g
w

) (
(φk

m)r+w(1 − φk
m)h+g−(r+w)

))
.

(30)

Since

P(A↔ Ch ↔ B∩ A�B) = P(A�B) · P(A↔ Ch ↔ B|A�B),
(31)

we have the following lower bound on SAP

S AP =
P(A ⊗ B)
P(A↔ B)

(32)

≥ P((A�B) � Ch) + P(A↔ Ch ↔ B ∩ A�B)

P(A�B) + P(A↔ Ch+g ↔ B ∩ A�B)
(33)

=
1 − (1 − γk

m)h + δkm ·
(∑h

r=1
∑g

w=0 µ
r
r+w

((
h
r

)(
g
w

) (
(φk

m)r+w(1 − φk
m)h+g−(r+w)

)))
1 − δkm + δkm ·

(
1 − (1 − φk

m)h+g
) .

(34)

4) Numerical results: Table II shows the SAP for
different values of h and g based on the previous analysis.
The key-ring size is k = 83, with a key pool size of
m = 10000.

TABLE II
Successful attack probability (SAP) for different numbers of

authorized nodes (g) and compromised nodes (h). We assume there
are a total of a qualified relays, b out of which are compromised

nodes. µb
a is the probability of picking a compromised node as the

relay. The key pool size m = 10000, the preloaded key-ring size
k = 83, and the original SAP estimation is hk/m.

g = 10 g = 20
h g = 0 µb

a = b/a µb
a = 1 µb

a = b/a µb
a = 1 hk/m

1 20.4% 4.7% 13.0% 2.7% 12.8% 0.8%
2 31.1% 8.8% 22.7% 5.1% 22.4% 1.7%
3 37.6% 12.3% 30.0% 7.4% 29.7% 2.5%
4 41.9% 15.3% 35.5% 9.5% 35.2% 3.3%
5 44.8% 18.0% 39.7% 11.4% 39.5% 4.2%
6 46.9% 20.4% 42.9% 13.2% 42.7% 5.0%
7 48.5% 22.5% 45.4% 15.0% 45.2% 5.8%
8 49.7% 24.4% 47.3% 16.6% 47.2% 6.6%
9 50.6% 26.2% 48.8% 18.1% 48.7% 7.5%

Several observations are in order. When the probability
of picking a compromised node as the relay µb

a = b/a,
the SAP increases with h (the number of compromised
nodes) under fixed g (the number of authorized nodes).
When µb

a = 1, the general trend is similar, but the SAP is
not very sensitive to g between the cases of g = 10 and
g = 20, since A and B will always choose a compromised



6

node as relay if possible. Comparing with the value of
SAP estimated in [1], which is approximated as hk/m,
the SAP in Table II is much larger. For example, with
µb

a = b/a, h = 9 and g = 20, we have a SAP of 18.1%,
as opposed to hk/m = 7.5%. The value of SAP increases
further when µb

a = 1.
The value of µb

a depends heavily on the attack model
used by the compromised nodes. We define two attack
models, honest attack and smart attack. In an honest at-
tack, the relays nodes are randomly chosen and µb

a = b/a.
In a smart attack, however, the compromised nodes will
improve the value of µb

a by various methods. In a smart
attack with incentive, the compromised nodes provide
incentives for nodes A and B to choose one of them
as a relay. If the choice of relay is determined by a
shortest path routing protocol, the compromised nodes
can announce distance metrics of the links connected to
them smaller than the actual values. If the choice of relay
is based on energy efficiency, the compromised nodes
can pretend to be very energy efficient. In most cases, the
incentives provided by the compromised nodes can make
the value of µb

a very close to 1. In a smart attack with
virtual node fabrication, each compromised node is able
to collect the keys from all other compromised nodes,
and can then fabricate up to

(
hk
k

)
nodes with distinct

key rings. The number will be very large if h ≥ 2.
For example, when two nodes are captured with non-
overlapping key rings, then

(
2k
k

)
=

(2k)!
k!
≈
√

2π(2k)2k+0.5e−2k

(
√

2π(k)k+0.5e−k)2
=

22k+0.5

√
2πk
, (35)

which is around 5.8 × 1048 if k = 83. As a result, the
value of µb

a will be closer to 1 with the increase of the
number of fabricated nodes.

III. Secret-Protecting Processor Architecture

The analysis in the previous section is based on the as-
sumption that an adversary can obtain the long-term key
information from the captured nodes. In particular, we
assume an adversary with physical access to the device,
so software protections are easily bypassed. The keys
are accessible to an adversary if the existing software
is exploited or if the software is replaced entirely with
malicious code. He might also read the keys directly
from a flash memory chip or other permanent storage
when the device is offline.

We propose a solution that protects secrets by storing
them inside the System on a Chip (SoC). The chip
includes the processor core and main memory, and it is
quite expensive for an adversary to remove the packaging
and directly probe the registers and memory. The SoC

chip can further implement physical tamper-resistance
mechanisms that will clear the secrets when probing
attempts are detected and also cut power to the chip,
erasing any intermediate data based on those secrets.
Therefore the assumption of protected on-chip secrets
is valid for a large class of attacks.

Our solution is to provide a Secret Protecting (SP)
architecture which minimizes the trusted computing base
(TCB) of hardware and software that has to be fully cor-
rect, verified and trusted. Our TCB comprises some SP
hardware features (described below) and a small Trusted
Software Module (TSM) that does the key management.

We first present Reduced Sensor-mode SP, suitable for
the simplest sensors. We then extend the solution for
slightly more capable sensors. Our work is inspired by
the SP architecture proposed for general-purpose micro-
processors [19], [20], but stripped to the bare minimum
for sensors with very constrained computing and storage
resources.

A. Reduced Hardware Architecture

The simplest version of our architecture, Reduced
Sensor-mode SP, is shown in Fig. 1. It only requires
one new register — the Device Key — and a bit to
indicate protected mode. Additionally, a Trusted Soft-
ware Module (TSM) is stored in the on-chip instruction
EEPROM, and the long-term keys for the probabilistic
key management scheme, provided by a central authority,
are stored in the on-chip data EEPROM. Also, a portion
of the main memory of the node is reserved for the TSM
Scratchpad Memory.

The main concept is that the TSM is the only software
module that can use the Device Key and the protected
long-term keys. Since the TSM code is stored within the
trusted SoC chip in ROM, it cannot be changed by other
software — whether by a malevolent application or a
compromised operating system. Similarly, the long-term
keys never leave the SoC chip. Also, any intermediate
data (which may leak key bits) generated during TSM
execution is placed in the TSM scratchpad memory, and
also never leaves the SoC chip. We will discuss how this
prevents node fabrication attacks in Section IV.

The TSM code is stored on-chip in a segment of the
existing instruction EEPROM along with other system
software for the node. Similarly, the long-term keys from
the authority are stored in a TSM segment of the data
EEPROM. The keys are encrypted with the device key
or with another encryption key derived from it by the
TSM.

The device key is the SP master key and is protected
by the processor hardware; it can only be used by the



7

SoC chip

Device Key128 bits*

Mode1 bit

New Encrypted Existing
components

* (Non-volatile
register)

General
Purpose
Registers

Processor Core

Temporary & Pairwise
Keys

General Storage

Device Storage
(Flash)

General Purpose Memory

TSM Scratchpad Memory

Main Memory (DRAM)

TSM-only

EEPROM

Long-term
Keys

General
Data

TSM Code

General
Code

Fig. 1. Reduced Sensor-mode SP

TSM running in protected mode and can never be read
by any other software.

When the unprotected software wants to make use of
protected keys, it calls the TSM. The TSM functions
access the protected keys, perform the requested opera-
tion and return the results, never revealing the protected
keys themselves to the unprotected software. Each TSM
function starts with a Begin TSM instruction, which
disables interrupts, sets the protected mode bit, and en-
ters protected mode for the next instruction. Begin TSM
is only valid for code executing from the instruction-
EEPROM; any code executed from main memory or
off-chip storage cannot enter protected mode at all. The
end of the TSM code is indicated by the End TSM
instruction which clears the mode bit and re-enables
interrupts. Table III shows the set of instructions used
only by the TSM and for initialization, in the Sensor-
mode SP architectures.

The TSM Scratchpad Memory is a section of main
memory reserved for the exclusive use of the TSM. It
is addressed separately from the regular on-chip mem-
ory and accessed only with special Secure Load and
Secure Store instructions (see Table III). These new
instructions are available only to the TSM, making it
safe for storing sensitive intermediate data in the TSM
scratchpad memory. The TSM can also use this extra
space to spill general registers, to decrypt and store keys,
and to encrypt data for storage in regular unprotected
memory.

Initialization of a new device takes place at the author-
ity’s depot. First it must generate a new random device
key. Long-term keys and other secrets are encrypted
with it are then stored along with the TSM code on

the on-chip EEPROM. Next it uses the DeviceKey Set
instruction to store the device key. Finally, any other
unprotected software and data can be copied to the flash
storage.

Any time the Device Key register is set (or cleared),
the processor will automatically clear the TSM scratch-
pad memory, wiping any intermediate data that was
protected by the old key. If in protected mode at the
time, the mode bit is also cleared along with the general
purpose registers. Similarly, the processor will clear the
device key upon writing to either the instruction or data
EEPROM; this in turn clears the other intermediate data.

B. Expanded Sensor-mode SP Architecture

The Reduced Sensor-mode SP architecture is ideal
for the smallest sensor nodes which use minimal soft-
ware and have very limited resources. In slightly larger
lightweight sensor nodes, the software will be more
complex. The additional applications that run on this
sensor combined with the TSM and long-term keys will
be too large to store on-chip. This greater flexibility in
the sensor also requires additional support for security.
Hence, we propose the Expanded Sensor-mode SP ar-
chitecture shown in Fig. 2.

Hashing
Engine

ROM
(Hash

routines)

SoC chip

General Purpose Memory

TSM Scratchpad Memory

Main Memory (DRAM)

Device Key128 bits*

Mode1 bit

TSM-only

Authority Storage Hash168 bits*

General
Purpose
Registers

Processor Core

New Encrypted Hash
checked

Existing
components

* (Non-volatile
registers)

General Storage

Device Storage
(Flash)

TSM Code

Long-term Keys

Temporary & Pairwise
Keys

Fig. 2. Expanded Sensor-mode SP

The TSM code and encrypted long-term keys are
moved to the off-chip device storage. This makes them
susceptible to modification by other software or through
physical attacks. Therefore we must verify their integrity
before they can be used. To do this, we add a new
register — the Authority Storage Hash (ASH), a hard-
ware hashing engine (implementing SHA-1, MD5, or



8

TABLE III
New Sensor-mode SP Instructions

Instruction Description
Begin TSM Begins execution of the TSM
End TSM Ends execution of the TSM
Secure Store Secure store from processor to TSM scratchpad

memory. (TSM only)
Secure Load Secure load from TSM scratchpad memory to

processor. (TSM only)
DeviceKey Read Read the Device Key. (TSM only)
DeviceKey Set Sets the Device Key register. First clears the

TSM scratchpad memory.
ASH Set Sets the ASH register. First clears the device key

and TSM scratchpad memory.

another cryptographic hash function), a small ROM, and
an additional initialization instruction.

The ASH register contains a hash over the entire
memory region of the TSM code and long-term keys.
It is set by the authority during initialization and is
rechecked by the processor each time the TSM is called.
The checking code is stored in the on-chip ROM and is
fixed and therefore safe from modification; it uses the
hardware hashing engine to compute the hash over the
TSM code and the encrypted keys. When Begin TSM
is called, the processor disables interrupts and jumps to
the TSM-checking routine. If the hash check succeeds,
the protected mode bit is set, and execution jumps to
the newly-verified TSM code. If the check fails, an
exception is triggered. The ASH Set instruction sets the
ASH register, first clearing the device key to ensure that
the TSM can’t be replaced and still access the protected
keys.

IV. Security and Economics Analysis of SP
Architecture Based Solution

A. Attacks on Protected Keys

Our new Sensor-mode SP architectures safeguard a
sensor node’s long-term keys, preventing extraction by
an adversary in the event of node capture. The keys are
always stored in encrypted form in permanent storage
in either on-chip EEPROM or off-chip storage. The
adversary cannot obtain the device key needed to decrypt
them. The device key never leaves the SP processor or its
protected software environment. Therefore, rather than
access the keys directly, regular software must call TSM
functions which perform operations with the keys on
its behalf. Thus, software can use the keys in any way
permitted by the TSM, but can never extract the keys
themselves, even under physical attacks.

1) Node Fabrication Attacks: Without SP protection,
an adversary maximizes his SAP by cloning multiple
copies of compromised nodes and combining their long-
term keys. This increases his ability to observe link

establishment and the likelihood of being used as a relay.
With SP protection, he cannot create any clones and is
limited to using only the keys originally stored on the
captured node.

2) Node Capture Attacks: Node capture attacks use
long-term keys in the node to observe pairwise links
between other nodes in the network. With SP, an ad-
versary can no longer extract the keys. However, he can
still change unprotected software which calls the TSM.
A simple TSM might provide functions like Encrypt(key,
data) and Decrypt(key, data). The adversary can use the
keys through this TSM interface to observe or attack
pairwise links without ever seeing the actual keys. While
we do not prevent node capture attacks outright, such
attacks are limited since the adversary can only observe
links within the communication range of the compro-
mised node. We show in Section V that this severely
limits the SAP, which is constrained by the number of
captured nodes.

B. Attacks on Changing the TSM or the Device Key

The security of the long-term keys relies on the
correctness and proper design of the authority’s TSM.
As part of the trusted computing base of the system,
this software must not leak secrets it has access to. This
includes any intermediate data written to general purpose
memory, placed in off-chip storage, or left in general
registers when it exits. The TSM runs with interrupts
disabled, so no other software will have an opportunity
to observe its registers or modify its code or data while
it is executing. If the TSM ever exits abnormally due to
an exception, the processor clears the general registers
before ending protected mode. Any other sensitive data
will be in the TSM scratchpad memory which other
software cannot access.

In order to circumvent the access control provided by
the authority’s TSM, the attacker might try to replace
it with his own TSM or modify the existing TSM. In
Reduced Sensor-mode, the TSM and long-term keys
are stored in on-chip EEPROM where they cannot be
modified without clearing the device key. In Expanded
Sensor-mode, the attacker could modify or replace the
TSM code in off-chip storage. The hash checking routine
will detect any such modifications made to the TSM
before execution. We assume that the data in off-chip
storage cannot be modified through a physical attack
during execution. If this is not the case, the TSM and
keys should first be copied to general purpose memory
on-chip before being verified, where they will be safe
from physical attacks.

Finally, if the attacker tries to modify the ASH register
to match the new TSM code, the device key will be



9

cleared, irrevocably cutting off his access to all of the
keys that were encrypted with that device key. Clearing
or setting the device key also clears the TSM scratchpad
memory, so any intermediate data stored there that might
have leaked secrets is also unavailable to the new TSM.

C. Economics Analysis

When considering low-cost sensors, any new hardware
must be designed for high volume in order to keep down
fabrication costs. Accordingly, Sensor-mode SP provides
basic security primitives and a hardware root of trust
using a design that is easily integrated into the SoC of
standard embedded processors. It therefore supports a
wide range of software protection mechanisms with only
a slight increase in chip area.

Our hardware also provides physical security. SP
prevents attacks by an adversary with physical control
over a captured node who tries to modify the code or
data in storage while the device is in operation or offline.
The physical integrity of the SoC itself is sufficient to
prevent adversaries from probing the SP registers inside
the chip, without requiring more costly tamper-proofing
mechanisms in most cases.

V. Simulation Results

To verify our probability computations in Section II
and demonstrate the improvement of security perfor-
mance of the proposed architecture in Section III, we
evaluate the SAP of the probabilistic and deterministic
key predistribution scheme (the EG scheme) through a
simulator written in C++.

A. Comparison of Probabilistic and Deterministic Key
Predistribution

To compare probabilistic and deterministic key pre-
distribution schemes, we consider a unit disk network
model, as shown in Fig. 3. A total of g authorized nodes
(denoted by symbol A) are uniformly distributed in the
unit disk. All the compromised nodes (including any
virtually fabricated nodes) are placed at the center of
the unit disk and denoted with symbol C. All nodes
are assumed to have the same transmission range equal
to the radius of the disk. This means an adversary can
eavesdrop on any communication in the unit disk through
the compromised nodes as long as it has the right key(s).
Two neighbor nodes will setup a pairwise link directly
if they share one or more keys. Otherwise, they will
try to find a relay path through one or more nodes to
exchange additional key information, so that they can set
up pairwise link between them. When there is more than
one qualified relay node available, the authorized nodes

will choose a relay randomly in the case of µb
a = b/a (i.e,

honest attack or finite virtual node fabrication), or search
for a shortest relay path in an attack with incentive.2

Any two nodes that are not neighbors cannot establish
pairwise links among themselves. The main reason of
using the above unit disk network model is to derive
a uniform and fair metric (i.e., SAP) among various
approaches where failing to attack is only due to the
lacking of appropriate keys rather than the limitation of
transmission range.

The SAP is calculated as the fraction of the links
(among all the pairwise links) that can be eavesdropped
by the compromised nodes. As we explained in Sec. I,
a basic deterministic scheme like single common key
either enables almost zero SAP in a static network, or
leads to 100% SAP for the unit disk model in a mobile
network. Hence, our focus here is to determine the SAP
for the probabilistic key predistribution scheme (i.e., the
EG scheme). All the simulation results are averaged over
10 sets of random seeds which affect the distribution
of the authorized nodes within the unit disk, the key
ring preloaded to each node and the choices in case of
multiple qualified relays.

A

A

A

A

A

A

A

A

A
A

A

A

C

Fig. 3. Unit disk network model with unit radius. The authorized
nodes are uniformly distributed in the unit disk and denoted by
symbol A. The compromised and virtually fabricated nodes are placed
in the center of the network and denoted by symbol C. All nodes have
the same communication range equal to the disk radius.

Figs. 4(a) to 4(d) illustrate the values of SAP under
different assumptions on the number of compromised
nodes (h), number of authorized nodes (g) and different
attack models (honest attack, smart attack with incentive,
or smart attack with fabrication). Unless otherwise spec-
ified, each node is preloaded with a key ring consisting
of k = 83 keys that are randomly chosen from a key pool
of size m = 10, 000.

Fig. 4(a) shows the SAP for various values of h and
g under the honest attack. For a fixed value of h, the
SAP decreases when the density of authorized nodes

2In the simulation, the smart attack with incentive is approximated
as setting the cost of the links adjacent to the compromised nodes as
0.9999 instead of as 1 unit (hop) for other authorized nodes.



10

4 8 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l A

tta
ck

 P
ro

ba
bi

lit
y

Number of Authorized Nodes (g)

k=83, m=10000

h=9
h=6
h=3
h=2
h=1

(a) Honest attack

4 8 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l A

tta
ck

 P
ro

ba
bi

lit
y

Number of Authorized Nodes (g)

k=83, m=10000

h=9
h=6
h=3
h=2
h=1

(b) Smart attack (incentive)

0 1 2 4 8 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l A

tta
ck

 P
ro

ba
bi

lit
y

Number of Fabricated Nodes

k=83, m=10000, g=40

h=9
h=6
h=3
h=2

(c) Smart attack (node fabrication)

1 2 3 6 9 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l A

tta
ck

 P
ro

ba
bi

lit
y

Number of Captured Nodes(h)

k=83, m=10000, g=40

Smart Attacker (Incentive)
Smart Attacker (Fabrication)
Honest Attacker
Original Estimation (hk/m)

(d) Different attack models

Fig. 4. Successful Attack Probability with various numbers of
captured nodes (h) and authorized nodes (g)

increases. This is because in a denser network, there
are more qualified relay nodes available between any
two neighbor nodes, thus the probability of choosing a
compromised node as the relay is smaller under honest
attack. For a fixed number of authorized nodes g, a
higher value of h increases the probability of picking
a compromised node as the relay, thus leads to a higher
value of SAP. In a network where there are 9 compro-
mised nodes and 15 authorized nodes, the SAP could be
as high as 42%.

Fig. 4(b) shows the SAP for various values of h and
g under the smart attack with incentive. In this case,
two neighbor nodes without a common key will have
a high chance to pick a compromised node as relay if
it is qualified. There is a high probability of finding
a qualified relay node among the compromised nodes
when h is large, in which case the SAP is insensitive
to the number of authorized nodes g. Similarly as in
Fig. 4(a), a higher value of h also leads to a higher
value of SAP. In a network with 40 authorized nodes
and 9 compromised nodes, the SAP would be around
50%.

Fig. 4(c) shows the SAP for the smart attack of var-
ious numbers of compromised nodes and different total
numbers of virtually fabricated nodes. The total number
of authorized nodes is kept at 40. The node fabrication
is achieved as follows. All the keys collected from the h
compromised nodes will constitute a compromised key

pool. Then each fabricated node will be loaded with
k = 83 keys randomly chosen from the compromised
key pool. A larger number of fabricated nodes increases
the chance of such a node being chosen as a relay node,
thus increasing SAP. A larger value of h leads to a larger
compromised key pool, which again increases the chance
of a fabricated node serving as a qualified relay.

Fig. 4(d) shows the SAP under different numbers of
captured nodes, for different kinds of attacks as well as
the estimation based on the result in [1]3. The number of
authorized nodes is fixed at 40. It is clear that the results
in [1] significantly underestimate the SAP in mobile
networks. With a large enough number of compromised
nodes, the SAP can easily reach an unacceptably high
value of 50% with all attack models.

47 53 60 65 71 77 83 89 95 102 109
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l A

tta
ck

 P
ro

ba
bi

lit
y

Key Ring Size (k)

m=10000, g=40, h=6

Link Availability (1−δm
k )

Smart Attacker (Incentive)
Smart Attacker (Fabrication)
Honest Attacker
Original Estimation (hk/m)

Fig. 5. Successful attack probability for different key ring size (k),
for different attack models as well as the estimation in [1].

Fig. 5 shows the SAP under different sizes of the
preloaded key ring, k, for different attack models as well
as the estimation based on the results in [1]. We also
plot the link connectivity (i.e., the probability that two
neighbor nodes share at least one key, 1 − δk

m) under
different values of k. With the increase of k, the link
connectivity increases, as well as the SAP estimation
based on the analysis in [1], which is linear in k. On the
other hand, the SAPs for all three attack models actually
decrease with an increasing k, due to less need of going
through a relay to establish a pairwise link. However,
they are still much higher than the original estimation of
SAP in [1] and the nodes need more memory to store
so many keys.

B. Security Improvement with SP architecture

In this subsection, we show the security performance
of the proposed SP architecture for lightweight ad hoc
networks. We focus on the evaluation of the basic prob-
abilistic key predistribution approach (the EG scheme)

3When the network is static, an adversary captures h nodes, then
its successful attack probability on a link is 1 − (1 − k

m )h ≈ hk
m .



11

since the deterministic approach (e.g., single common
key) is a special case of the probabilistic approach. In
addition, many advanced versions of probabilistic key
predistribution (e.g., [8], [21]) are also vulnerable to
node capture attacks and can benefit from the proposed
architecture.

We have run the simulation for a 10×10 grid network,
and all nodes are assumed to have the same (1 unit)
transmission range. A total of 400 nodes are randomly
placed in the network. Network-wide SAP is calculated
as the fraction of links that can be intercepted by
the compromised nodes among all the pairwise links
established among the authorized nodes. All simulation
results are averaged over 10 sets of random seeds that
affect the distributions of the location of each node, the
key rings preloaded to nodes, and the relay choices.

We consider several possible attack models depending
on whether SP architecture is used. If every node is
equipped with the Sensor-mode SP architecture, the
adversary can only launch a node capture attack, where
the adversary utilizes the captured nodes themselves
to intercept pairwise-key establishment. Without the SP
architecture, the adversary can further launch node fabri-
cation attacks where he can turn the captured nodes into
super-nodes by loading each of them with all of the keys
from all captured nodes. Each super-node can mimic
multiple nodes. A straightforward method to achieve this
is to let each super-node stay at its original location
but announce the existence of all the captured nodes.
The adversary can even make more copies of the super-
nodes and deploy them into the network to eavesdrop
additional communication. We note that it is difficult
to detect the duplication of nodes within the network,
since it requires knowledge of the location of each node
(possibly using Global Positioning System) and non-
trivial communication and memory overhead [22].

4 (1%) 6 (1.5%) 8 (2%) 10 (2.5%) 12 (3%)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l A

tta
ck

 P
ro

ba
bi

lit
y

Number of Captured Nodes (Percentage)

k=83, m=10000

6 Copies
4 Copies
2 Copies
1 Copies
0 Copies
SP

Fig. 6. Network-wide successful attack probability under different
numbers of captured nodes for different attack models

Fig. 6 shows the network-wide SAP under different

47 53 60 65 71 77 83 89 95 102 109
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l A

tta
ck

 P
ro

ba
bi

lit
y

Key Ring Size (k)

Key−pool size m=10000, 8 nodes (2%) captured

6 Copies
4 Copies
2 Copies
1 Copies
0 Copies
SP

Fig. 7. Network-wide successful attack probability for different key
ring size (k) with different attack models

numbers of captured nodes, for different kinds of attacks.
“SP” means launching only the node capture attack with
the SP architecture. “0 copies” means changing captured
nodes into super-nodes (i.e., node fabrication attack) due
to the lack of the SP architecture. “x copies” means
making x extra copies of these super-nodes. Note that,
without SP, the effect of node capture can be serious.
When only 3% of the nodes are captured, the SAP for the
network will be 9.7% even with “0 copies”, and becomes
42.6% if the adversary makes 6 copies of the captured
nodes to cover more area. Whereas the SAP for the nodes
with SP is only 2.1% — a reduction by roughly an order
of magnitude. Therefore, SP provides significant benefits
in terms of alleviating node fabrication attacks.

Fig. 7 shows the network-wide SAP under different
sizes of the preloaded key ring, k, for different attack
models, assuming 2% of nodes have been captured. An
increasing value of k has two effects on the network.
First, the link connectivity increases; this reduces the
probability of two neighboring nodes establishing a
pairwise link through a relay node, and thus can improve
the network security. Second, each node captured by
the adversary contains more keys, which will increase
the chance of intercepting the communications on other
pairwise links. This is detrimental to the network se-
curity. Fig. 7 shows that the advantage of the first
effect dominates and the overall SAP decreases with an
increasing value of k. Notice that the SP architecture
offers significant advantages over the other schemes for
all values of k.

Finally, the single common key scheme also benefits
from SP since the adversary, without the ability to learn
the common key, can only eavesdrop on the informa-
tion exchanged within the communication range of the
captured nodes.



12

TABLE IV
Comparison of probabilistic and deterministic key predistribution

Metric Probabilistic Deterministic

Key Storage O(k) O(1)

Communication Overhead O(k) O(1)

Computation Overhead O(log k) {Search} O(1)

Node Density Required High Low

Link Connectivity 50%,

(
1 − (m−k

k )
(m

k)

∣∣∣∣∣∣ k=83
m=10000

)
100%

Resiliency (Static Network) High High
Resiliency (Mobile Network) Low Low
Resiliency (SP-Enhanced) High High

VI. Concluding Remarks

In this paper, we discuss key management in
lightweight mobile ad hoc networks. Backed up by the
large successful attack probabilities computed in this
paper, we show that the probabilistic key predistribution
schemes are in fact quite vulnerable to node captures in
many practical cases. Considering the large key pool and
key ring sizes, complex key predistribution, low network
connectivity, and complex pairwise link establishments,
the advantage of the probabilistic approach over the
deterministic approach is not as much as people have
believed. A partial list of the comparisons between the
two approaches (basic versions) is presented in Table IV.
We also generalize the re-examination to other prob-
abilistic key predistribution schemes, including the q-
composite key scheme, the multiple disjoint path key
reinforcement scheme, and the scheme based on partial
deployment information in the Appendix. All of these
schemes are vulnerable to node capture in a mobile
network. A selective node capture will further weaken
the performance of a probabilistic approach.

Finally, we propose two low-cost hardware-based ar-
chitectures to enhance the security of key management
schemes against the attack of sensor node fabrication for
a lightweight mobile ad hoc network, which can benefit
both probabilistic and deterministic key management.

APPENDIX: Implications to RelatedWork

A. Reinforcements on the Basic EG Scheme

Many probabilistic schemes based on the EG scheme
have been proposed, e.g., [5], [8], [9], [16], [23]. We
show that many of them are also very vulnerable to
node capture in the mobile networks, or that the proposed
improvements in those schemes can benefit deterministic
approaches as well.

In the q-composite key scheme [8], two nodes can
only establish a pairwise link between them if they share
at least q keys initially (i.e., within the preloaded key
rings.). The real key for encrypting the communication

is a hash result of all q keys. Though this approach can
reduce SAP in a static network, it is almost as fragile as
the EG scheme in a mobile network, following similar
analysis as in Section II. In addition, to keep the link
connectivity comparable to the EG scheme, the key ring
size has to be substantially increased, which means fewer
node captures are needed to disclose a sufficiently large
key space to the adversary.

The concept of multiple disjoint path key reinforce-
ment was proposed in [8] and [16]. A node will send
partial keys to its neighbor through several disjoint paths.
The counterpart then regenerates the original key after
receiving all these partial keys. A compromised node can
only regenerates the key if it intercepts all partial keys.
However, this approach requires each node to maintain a
global network topology to calculate disjoint paths, and
the ability to do source routing. In addition, if virtual
node fabrication is possible, there is still a high prob-
ability that every path passes through a compromised
node. Finally, the approach is also fragile to the attack
of deliberate modification by a compromised node along
the path, so that the neighbor node cannot successfully
regenerate the key.

Some schemes utilize the “partial” deployment infor-
mation to increase the resilience against node capture
(e.g., [9], [23]). In particular, two nodes have a higher
probability of sharing keys if they are supposed to be
deployed in a group (e.g., in the same geographic area),
or have a lower probability if they will be deployed
in different groups. Therefore, a node captured in a
particular group will have little effect on the security of
nodes in other groups. However, the same technique can
also be used to enhance the security of a deterministic
scheme. For example, a different common key can be
assigned to the nodes deployed in the same group,
and a node is then equipped with all the keys of the
groups it belongs to. Thus capturing one node will not
have much adverse effect on the nodes in other groups.
Therefore, such improvements do not change the nature
of our comparisons of deterministic and probabilistic key
management.

B. Selective Node Capture

So far we have only considered random node capture,
i.e., the adversary randomly captures nodes to collect
sufficient keys to attack the whole network. Another
new attack mode, called selective node capture, can
further weaken the security levels of the probabilistic
approaches. As originally proposed in [5], the adversary
can listen to the information exchanges when each node
tries to identify the keys to be shared with its neighbors.



13

By identifying the key indices in each node and phys-
ically locating any node, the adversary can selectively
capture nodes with the least overlap in keys. Compared
with random node capture, fewer selective node captures
are needed to disclose a certain number of unique keys.
Although several methods have been proposed to reduce
the communication overhead and avoid unnecessary key
index disclosure, none of them can completely preclude
selective node capture.

One class of key discovery methods is “key indices
notification”. A basic approach is that each node an-
nounces all of the key indices, with a message size
of O(k), as in [1]. Zhu et al. [16] proposed a refined
approach that uses a publicly known pseudo-random
key index generation function. In the key predistribution
phase, the authority’s server chooses a random seed for
each node, which calculates a set of k outputs (i.e. key
indices) using the key index generation function. The
node then uses the random seed as its ID, and announces
this ID to its neighbors in the key discovery phase.
Each of its neighbors can figure out the key indices
stored in the node from its ID, since they all have the
same key index generation function. As a result, the
communication overhead is only of order O(1). However,
since the adversary can also figure out all the key index
information from the announcements, the scheme is still
fragile to selective node capture.

A more complicated challenge-response-like key dis-
covery technique was proposed in [1], [21], [23], where a
node can determine whether its neighbor has a particular
key if and only if it also has the key. In this scheme, a
node announces k challenges separately encrypted by its
own k keys. A neighbor node then tries to decrypt the k
challenges with its own k keys. Only after the successful
decryption of a challenge, can the neighbor node figure
out the key from the node who announced the challenge.
The process involves k2 decryption operations and O(k)
message exchanges between any two neighbor nodes.
To further reduce the computation and communication
overhead, Pietro et al. [5] designed a verification function
Φ(ID‖key) using a one way hash function, like SHA-
1, where ‖ is the concatenation operation. The function
Φ(ID‖key) returns “true” for any argument (i.e. ID‖key)
with a (pseudo-random) probability of k/m. In the key
distribution phase, each node uses Φ(ID‖key) to test
each key ki from the key pool with its ID, and uses
that key only if the result is “true”. Therefore, around
k keys out of an m sized key pool will be stored on
each node. In the key discovery phase, the node just
needs to announce its ID, and a neighbor node will
execute Φ(ID‖ki) k times (i.e., with all its own k keys
and the ID it hears) to discover the shared key(s). In

short, the procedure involves only k hashing operations
and O(1) message exchange between any two neighbor
nodes. However, these challenge-response-like methods
are still subject to selective node capture. The major
difference here is that the selective node capture is only
more meaningful than random node capture in sequential
node capture mode. That is, in each step, the adversary
identifies and captures the node with the fewest keys
existing in the compromised key pool. While in “key
indices notification” methods, the adversary can identify
a set of nodes with the least key overlap and capture
them concurrently.

References

[1] L. Eschenauer and V. D. Gligor, “A key-management scheme
for distributed sensor networks,” in CCS’02: ACM conference
on Computer and communications security, New York, NY,
2002, pp. 41–47.

[2] R. Blom, “An optimal class of symmetric key generation
system,” in Advanced in Cryptology - Eurocrypt’84, LNCS, vol.
209, 1984, pp. 335–338.

[3] T. Matsumoto and H. Imai, “On the key predistribution sys-
tems: A practical solution to the key distribution problem,” in
Advances in Sryptology - Crypto’87,, 1987.

[4] C. S. R. Murthy and B. S. Manoj, Ad Hoc Wireless Networks:
Architectures and Protocols. Prentice Hall Communications
Engineering and Emerging Technologies Series, 2004.

[5] R. D. Pietro, L. V. Mancini, and A. Mei, “Random key-
assignment for secure wireless sensor networks,” in SASN’03:
ACM workshop on Security of ad hoc and sensor networks,
New York, NY, 2003, pp. 62–71.

[6] J. Kohl and B. Neuman, “The kerberos network authentication
service (v5),” RFC1510, Sept. 1993.

[7] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Re-
lations among notions of security for public-key encryption
schemes,” in Advances in Cryptology - CRYPTO’98: 18th
Annual International Cryptology Conference, Santa Barbara,
CA, August 1998.

[8] H. Chan, A. Perrig, and D. Song, “Random key predistribution
schemes for sensor networks,” in IEEE Symposium on Security
and Privacy, 2003.

[9] W. Du et al., “A key management scheme for wireless sen-
sor networks using deployment knowledge,” in INFOCOM’04,
Hong Kong, Mar. 2004.

[10] J. Hwang and Y. Kim, “Revisiting random key pre-distribution
schemes for wireless sensor networks,” ACM workshop on
Security of ad hoc and sensor networks, pp. 43–52, 2004.

[11] S. Zhu, S. Setia, and S. Jajodia, “LEAP: efficient security
mechanisms for large-scale distributed sensor networks,” in
CCS’03: ACM conference on Computer and communications
security, New York, NY, 2003, pp. 62–72.

[12] J. Lee and D. Stinson, “Deterministic key predistribution
schemes for distributed sensor networks,” Selected Areas in
Cryptography, 2004.

[13] S. Camtepe and B. Yener, “Combinatorial design of key dis-
tribution mechanisms for wireless sensor networks,” European
Symposium On Research in Computer Security (ESORICS’04),
2004.

[14] S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An interleaved hop-
by-hop authentication scheme for filtering of injected false data
in sensor networks,” Security and Privacy, 2004. Proceedings.
2004 IEEE Symposium on, pp. 259–271, 2004.



14

[15] S. A. Çamtepe and B. Yener, “Key distribution mechanisms
for wireless sensor networks: a survey,” Rensselaer Polytechnic
Institute, Computer Science Department, Tech. Rep. TR-05-07,
Mar. 2005, available at http://www.cs.rpi.edu/research/pdf/05-
07.pdf.

[16] S. Zhu, S. Xu, S. Setia, and S. Jajodia, “Establishing pairwise
keys for secure communication in ad hoc networks: A proba-
bilistic approach,” in ICNP’03, 2003.

[17] S. Seys and B. Preneel, “The wandering nodes: Key man-
agement for lower-power mobile ad hoc netowrks,” in IEEE
International Conference on Distributed Computing Systems
Workshops, ICDCSW’05, 2005.

[18] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile
sensor network deployment using potential fields: A distributed,
scalable solution to the area coverage problem,” in Distributed
Autonomous Robotic Systems, 2002.

[19] R. Lee et al., “Architecture for protecting critical secrets in
microprocessors,” in International Symposium on Computer
Architecture (ISCA 2005), June 2005, pp. 2–13.

[20] J. Dwoskin and R. Lee, “Hardware-rooted trust for secure key
management and transient trust,” in CCS’07: ACM conference
on Computer and communications security, 2007.

[21] W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A pairwise
key pre-distribution scheme for wireless sensor networks,” in
CCS’03: ACM conference on Computer and communications
security, New York, NY, 2003, pp. 42–51.

[22] B. Parno, A. Perrig, and V. Gligor, “Distributed detection of
node replication attacks in sensor networks,” in Proceedings of
the 2005 IEEE Symposium on Security and Privacy, 2005.

[23] D. Liu and P. Ning, “Location-based pairwise key establishment
for static sensor networks,” in 1st ACM Workshop on Security
of Ad Hoc and Sensor Networks, 2003.


