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Abstract— Recent advances in network coding have greatly
facilitated information multicasting in communication networks.
One central issue in practically deploying network coding in
a shared network is the adaptive and economic allocation of
network resources. Such an issue can be formulated as a
globally coupled optimization problem, where the net-utility –
the difference between a utility derived from the attainable
multicast throughput and the total cost of resource provisioning –
is maximized. This formulation presents new challenges due to the
unique characterization of the multicast throughput attainable
via network coding.

We develop a primal-subgradient type distributed algorithm
for solving this utility maximization problem. The effectiveness of
the algorithm hinges upon two key properties we discovered: (1)
the set of subgradients of the multicast throughput is the convex
hull of the indicator vectors for the critical cuts, and (2) the com-
plexity of finding such critical cuts can be substantially reduced
by exploiting the algebraic properties of linear network coding.
Extensions to multiple multicast sessions and rate-constrained
utility maximization are also carried out. The effectiveness of
the proposed algorithm is confirmed by simulations on an ISP
(Internet Service Provider) topology.

Index Terms— Multicast, Network coding, Max-flow min-
cut, Network utility maximization, Mathematical program-
ming/optimization.

I. INTRODUCTION AND PROBLEM FORMULATION

Consider a network formed by a collection of lossless links,
which can naturally be represented by a directed graph G =
(V,E), where the vertex set V and the edge set E denote the
nodes and links, respectively.

A. Network coding based multicasting

Information multicasting in a network involves a source
node s that transmits common information to a set of des-
tination nodes T . Let the bit-rate constraints on the links are
specified by a length-|E| vector c; the capacity for link vw ∈
E is denoted by cvw. Given V , E, c, s, and T , the multicast
capacity refers to the maximum multicast throughput.

An upper bound of the multicast capacity can be established
by examining the cuts that separate s from any destination
t ∈ T . For t ∈ T , an s-t-cut (U,U) refers to a partition of the
nodes V = U + U with s ∈ U , t ∈ U . The capacity of the
cut refers to the sum of the edge capacities for edges going
from U to U ; see Fig. 1. An s-t-cut with minimum capacity
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is called a minimum s-t-cut. Let ρt(c) denote the capacity of
a minimum s-t-cut for graph (V,E) with link capacities c.
Then

min
t∈T

ρt(c) (1)

is an upper bound of the multicast capacity since the capacity
of any s-t-cut is an upper bound on the rate at which
information can be transmitted from s to t.

In today’s practical networks such as the Internet, end-
to-end information delivery is done by routing, i.e., having
intermediate nodes store and forward packets. For multicas-
ting, Ahlswede et al. showed in [1] that the upper bound
(1) cannot be achieved by routing in general, but it can
be achieved, via more powerful techniques called network
coding. Hence, (1) is the multicast capacity. Network coding
generalizes routing by allowing a node to mix information,
i.e., produce output data by computing certain functions of
the data it received. Ahlswede et al.’s result was established
via information theoretic arguments. Shortly afterwards, Li,
Yeung, and Cai [2] showed that the multicast capacity can be
achieved by linear network coding, i.e., using linear encoding
functions at each node. Following this and other constructive
theoretical results about network coding, in [3] a prototype
system for practical network coding in real packet networks,
using distributed random linear network coding with buffering,
was presented. The system achieves throughput close to the
capacity with low delay, and is robust to network dynamics.

B. Net-utility maximization formulation

An essential element needed in the practical network coding
system is a distributed scheme for “properly” allocating bit-
rate resources at each link for each multicast session in a
shared network. Generally speaking, from a system perspec-
tive, there are two interacting considerations. On one hand,
it is desirable to maximize the utilities of end users derived
from the supported end-to-end multicast throughput. On the
other hand, there is incentive to economize the consumption of
network resources. Following a popular approach in economics
theory, we can cast this problem as the maximization of a net-
utility function

U(r) −
∑

vw∈E

pvw(gvw). (2)

Here U(r) represents the raw utility when an end-to-end
throughput r is provided. The cost function pvw associated
with link vw maps the consumed bit-rate gvw to the charge.
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As a standard assumption, pvw are nondecreasing and convex
functions, and U is a nondecreasing and concave function.

The critical constraint of such a maximization is that
throughput r must be attainable using the resources gvw. Let g

be a length-|E| vector collectively representing gvw. For net-
work coding based multicasting, this relation is characterized
by

r ≤ R(g) ≡ min
t∈T

ρt(g). (3)

Since by assumption U(r) is nondecreasing, given g, we
can always set r = R(g). With this observation, we can turn
the problem into a maximization over g only. Let

Unet(g) ≡ U(R(g)) −
∑

vw∈E

pvw(gvw). (4)

We consider the following optimization formulation1

U∗
net ≡ max Unet(g)

subject to: 0 ≤ g ≤ c, (5)

The objective of this paper is to design efficient distributed
algorithms for finding an optimal solution g∗ of (5), which
will be used as the allocated bit-rate resources at each link.
The distributed algorithms should, hopefully, incur low extra
communication overhead and be adaptive to network dynam-
ics.

C. Proposed approach

We will show that R(g) is concave and thus Unet(g) is
concave. Our formulation of the problem, (5), motivates us
to apply an iterative algorithm that starts with an initial
assignment g and incrementally updates it along certain di-
rections. However, one of the difficulties is that the objective
function is non-differentiable, due to the non-differentiability
of the function R(g). To cope with this issue, we resort to
subgradient methods. A subgradient is a generalization of the
gradient to non-differentiable functions; for a concave function
f , each subgradient at x corresponds to a linear over-estimator
of f that touches f at x.

The subgradient method has been applied to various for-
mulations of network utility maximization, e.g., in [4]–[10].
In addition, previous work by Lun et al. [11] proposed a
subgradient-based distributed algorithm for minimum cost
multicasting using network coding. However, in all these
previous works, the subgradient method is applied to the
Lagrangian dual problem. In contrast, our approach in this
paper represents a primal subgradient method. The unique
challenges here lie in deriving an analytic expression of a
subgradient and developing a low-complexity implementation.
As shown in sections II and III, respectively, both challenges
can be met by using peculiar properties of network coding
and following a primal, rather than dual-based, approach.
The resulting distributed algorithm is presented in Section IV,
followed by several extensions in Section V and simulation
results in Section VI.

1In this paper, a ≤ b is in the element-wise sense.

When particularizing the subgradient methods to (5), we
need to find a subgradient for the concave function R(g). In
Sections II.B and II.C, we provide a characteriztion of the set
of subgradients of R(g). We show the set of subgradients of
R(g) is the set of convex combinations of the indicator vectors
for the s-T critical cuts. A cut (U∗, U∗) is said to be s-T
critical if it is a minimum s-t∗-cut for a critical destination t∗;
a destination t∗ is said to be critical if ρt∗(g) = mint∈T ρt(g).

Thus we can implement the subgradient iterations by seek-
ing an s-T critical cut in each iteration. Finding a minimum s-
t-cut is a classical combinatorial optimization problem that has
been well understood. In particular, the preflow-push algorithm
[12] for finding a minimum s-t-cut is suitable for distributed
implementation. We can certaintly find an s-T critical cut
by finding a minimum s-t-cut for each destination t ∈ T .
However, as shown in Sections III.B and III.C, the algebraic
properties of linear network coding are helpful in reducing that
complexity. Previous works have shown the multicast capacity
in an acyclic graph with unit edge capacities can be achieved
with high probability by performing random linear coding over
a sufficiently large finite field. Accordingly, if random mixing
is done in a linear space with a dimension h0 slightly less than
the capacity C, then the destinations can recover the data with
high probability. We observe that if mixing is done in a linear
space with a dimension h slightly higher than the capacity C,
then the critical destinations will have lower ranks than the
noncritical destinations. To ensure that the destinations can
still recover the data, we can linearly precode the original
data, e.g., by letting some original data be zero. In essence,
by perform random mixing in a space with dimention h > C
while using a signal space with dimension h0 < C, the critical
destinations are identified and the data recovery is feasible. As
a result, we can find an s-T critical cut by first finding a critical
destination t∗ and then finding a minimum s-t∗-cut.

As discussed in Section V, the proposed distributed al-
gorithm for network coding based utility maximization can
be readily extended to the scenario where multiple multicast
destinations are (additively) sharing the available resources c,
implementation is asynchronous, and lower bound on multicast
throughput is provisioned.

The proposed algorithm has been tested on a large scale
problem where the graph is the backbone topology of a
commercial ISP (Internet Service Provider). The simulation
results confirm the the convergence of the proposed algorithm.

II. OPTIMIZATION VIA SUBGRADIENT ITERATIONS

In this section, we present an iterative subgradient algo-
rithm for solving (5). First we review some preliminaries on
subgradient methods. Next we examine the function R(g)
and characterize the set of all subgradients of R(g). The
subgradient iterations is then presented in Section II-C.

A. Review: preliminaries on subgradient methods

Let the domain of a function f be denoted by

dom f ≡ {x ∈ R
n : |f(x)| < ∞}. (6)
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Definition 1 (Subgradient, subdifferential):
Given a convex function f , a vector ξ is said to be a
subgradient of f at x ∈ dom f if

f(x′) ≥ f(x) + ξT (x′ − x), ∀x′ ∈ dom f. (7)

For a concave function f , a vector ξ is said to be a subgradient
of f at x if −ξ is a subgradient of −f .

The set of all subgradients of f at x is called the subdif-
ferential of f at x and denoted by ∂f(x).

Lemma 1 (Subgradient calculus):
For a concave function f : R

+ 7→ R, the following properties
hold.

• f is differentiable at x if and only if ∂f(x) = {∇f(x)}.
• ∂(αf) = α∂f , if α > 0.
• ∂(f1 + f2) = {ξ1 + ξ2|ξ1 ∈ ∂f1, ξ2 ∈ ∂f2}
• pointwise minimum: If f = mini=1,...,m fi where fi,

i = 1, . . . ,m are concave functions, then

∂f(x) = conv {∂fi(x)|i ∈ I(x)} , (8)

where I(x) ≡ {i|fi(x) = f(x}. In other words, the
subdifferential of f at x is the convex hull of the
subdifferentials of the “active” functions at x.
In particular, if fi(x) = aT

i x + bi, i = 1, . . . ,m, then

∂f(x) = conv {ai|fi(x) = f(x)} . (9)

The subgradient method [13] maximizes a non-
differentiable concave function in a way similar to gradient
methods for differentiable functions – in each step, the
variables are updated in the direction of a subgradient.
However, such a direction may not be an ascent direction;
instead, the subgradient method relies on a different property.
If the variable moves a sufficiently small step along the
direction of a subgradient, then the new point is closer to any
optimal solution.

Consider a generic, constrained concave maximization prob-
lem

maximize f(x)

subject to: x ∈ C, (10)

where f : R
n 7→ R is concave, and C is a closed and nonempty

convex set. The subgradient method uses the iteration

x(k+1) = P
[

x(k) + αkξ(k)
]

, (11)

where x(k) is the k-th iterate, ξ(k) is any subgradient of f at
x(k), αk > 0 is the k-th step size, and P is the projection on
C:

P [x] ≡ arg min
x′∈C

‖x′ − x‖2. (12)

Lemma 2 (Convergence of subgradient methods [14] [15]):
Assume x∗ is a maximizer of (10) and there exists a G such
that ‖ξk‖ ≤ G, ∀k. Then

f∗ − max
i=1,...,k

f(x(i)) ≤
‖x(1) − x∗‖ + G2

∑k

i=1 α2
i

2
∑k

i=1 αi

. (13)

In particular,

• if constant step size is used, i.e., αk = h, then the right
hand side of (13) converges to G2h/2 as k → ∞.

• if the step sizes satisfy

lim
k→∞

αk = 0,

∞
∑

k=1

αk = ∞, (14)

then right hand side of (13) converges to 0 as k → ∞.
Step sizes that satisfy this condition are called diminish-
ing step size rules.

B. Subgradients of R(g)

As mentioned in the introduction, a partition of the vertex
set, V = U + U with s ∈ U , t ∈ U , determines an s-t-cut.
Define

δ(U) ≡ {vw ∈ E|v ∈ U,w ∈ U}. (15)

Then ρt(g) is the minimum capacity of an s-t-cut in graph
(V,E) with link capacities g, i.e.,2

ρt(g) ≡ min
U : s∈U, t∈U

∑

vw∈δ(U)

gvw. (16)

an s-t-cut

s t

Fig. 1. Illustration of an s-t-cut (U, U). A partition of the vertex set, V =
U + U with s ∈ U , t ∈ U , determines an s-t-cut. The capacity of the cut
refers to the sum capacity of the links going from U to U . The significance of
an s-t-cut comes from the fact that it exhibits a bottleneck for communication
from s to t.

An s-t-cut (U∗, U∗) with minimum capacity is called a
minimum s-t-cut. For a minimum s-t-cut (U ∗, U∗), the edges
δ(U∗) can be interpreted as “critical” to the end-to-end capac-
ity ρt(g). If we decrease gvw by any ε > 0 for vw ∈ δ(U∗),
then ρt(g) will be reduced by ε. However, if we increase the
capacity of some edges in δ(U∗), then it is possible that ρt(g)
will remain the same since there may exist other critical places.
This asymmetry is a result of the piecewise linear nature of the
function (16). As we shall show, a minimum s-t-cut (U ∗, U∗)
determines a subgradient of ρt(g). Indeed, from the pointwise
minimum rule of subgradients and the definition of ρt(g) (16),
the subdifferential of ρt(g) can be characterized as follows.

Let a length-|E| binary vector IX be the indicator vector
for edge set X ⊆ E; its e-th entry is 1 if e ∈ X , and 0 if
e /∈ X .

Proposition 1 (Subgradients of min-cut function):
The subdifferential of ρt(g) at g is

∂ρ = conv
{

Iδ(U∗)|(U
∗, U∗) is a minimum s-t-cut in (V,E, g)

}

(17)

2In network communication applications, only nonnegative link capacities
are physically meaningful. Nonetheless, the definition (16) allows us to treat
the domain of ρt(g) as R

|E|; this turns out to be convenient as we discuss
subgradients of ρt(g).
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Definition 2 (Critical destination, Critical cut):
A destination t∗ ∈ T is said to be a critical destination if

ρt∗(g) = mint∈T ρt(g). The set of critical destinations is

T ∗(g) ≡

{

t∗ ∈ T

∣

∣

∣

∣

ρt∗(g) = min
t∈T

ρt(g)

}

. (18)

A cut (U∗, U∗) is said to be an s-T critical cut if it is a
minimum s-t∗-cut for some critical destination t∗ ∈ T ∗(g).

The name “s-T critical” comes from the observation that
reducing the capacity of the cut (U ∗, U∗) in Definition 2 by
any positive amount reduces the multicast throughput R(g)
from s to T by the same amount.

Applying the pointwise minimum rule of subgradient cal-
culus to (3), we can characterize the subgradients of R(g) in
Proposition 2.

Proposition 2 (Subgradients of multicast capacity):
The subdifferential of R(g) at g is

∂R = conv
{

Iδ(U∗)|(U
∗, U∗) is an s-T critical cut in (V,E, g)

}

(19)

C. Subgradient iterations

Let R
+ denote the set of nonnegative real numbers. We

assume that pvw : R
+ 7→ R is nondecreasing and convex and

U : R
+ 7→ R is nondecreasing and concave. As a result of

these assumptions, we have the following
Lemma 3: The objective function of (5)

U (R(g)) −
∑

vw∈E

pvw(gvw) (20)

is concave in g.
Proof: The function ρt(g) is concave, since according to

the definition (16), for λ1, λ2 ≥ 0

ρt(λ1g1 + λ2g2) (21)
≥ρt(λ1g1) + ρt(λ2g2) (22)
=λ1ρt(g1) + λ2ρt(g2). (23)

The pointwise minimum of a family of concave function is
also concave. Thus the lemma follows.

We now look for a subgradient of (20). Let U̇(x) denote a
subgradient of U(x) at x. Let ṗ(g) denote a subgradient of
∑

vw∈E pvw(gvw) at point g. This vector can be obtained by
finding a subgradient for each scalar function pvw(gvw).

Proposition 3 (A Subgradient of Objective Function):
A subgradient of (20) at any g ≥ 0 is given as follows:

ξ ≡ U̇ (R(g)) Iδ(U∗) − ṗ(g), (24)

where (U∗, U∗) is an s-T critical cut for (V,E, g). This leads
to the following subgradient updating rule:

g(k+1) = P
[

g(k) + αkξ(k)
]

. (25)

where ξ(k) is a subgradient of (20) at the current solution g(k)

formed according to (24).

Proof: We just need to show that U̇ (R(g)) Iδ(U∗) is
a subgradient of U (R(g)). The following proof essentially
verifies that a subgradient chain rule holds.

From the definition of subgradients

U(x′) − U(x) ≤ U̇(x)(x′ − x), ∀x′, x ≥ 0 (26)
R(g′) − R(g) ≤ Iδ(U∗)(g

′ − g), ∀g′, g ≥ 0. (27)

Since U is nondecreasing, we have U̇(x) ≥ 0. Substitute x
and x′ in (26) with x = R(g) and x′ = R(g′), respectively.
Then

U (R(g′)) − U (R(g)) (28)

≤U̇ (R(g)) (R(g′) − R(g)) (29)

≤U̇ (R(g)) Iδ(U∗)(g
′ − g), ∀g′, g ≥ 0. (30)

Now the above chain rule together with Propositions 1 and 2
proves Proposition 3.

Note that in (25), the projection is onto the Cartesian
set {g|0 ≤ g ≤ c} and thus it decouples into finding
min{max{0, gvw}} for each entry gvw.

To gain some intuition with the subgradient iterations above,
it might be helpful to consider how the procedure applies to the
degenerate case where the links are costless and U(r) = r. In
this case, the problem is just to find the multicast capacity
R(c), which can be done straightforwardly by computing
ρt(g) for each t ∈ T . We now see how an initial solution
g(1) = 0 “grows” to some vector with close to maximum
throughput in the subgradient method. In this case, in each
iteration we increase g(k) along a certain s-T critical cut.
This does not necessarily increase R(g) since there could
be multiple s-T critical cuts. However, as we allocate more
resources to one critical cut at a time, gradually all of them are
allocated more resources and then the end-to-end throughput
will increase. In the general case with nonzero costs and
arbitary utility U , the balance between the resource cost and
the throughput comes into play in (24).

III. FINDING AN s-T CRITICAL CUT EFFICIENTLY

After developing the structure of the desired distributed
algorithm and deriving a subgradient to the objective function,
we turn to the issue of finding an s−T critical cut distributively
and efficiently.

We begin by discussing in subsection III-A how to identify
a minimum s-t-cut in graph (V,E) with edge capacities g for
a given t. We review a specific minimum s-t-cut algorithm,
the preflow-push algorithm [12], [16], whose nature is suitable
for distributed implementation.

It is certainly possible to find a minimum s-t∗-cut for some
t∗ ∈ T ∗ by running the minimum s-t-cut algorithm for all
destinations. However, it is possible to fulfill this task with a
lower complexity, by exploiting some algebraic properties of
(random) linear network coding. In order to explain this, we
first review linear network coding for acyclic graphs with unit
capacity edges [2] in Section III-B.

In Section III-C, we present a way of identifying the critical
destinations. The basic observation is as follows. Previous
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works have shown that random linear coding approaches
the multicast capacity C. Specifically, by performing random
linear coding over a C-dimensional space, the rank of each
destination (defined in Section III-B) will be close to C.
If we perform random linear coding over a space with a
slightly larger dimension h > C, then the rank of each critical
destination will still be close to C but the rank of a non-
critical destination will be higher. This allows us to distinguish
the critical destinations from the noncritical destinations. The
incurred overhead in implementing this method is a few extra
symbols in each packet.

A. Review: finding a minimum s-t-cut via Preflow-Push algo-
rithm

Most minimum cut algorithms hinge upon the Max-Flow-
Min-Cut Theorem, which states that for graph (V,E) with
edge capacities g, the minimum cut capacity ρt(g) is equal to
the maximum value of an s-t-flow. An s-t-flow is a length-
|E| nonnegative vector f satisfying the flow conservation
constraint:

excessv(f) = 0, ∀v ∈ V − {s, t}. (31)

where

excessv(f) ≡
∑

u: uv∈E

fuv −
∑

w: vw∈E

fvw, (32)

is the flow excess of v, i.e., the amount of incoming traffic less
the amount of outgoing traffic for node v. The flow excess is
not required to be zero at s and t. An s-t-flow f essentially
prescribes several parallel paths, along which information can
be routed from s to t. The flow excess at t is called the value
of the flow, which corresponds to the communication rate that
can be achieved by routing along the paths associated with f .

The Preflow-Push Algorithm [12] [16] makes use of a
structure called preflow. A preflow is similar to a flow except
that the amount flowing into a node may exceed the amount
flowing out of the node; that is, a preflow f satisfies 0 ≤ f ≤
g and

excessv(f) ≥ 0, ∀v ∈ V − {s}. (33)

We can define a residual graph Gf associated with a preflow
f . Let its vertex set be V (Gf ) = V (G). Draw an edge vw in
Gf if

cvw − fvw + fwv > 0. (34)

(if wv /∈ E, then fwv is treated as 0). Such an edge vw ∈
E(Gf ) indicates that v can “push” to w some additional
traffic, by increasing the load on vw and/or decreasing the
load on wv.

The algorithm works by pushing excess flows to nodes
estimated to be closer to t. The distance estimation is done
by maintaining a distance label. A distance label is a length-
|V | vector d satisfying
P1) ds = |V |, dt = 0, dv ∈ Z

+, ∀v ∈ V ;
P2) dv ≤ dw + 1 for every edge vw ∈ E(Gf ).
The distance label d plays the role of an upper bound of the
hop distance to t in the residual graph Gf .

Specifically, the algorithm proceeds by applying two prim-
itive operations, Push(v, w) and Relabel(v), at active nodes.
A node v is active if v ∈ V − {s, t}, dv < |V |, and
excessv(f) > 0. The operation Push(v, w) pushes traffic from
an active node v to w when vw ∈ Gf and dv = dw +1. When
an active node v has possive excess but cannot push to any
of its neighbors, its label dv is increased while still satisfying
P1) and P2).

The algorithm ends when, for each node v ∈ V −{s, t} with
dv < |V |, excessv(f) = 0. At this time a backward breadth
first search is used to find the set of nodes U ∗ that can reach
t in Gf . This identifies a minimum s-t-cut (U ∗, U∗).

Lemma 4 (Minimum cut via Preflow-Push Alg. [12]):
Let f be an s-t-preflow and d be a distance labeling. Suppose
for each node v ∈ V −{s, t} with dv < |V |, excessv(f) = 0.
Let U∗ be the set of nodes that cannot reach t in Gf . Then
(U∗, U∗) is a minimum s-t-cut.

An asynchronous protocol for distribution implementation
of the preflow-push algorithm is also proposed in [16]. The
protocol implements the primitive operations Push(v, w) and
Relabel(v) via local message exchanges.

B. Review: linear network coding for acyclic graphs with unit
capacity edges

Before showing how practical linear network coding facili-
tate a low-complexity implementation of our distributed utility
maximization algorithm, we first review the relevant recent
results from [2] [17].

Consider information multicast from s to T in a directed
acyclic graph G = (V,E) with all edges of unit capacity.
Assume each edge e ∈ E can carry one symbol from a
certain finite field F. Let ye denote the symbol carried by
edge e. Let x1, . . . , xh, denote the source symbols available at
the source node s. For notational consistency, we introduce h
source edges, s1, . . . , sh, which all end in s; the source edges
s1, . . . , sh carry the h source symbols x1, . . . , xh, respectively.
See Fig. 2 for an example.

a b

c

u

s

t1 t2

[0,1][1,0]

[1,0]

[1,0]

[1,0]

[0,1]

[0,1]

[0,1]

[1,1] [1,1]

=1[1,0]+1[0,1]

[1,1] mixing coefficients

Fig. 2. Illustration of linear network coding. The global coding vectors are
shown next to the edges.

In a linear network coding assignment, the symbol on edge
e is a linear combination of the symbols on the edges entering
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tail(e)3, namely

ye =
∑

e′: head(e′)=tail(e)

we,e′ye′ . (35)

We call the coefficients {we,e′} the “mixing coefficients”. By
induction, ye on any edge e is a linear combination of the
source symbols, namely

ye =
h
∑

i=1

qe,ixi. (36)

The vector qe ≡ [qe,1, . . . , qe,h] is known as the global coding
vector at edge e. It can be determined recursively as

qe =
∑

e′: head(e′)=tail(e)

we,e′qe′ , (37)

where qsi
is the ith unit vector εi. Since each ye is a linear

combination of the source symbols, any destination t receiving
h symbols with linearly independent global coding vectors can
recover the source symbols. Therefore, an important metric is
the rank of the span of global vectors for the incoming edges
of each destination. The above discussions are summarized in
the following definition. Fig. 2 shows a linear network coding
assignment that allows the two destinations t1 and t2 to recover
the two source symbols.

Definition 3 (Linear Network Coding Assignment):
Given an acyclic graph G = (V,E), a source node s, a finite
field F, and a code dimension h, a linear network coding
assignment W refers to an assignment of mixing coefficients
we,e′ ∈ F, one for each pair of edges (e, e′) with e ∈ E,
e′ ∈ E ∪ {s1, . . . , sh}, and head(e′) = tail(e).

The global coding vectors resulting from a linear network
coding assignment W , qe(W ), are the set of |E| vectors qe

determined by W according to (37).
In a linear network coding assignment W , the rank of a

node v, rankv(W ), refers to the rank of the span of the global
coding vectors for incoming edges of v, i.e.,

rankv(W ) ≡ rank{qe(W ), head(e) = v}. (38)

Lemma 5 is a straightforward extension of linear network
coding result by Ahlswede et al. [1].

Lemma 5 (Mincut Upper Bound on Rank):
Given an acyclic graph G = (V,E), s, any linear network

coding assignment W with dimension h must satisfy

rankv(W ) ≤ min{ρv, h}, ∀v ∈ V − {s}, (39)

where ρv is the minimum capacity (cardinality) of an s-v-cut
in G.
Proof: Let (U,U) be a minimum s-v-cut. Since the global
coding vector for any incoming edge of v must be spanned by
the global coding vectors for δ(U), we have

rankv(W ) ≤ rank{qe(W ), e ∈ δ(U)} = ρv. (40)

The relation rankv(W ) ≤ h is trivial since qe is a vector of
length h.

3An edge e from v to w is said to have tail(e) = v and head(e) = w.

Now consider multicasting information from s to T using
linear network coding. Note from Lemma 5 that

min
t∈T

rankt(W ) ≤ min{min
t∈T

ρt, h}. (41)

Therefore the number of distinct information symbols that can
be multicast to T is at most

C ≡ min
t∈T

ρt. (42)

Previous works have shown that random linear coding can
achieve the rate C with high probability, for a sufficiently
large field size; see, e.g., Ho et al. [17], Jaggi et al. [18]. The
following particular result is from [17].

Lemma 6 (Optimality of Random Linear Coding [17]):
Consider an acyclic graph G = (V,E), a source node s, and
a set of destinations T . For a code dimension h ≤ C and a
finite field size |F|,

Pr [rankt(W ) = h,∀t ∈ T ] ≥

(

1 −
|T |

|F|

)|E|

, (43)

where W is a random vector with each mixing coefficient
we,e′ chosen independently and uniformly from F.

C. Algebraically identifying critical destinations

Previous works about random linear coding have focused on
achieving the multicast capacity and hence considered h ≤ C.
However, we will make use of a code dimension h > C for
the purpose of identifying the critical destinations. First, note
the following easy corollary of Lemma 6.

Corollary 1: Consider an acyclic graph G = (V,E) and
a source node s. For any dimension h > 0 and finite field F,

Pr [rankv(W ) = min{ρv, h}] ≥

(

1 −
1

|F|

)|E|

, ∀v ∈ V.

(44)

where W is a random vector with each mixing coefficient we,e′

chosen independently and uniformly from F. In particular, by
using a large enough F, the probability in (44) can be made
arbitrarily small.
Proof: Consider each node v ∈ V . If ρv ≥ h, then (44) is
established upon applying Lemma 6 with T = {v}. If ρv < h,
let q′

e be the subvector of qe consisting of the first ρv entries.
Applying Lemma 6 with T = {v} and a code dimension ρv ,
we see that

Pr [rank{q′
e : head(e) = v} = ρv, ] ≥

(

1 −
1

|F|

)|E|

.

Since rankv(W ) ≥ rank{q′
e : head(e) = v}, the result

follows.

Recall that a destination t is said to be critical if ρt = C and
non-critical if ρt > C. Suppose we use random linear network
coding with h > C. Then for a sufficiently large finite field F,
the rank of a critical user t∗ ∈ T ∗ will be close to C, whereas
the rank of a non-critical user t ∈ T − T ∗ will be close to
min{ρt, h} > C. This gives a method to identify the critical
destinations.
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There is a note on precoding worth mentioning here. With
random linear coding over a sufficiently large finite field, a
critical destination t∗ will receive approximately C symbols
with linearly independent global coding vectors. Each symbol
corresponds to a linear equation in terms of the h unknowns,
x1, . . . , xh. If h > C, there are more unknowns than the
equations. How would t∗ be able to recover the source infor-
mation? This issue can be solved by performing precoding;
this technique was used in [3] for robustness in a dynamic
network. If the source symbols x1, . . . , xh are linearly coded
versions of h0 ≤ C underlying variables, then it becomes
possible to recover the underlying variables. The simplest form
of precoding is to set xh0+1, . . . , xh to zero. This is sufficient
for our purpose. The parameter h0 is called the signal space
dimension and h is called the mixing dimension.

We now come to implications of the above results to the im-
plementation of our distributed utility maximization algorithm
in the practical network coding system. The proposed method
of identifying the critical destinations can be implemented
almost “for free” in the practical network coding system [3].

The practical network coding system is based on random
linear network coding with buffering. The system uses an
operating field of GF (2m) so that each symbol amounts to
m bits. The source node produces a stream of source packets,
each containing a fixed number of symbols (e.g., 1000 symbols
in GF (28)). The source packets are grouped into multiple
generations, each containing h packets. Random linear net-
work coding is applied separately to different generations; in
other words, only packets belonging to the same generation
are mixed. The packet format in the practical network coding
system [3] is shown in Fig. 3.

payload

generation ID global coding vector

q1 qh…

Fig. 3. The packet format in the practical network coding system [3].

Each node in the network maintains a buffer. Whenever a
node receives a packet via one of its incoming links, it stores
the packet into its buffer. Whenever there is a transmission
opportunity available on one of its outgoing links, a node
generates an output packet by linearly mixing the packets in
the buffer with random coefficients in GF (2m). Each node v
can perform Gaussian elimination and detect each incoming
packet as innovative or non-innovative (to v). In other words,
if a packet arriving at node v is spanned by the content in the
buffer of v, then it is non-innovative and thus can be discarded.

To implement the proposed method of identifying the crit-
ical destinations, let the source packets in a generation be

x1, . . . ,xh0
,xh0+1 = 0, . . . ,xh = 0. (45)

Thus the payload of a packet with global coding vector q =
[q1, . . . , qh] will be

h0
∑

i=1

qixi. (46)

Since each payload does not involve [qh0+1, . . . , qh], these
entries of q are not used in the final decoding at each

destination. These amount to the overhead incurred for testing
criticality of destinations.

To leave a margin against temporary network outages, we
should set h0 such that the corresponding rate is slightly below
the nominal multicast capacity. This assures that decoding will
be successful at each destination with high probability. We
should set h such that the corresponding rate is slightly above
the multicast capacity. In this way, the critical destinations will
exhibit lower ranks than the noncritical destinations.

IV. SUMMARY OF THE PROPOSED DISTRIBUTED
ALGORITHM

We now summarize the proposed distributed algorithm. It
is assumed that each node in the network can store data
pertaining to its outgoing edges and perform computations on
them.

For simplicity, let us assume that the algorithm is already
in the steady phase. In other words, we assume that the
practical network coding system is already up running. Thus
we can use the rank information collected at the destinations
for identifying the critical destinations.

Algorithm 1 (Primal subgradient method via critical cuts):
Suppose a current solution g(k) is just obtained. This vector
is stored distributively in the network. Suppose further that
the source s has a coarse estimate of the range of R(g(k)),
e.g., via R(g(k−1)). Then the following steps are performed.

1) Set the practical network coding system with the pa-
rameters h0 and h at the source such that the multicast
rate associated with h0 is slightly below R(g(k)) and
the multicast rate associated with h is slightly above
R(g(k)); see Section III-C for details. Each destination
monitors the rank information for one or more genera-
tions of data multicasting and reports the information to
s.

2) Using the reported rank information, the source s deter-
mines R(g(k)) (by taking the minimum of the rank of the
destinations and dividing it by the time interval), as well
as a worst destination t∗ which has the worst (minimum)
throughput. The source s then initiates the execution of
the preflow-push algorithm, to find a minimum s-t∗-cut
(U∗, U∗). This represents an s-t∗-critical cut.

3) The source s conveys the value U̇(R(g(k))) to all nodes
involved in (U∗, U∗).

4) The subgradient update (25) is implemented in parallel.
For each edge vw going from U∗ to U∗, set

g(k+1)
vw = Pvw

[

g(k)
vw + αk

(

U̇(R(g(k))) − ṗ(g(k)
vw

)]

,

(47)

where Pvw[x] = min{max{x, 0}, cvw}. For each other
edge, set

g(k+1)
vw = Pvw

[

g(k)
vw − αkṗ(g(k)

vw )
]

. (48)

V. EXTENSIONS

To address the needs in practical systems, two useful
extensions of the proposed utility maximization formulation
and distributed algorithm are discussed in this section: multiple
multicast sessions and lower bound on rate.
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A. Multiple multicast sessions

Consider the scenario where there are multiple multicast
sessions in the network. Label them with indices m =
1, . . . ,M . Denote the source and the destination set of the
m-th session by sm and Tm, respectively. Assume the m-th
multicast session communicates using its exclusive share of
resource gm. In this case the multicast rate for this session is

Rm(gm) ≡ min
t∈Tm

ρm,t(gm). (49)

We consider the following optimization, where the variables
are [g1; . . . ; gM ]

maximize
M
∑

m=1

Um (Rm(gm)) −
∑

vw∈E

pvw

(

M
∑

m=1

gm
vw

)

subject to: 0 ≤ gm, ∀m

g1 + . . . + gM ≤ c (50)

A subgradient of the objective function can be obtained as the
stacked vector [ξ1; . . . ; ξM ], where

ξm ≡ U̇m (Rm(gm)) ξRm
(gm) − ṗ

(

M
∑

m=1

gm

)

(51)

and

ξRm
(gm) ∈ ∂Rm(gm). (52)

Now the projection of the updated vector g(k+1) to the
feasible region of (50) becomes slightly more complicated.
Since the constraints in (50) are decoupled for the edges, we
need to solve the following problem for each edge vw ∈ E

P [gvw] ≡ arg min
g′

vw

‖g′
vw − gvw‖

2

subject to: 0 ≤ g′
vw,

1
T g′

vw ≤ cvw, (53)

where gvw is a length-M vector consisting of the current value
of gm

vw, and 1 is a vector of all 1’s.
There is an additional note worth mentioning. In a dis-

tributed environment, it is unlikely that all the sessions can
be synchronized to finish computing a subgradient (sm-Tm

critical cut) ξRm
(gm) at the same time. So an approximation

would be to perform the gradient update using the most recent
value of ξRm

. More specifically, suppose an sm-t-cut (U0, U0)
is an sm-Tm critical cut for the previous point gm0. Then,
assuming the current point gm is close to gm0, the capacity
of this cut will be close to the current minimum Rm(gm).
Then, can we use Iδ(U0) as an approximate subgradient for the
current point? In the following we discuss these more formally.

1) Approximate subgradients: In the literature, theoretical
results have been presented regarding approximate subgradi-
ents; see, e.g., [15] and the references therein. For a concave
function f , an ε-subgradient at x [15] is a vector ζ such that

f(y) ≤ f(x) + ζT (y − x) + ε (54)

An approximate subgradient method for the generic maximiza-
tion maxx∈C f(x) uses the iteration

x(k+1) = P
[

x(k) + αkζ(k)
]

, (55)

where ζ(k) is an ε(k)-subgradient at x(k). The convergence
results about approximate subgradient updates are referred to
[15] [19].

In the following lemma, we present some perturbations
properties of R(g), which are useful in quantifying the effect
of using an s-T critical cut evaluated at an earlier graph g0 to
generate an approximate subgradient at the current point g.

Lemma 7 (Perturbations of R(g)):
Given (V,E, g0), let (U0, U0) be an s-T critical cut. Let

θ ≡ ‖g0 − g‖1, (56)

where ‖ · ‖1 stands for the 1-norm of a vector (the sum of
absolute values of the elements). Then

|R(g0) − R(g)| ≤ θ (57)

IT
δ(U0)g − R(g) ≤ 2θ (58)

Furthermore, Iδ(U0) is an 2θ-subgradient of R at g, i.e.,

R(g′) − R(g) ≤ IT
δ(U0)(g

′ − g) + 2θ, ∀g′ ≥ 0 (59)
Remark: We interpret g0 as the old point and g as the current
point. Property (57) bounds the possible change in R as g0

becomes g. Property (58) quantifies the level of sub-optimality
in using a previously found critical cut as an approximate
critical cut for the current point.

Proof: The definition of R(g) can be equivalently written
as

R(g) = min
t∈T

min
U : s∈U, t∈U

IT
δ(U)g (60)

= min
U : s∈U, U∩T 6=∅

IT
δ(U)g. (61)

Thus

R(g) ≤ IT
δ(U0)g.

Since R(g0) = IT
δ(U0)g0, we have

R(g) − R(g0) ≤ IT
δ(U0)g − IT

δ(U0)g0 ≤ θ.

Due to symmetry, we also have R(g0) − R(g) ≤ θ. This
establishes (57).

IT
δ(U0)g − R(g)

=IT
δ(U0)g − IT

δ(U0)g0 + IT
δ(U0)g0 − R(g)

=
(

IT
δ(U0)g − IT

δ(U0)g
)

+ (R(g0) − R(g))

≤θ + θ.

This establishes (58).
To establish (59), consider the left hand side minus the right

hand side.

R(g′) − R(g) − IT
δ(U0)(g

′ − g) − 2θ

=
(

R(g′) − IT
δ(U0)g

′
)

+
(

IT
δ(U0)g − R(g)

)

− 2θ

≤0 + 2θ − 2θ = 0.
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B. Lower bound constraint on the rate

Consider the following generalization of (5)

maximize Unet(g)

subject to: r0 ≤ R(g),

0 ≤ g ≤ c. (62)

Here r0 is a lower bound of the multicast rate that must be
met. This formulation encompasses the special case where
the multicast application wants a fixed rate r0. Specifically,
if we set U(r) = 0, then since by assumption pvw are
nondecreasing, it follows that one optimal solution will attain
rate r0.

The subgradient method has a variant for dealing with
inequality constraints; see, e.g., [20] [21]. This can be applied
here for solving (62). Specifically, define

Q ≡ {g|r0 ≤ R(g)}. (63)

Then the subgradient iteration

g(k+1) = P
[

g(k) + αkξ(k)
]

(64)

will be used with a different rule for selecting ξ(k). If g(k) ∈
Q, then ξ(k) can be chosen as any subgradient of Unet at g(k).
If g(k) /∈ Q, then ξ(k) can be chosen as any subgradient
of R(g) at g(k). In other words, when the current solution
cannot provide the required rate, the algorithm switches to
the throughput-maximization mode, where the critical cuts are
allocated more resources and the resource efficiency consid-
eration is temporarily put aside.

For the convergence properties of this constrained subgra-
dient method, please refer to [20] [21]. Note that to establish
the convergence properties, we need to assume that Q has an
nonempty interior, which amounts to the following assump-
tion.

Assumption 1 (Interior point):

r0 < R(c). (65)
This assumption does not impose any significant constraint in
practice.

An alternative approach to handle the constraint r0 ≤
R(g) is via the augmented Lagrangian method. This can be
done by following the standard steps for applying augmented
Lagrangian method to inequality constrained nonlinear opti-
mization problems; see Chapter 4 of [15] for details.

VI. SIMULATIONS

A. A small example

Consider the graph given in Fig. 4, with

U(r) = ln(1 + r),

pvw(g) = ag2 + bg, ∀vw ∈ E,

cvw = c.

Thus the parameters are a, b, c. We use a constant step size
αk = h in the algorithm.
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Fig. 4. An example network. This is the classical example of network coding,
introduced in [1].

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Iteration #

N
et

 u
til

ity

Primal subgradient iterations

h=0.1
h=0.5
U

net
*

Fig. 5. Primal subgradient iterations for a = 0.01, b = 0.05, c = 10. The
results for h = 0.1 and h = 0.5 are shown.

1) Convex cost functions: For a = 0.01, b = 0.05, c =
10, Fig. 5 plots the net-utilities attained by the sequence of
solutions. The results for h = 0.1 and h = 0.5 are shown.
With a constant step size, the subgradient method is guaranteed
to eventually reach some range of the true optimum; see
Lemma 2. It is seen that the curve with the smaller step size
h = 0.1 is smoother and reaches closer to the true optimum,
but it converges slower.

The optimal solution is shown in Fig. 6(a), which attains
the maximum net-utility 0.573847. For h = 0.1, the solution
found in the last iteration of the subgradient iterations is shown
in Fig. 6(b), which attains a net-utility 0.5576.

2) Linear cost functions: For a = 0, b = 0.05, c = 10,
Fig. 7 plots the net-utilities attained by the sequence of
solutions with h = 1.0. The optimal solution is shown in
Fig. 8(a), which attains the maximum net-utility 0.809438. The
solution found in the last iteration of the subgradient iterations
is shown in Fig. 8(b), which attains a net-utility 0.7625.
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net
* =0.573847

v
1

v
2

v
3

v
4

v
5

v
6

v
7

e
1
: 1.47 e

2
: 1.47 

e
3
: 0.68 

e
4
: 1.47 

e
5
: 0.68 

e
6
: 1.47 e

7
: 0.68 

e
8
: 0.68 e

9
: 0.68 

(a)

h=0.1000, a=0.0100, b=0.0500, c=10.0000, U
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Fig. 6. (a) The optimal solution for a = 0.01, b = 0.05, c = 10. The
maximum net-utility is 0.573847. (b) The solution found in the last iteration
of the subgradient iterations for h = 0.1. The attained net-utility is 0.5576.
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Fig. 7. Primal subgradient iterations for a = 0, b = 0.05, c = 10.

B. A large scale test case

We also tested the algorithm in a large scale scenario. The
graph (V,E) is the topology of an ISP (Exodus) backbone
obtained from the Rocketfuel project at the University of
Washington [22], [23]. There are 79 nodes and 294 links. We
arbitrarily placed a source node at New York, and 8 destination
nodes at Oak Brook, Jersey City, Weehawken, Atlanta, Austin,
San Jose, Santa Clara, and Palo Alto. The utility function, the
link cost functions and link capacities are set as

U(r) = ln(1 + r), (66)
pvw(g) = 0.005g, ∀vw ∈ E, (67)

cvw = 10, ∀vw ∈ E. (68)

Fig. 9 presents the simulation results. The straight line is
the optimal net-utility U∗

net and the other curve corresponds to
U

(k)
net generated by the proposed primal subgradient algorithm
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Fig. 8. (a) The optimal solution for a = 0, b = 0.05, c = 10. The
maximum net-utility is 0.809438.(b) The solution found in the last iteration
of the subgradient iterations for h = 1.0. The attained net-utility is 0.7625.
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Fig. 9. Primal subgradient iterations for the large scale test case.

for step size h = 1.0. The results confirm the convergence of
the proposed algorithm.

VII. CONCLUSION

For network-coding-based multicasting, we have proposed
a net-utility maximization problem to capture the tradeoff
between multicast throughput utility and resource provisioning
costs. By deriving a subgradient through indicator vectors
for s − T critical cuts, we propose a distributed algorithm
to globally solve the utility maximization problem. Further
exploiting the algebraic properties of practical linear network
coding, we show a low-complexity efficient implementation of
the algorithm. Useful extensions to multiple multicast sessions
and minimum rate guarantees are then carried out.
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