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The advent of cancer immunotherapy has generated renewed hope
for the treatment of many malignancies by introducing a number of
novel strategies that exploit various properties of the immune sys-
tem. These therapies are based on the idea that CD8+ T-lymphocytes
(CTLs) directly recognize and respond to tumor-associated neoanti-
gens (TANs) in much the same way as they would to foreign peptides
presented on cell surfaces. To date, however, nearly all attempts to
optimize immunotherapeutic strategies have been empirical. Here,
we develop a model of T-cell selection based on the assumption of
random interaction strengths between a self-peptide and the vari-
ous CTLs. The model enables the analytical study of the effects
of selection on the CTL recognition of TANs and of completely for-
eign peptides and can estimate the number of CTL’s that can detect
donor-matched transplants. We show that negative selection thresh-
olds chosen to reflect experimentally observed thymic survival rates
result in near-optimal production of T-cells that are capable of sur-
viving selection and recognizing foreign antigen. These analytical
results are confirmed by simulation.
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Immunotherapeutic strategies which can, in principle, evolve
with a growing malignancy have gained recent popularity for

treating a variety of cancer types (1, 2). Successful therapy de-
pends on cytotoxic CD8+ T-lymphocyte (CTL) recognition of
tumor-associated neoantigens (TANs), as well as non-mutated
but misexpressed self-peptides to which T-cells are intolerant.
These antigens are displayed on the surface of cells via major
histocompatibility complexes (MHCs) (3–8).

MHC-displayed TANs arising by somatic point mutations,
along with over-expressed or mislocalized self-peptides present
in only minimal quantities during thymic negative selection,
carry antigenic potential (9–12). TANs resemble self-peptides
while over-expressed self-peptides may appear to CTLs as en-
tirely foreign antigens which have never been selected against.
Previous quantitative models of T-cell receptor (TCR)-peptide
interactions have succeeded in accurately characterizing many
aspects of T-cell immunology and thymic selection. Digit
string representations have provided insight into foreign pep-
tide recognition and MHC-unmatched alloreactivity rates, as
well as T-cell specificity and cross-reactivity(13–17). Model-
ing TCRs and peptides as amino acid strings has also been
successful in studying HIV (18–21). In the context of im-
munotherapy, characterizing recognition rates of TAN and
over-expressed/mislocalized self-peptides is relevant to under-
standing CTL repertoire targeting efficiency. This recognition
process has yet to be mathematically modeled; instead, nearly
all attempts to understand CTL-based immunology have been
empirical. Clearly, developing such a model is basic to achiev-
ing a fuller understanding of the overall functioning of the
immune system.

Here we began our analysis with a preexisting model,
adapted to isolate negative selection effects. We found anoma-
lous behavior in the ability of this formulation to apportion
the contributions of individual self-peptides to the overall
selection process. In particular, a small number of ‘potent’
thymic self-peptides dominated selection. We then formulated
an alternative, more general approach for the T-cell receptor
(TCR)-peptide interaction that assigns random amino acid
binding interactions in a position-independent manner, as op-
posed to the fixed set of interactions between different amino
acid pairs in the previous model. Despite exhibiting improve-
ment, the problems discussed above still remained, rendering
this model also unacceptable. This led us to consider a final
approach that incorporates position dependence into the ran-
dom interaction picture. This last model exhibits a realistic
selection balance between individual self-peptides and allowed
us to then consider issues of detection of altered peptides.

Using this model, we found that antigenic proximity to
self-peptide only minimally reduced CTL recognition when
compared to recognition of foreign antigen. Moreover, we
showed that TCR activation thresholds consistent with em-
pirical selection rates resulted in an near-optimal production
of T-cells that both survive negative selection and identify
foreign antigen. Lastly, we applied our model to the setting
of transplantation, predicting alloreactivity (i.e. detection by
host CTLs) rates consistent with empirical observations, given
known levels of host and donor single nucleotide dissimilarity.
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Fig. 1. Alternative TCR-MHC Interactions Formulations: (A) Sequential MJ (S-MJ) - Each TCR is represented by a string of amino acids and the binding energy with a
self-peptide is the sum of pairwise binding energies between the TCR amino-acids and those in corresponding positions along the peptides; (B) Position Independent Random
Affinity (PIRA) - TCR regions (shaded dark blue in the cartoon) that bind peptide are characterized by TCR-specific binding energies for each given amino acid type, all drawn
from a standard Gaussian distribution. These binding energies are assumed to be position independent; (C) Random Interaction between Cell receptor and Epitope (RICE) -
The behavior of TCR contact regions is now position-dependent (hence represented by different colors in the cartoon). A TCR is represented by an 20-by-10 array of IID
standard Gaussian random variables indicating the binding energy contribution for each amino acid/contact position pair along the peptide.

Model Development

We seek a model of negative thymic selection where the repre-
sentation of self-peptides is defined explicitly by amino acid
sequences and the survivors constitute a representative CTL
repertoire. Most importantly, the model should exhibit rea-
sonable thymic behavior. That is, we require that a plurality
of the thymic self-peptides, estimated to number around 104

(16, 22) for each MHC class, non-trivially participate in neg-
ative selection. To this end, we start with a version of an
existing model (18–21) built upon the use of an amino acid
binding matrix. We found that this model does not yield
satisfactory behavior, and so considered in turn two alterna-
tive formulations for the TCR-MHC interaction. We studied
the nature of thymic selection in each framework, employ-
ing both analysis and simulation. In each of these models,
peptide-bound MHC (p-MHC) is represented by a sequence,
{qi}ki=1, of k amino acids; for definiteness, we will choose k=10.
In order to facilitate analytical insight, we consider a single
MHC type (in reality there may be up to six) for each individ-
ual. Such a framework will allow us to determine the extent
to which negative selection diminishes mutated self-peptide
recognition. In the following we do not focus on the precise
physical mechanism by which TCRs recognize antigen (for
example, affinity-driven versus binding lifetime) (13, 23, 24),
merely positing an interaction strength governing recognition;
for simplicity, we will use throughout the language of binding
energy.

Sequential MJ (S-MJ). Our first formulation is an extension
of the work of Chakraborty and colleagues, which has been
successful in providing insight into HIV-immune dynamics (18–
21). There, a TCR t is represented by a complementary string
t = {ti}ki=1 of k amino acids that contact p-MHC, and the
total binding interaction is the sum of a direct TCR-MHC
interaction Ec, and pairwise amino acid binding interactions
using the 20 × 20 Miyazawa-Jernigan (MJ) matrix (25, 26)
(Fig. 1A). The interaction between TCR t and p-MHC q was
then given by:

E(t, q) = Ec +
k∑
i=1

MJti,qi , [1]

where MJti,qi represents the MJ interaction between amino
acids ti and qi. Since, Ec plays no role when only one MHC
class is present, we henceforth set it equal to 0.

Our extension, called the sequential MJ (S-MJ) model,
allows us to consider independently and sequentially the ef-
fects of positive and negative thymic selection on naïve T-cell
generation. The role of positive selection is to filter defective
TCRs unable to properly interface with p-MHC (27, 28); this
happens separately (both in time and space) from negative
selection, which is our sole concern here (see SI for more
discussion of positive selection).

As we shall see, our analysis shows that this first model does
not yield satisfactory behavior and we are thus obligated to
modify the model. In our alternate formulations, self-peptide
sequences are represented in the same way as above, but we
change the form of the interaction. In reality, the binding
site for each amino acid on p-MHC is complex and binding
interactions represent the net effects of complicated TCR-p-
MHC association in a binding groove. This affords TCRs with
a large degree of freedom in their ability to interface with
each amino acid in a given p-MHC. We therefore assume that
individual amino acid interactions that comprise TCR-p-MHC
interface are random variables, which we take to be Gaussian
distributed. To form a tractable model, we also assume that
the binding energies attributed to each possible amino acid
are independent and identically distributed (IID). This type
of approach is reminiscent of the random energy model which
was used to great effect in studies of protein biophysics (29).

Position-Independent Random Affinity (PIRA). In this first al-
ternative model, we assume that TCR interactions with each
amino acid are position-independent (Fig. 1B). That is, a
given amino acid interacts with a given TCR identically re-
gardless of its position in the p-MHC. We refer to this as
Position-Independent Random Affinity (PIRA). In this case, a
TCR t may be represented by its interactions with all |A| = 20
amino acids, and so are described by a sequence {Xt

α}Aα=1
of independent standard Gaussian random variables. The
interaction function for negative selection is given by:

E(t, q) =
k∑
i=1

Xt
qi . [2]

Random Interaction Between Cell Receptor and Epitope
(RICE). More realistically, each 3-dimensional location in a
given TCR handles amino acids very differently. For now, we
neglect any correlation in binding interactions that might occur
either due to amino acids with similar properties or through
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a dependence on adjacent amino acids. We characterize the
binding energy of the peptide at the ith position of p-MHC as
a function of i itself in addition to the identity of the amino
acid at this position (Fig. 1C). We refer to this approach as
the Random Interaction between Cell receptor and Epitope
(RICE) formulation. Here, we represent a TCR, t, and all
of its possible interactions by an k × A array {Xt

i,α} of IID
standard Gaussian random variables, where Xi,α denotes the
interaction with which TCR t binds amino acid α located at
position i. The interaction function for negative selection is
then given by:

E(t, q) =
k∑
i=1

Xt
i,qi . [3]

In the SI we analyze the alternate choice of IID uniform distri-
butions and verify that the important results are independent
of this level of detail.

30 40 50 60
En

0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n 

Pr
ob

ab
ilit

y

S-MJ RecognitionA

0 5 10 15 20 25
En

0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

tio
n 

Pr
ob

ab
ilit

y RICE
PIRA

PIRA and RICE RecognitionB

Fig. 2. TCR recognition probability for each model. Recognition occurs whenever the
interaction energy is greater than an upper threshold, En. Recognition rates as a
function of threshold for (A) S-MJ, (B) PIRA and RICE. General recognition behavior
is similar among all three formulations. In each case 105 thymocytes are simulated to
undergo selection.

Results

To study negative selection in these models, a given randomly
constructed TCR was tested against a collection of randomly
constructed Nn self-peptides. For a given TCR t to survive
selection, the interaction energy between t and each and ev-
ery self-peptide q must not exceed En. Conversely, TCR t
recognizes (non-self) peptide q whenever the TCR-p-MHC
interaction exceeds En. Potency and recognition simulations
utilize cohorts of 105 TCRs.

In the following we present the main findings of our analysis.
Full mathematical derivations are provided in the SI.

RICE Yields a Sensible Spectrum of Self-Peptide Contribu-
tions to Thymocyte Selection. All three formulations described
above exhibit similar empirical survival profiles with respect
to the negative selection threshold (Fig. 2). However, in
both S-MJ and PIRA a very small number (one, in a typi-
cal simulation of S-MJ; 125 in PIRA, both with Nn = 104)
of ‘potent’ self-peptides dominates nearly all of thymocyte
selection, as seen both in simulation and analytically (Figs.
3, S7, S10). This feature does not depend on the assumed
size of the training set Nn (see SI). One manifestation of a
few peptides dominating the entire selection process is a much
higher fluctuation in mean survival rates (Fig. S14). More
generally, we do not think that it makes sense for a system

100 101 102 103 104

Self-peptide (potency rank order)

0

0.1

0.2

0.3

0.4

0.5

C
um

ul
at

iv
e 

Pe
rc

en
ta

ge

S-MJ
PIRA
RICE

Cumulative TCRs Recognized

Fig. 3. Peptide potency for each model. The 104 self-peptides were ordered by
‘potency’, or the fraction of (the 105) thymocytes recognizing them during selection
simulations. ‘Potent’ self-peptides were those that were recognized most often by
the TCRs. The cumulative contributions of each self-peptide to negative selection
was plotted in decreasing order of self-peptide potency for the S-MJ, PIRA and RICE
models. In all cases, the selection thresholds are chosen in order to give 50% survival.
We see that for the S-MJ model, the most potent self-peptide is responsible for roughly
90% of the selection behavior, whereas for the PIRA (resp. RICE) model, 200 (resp.
7100) out of 104 self-peptides generate this level of selection.

to employ a large number of peptides for negative selection if
only a very small fraction would achieve the same outcome.

In contrast, RICE results in a repertoire sculpted by all
the self-peptides (Fig. 3). The extreme potency of some self-
peptides in the S-MJ model is a result of the presence in these
self-peptides of many amino acids with anomalously large
average binding energy, which cause them to be recognized
by a large number of TCRs. In PIRA, the potent peptides
are those which have a large number of amino acid repeats, so
that they are recognized by all TCRs who have a significant
binding energy to those particular amino acids (see SI for
details). Since there are twenty different amino acids, it takes
of order twenty self-peptides to accomplish the bulk of the
negative selection (specifically, twenty-five peptides accomplish
60% of the selection). Neither of these issues occurs in RICE.

Given these findings, we have chosen to proceed with the
RICE model. Current empirical observations of negative se-
lection vary anywhere from 30% to as high as 90% (30–35).
This defines an acceptable range, 11≤En≤13, for reasonable
negative selection thresholds to be used in our analysis (Fig.
2B).

Thymic Selection Minimally Decreases Recognition of Point–
Mutated Self-Peptide. By construction, the binding interac-
tions between TCR and self-peptide are sums of k IID random
variables. A given TCR t survives negative selection against
a collection {q(j)}Nnj=1 of Nn thymic self-peptides if all of its
binding energies are blow threshold. Under RICE, the survival
probability ps may be approximated by neglecting similari-
ties between self-peptides and noting that the amino acids
comprising a self-peptide are IID.

ps ≈ P
(
E(Xt, q) ≤ En

)Nn
. [4]
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Fig. 4. RICE Recognition Behavior. (A-B) Probabilities for a single selected TCR to recognize (A) random peptides and (B) point-mutants of self-peptides for the analytically
tractable limits and for higher values of Nn. In both cases, the effect of increasing the number of negatively selecting self-peptides to Nn=104 has a relatively small effect
on recognition rates in the range of relevant values (11 to 13) of En. The simulation averaged over all the surviving TCRs from the initial cohort of 105. 104 random and
point-mutant variants were tested. (C) The total recognition probability for the surviving TCR cohort to recognize: a random peptide (black curve) and a single-site mutant of a
native peptide (red). (D) The ratio of the two recognition probabilities in (C). 104 peptides of each class were tested. Included in (D) is the theoretical estimate of the ratio,
(1− (1− p̃1)Ns )/(1− (1− p̂0)Ns ), where Ns(En) is the number of TCRs that survived selection.

The quantity E(Xt, q) is a sum of k IID Gaussian random
variables, and its distribution is given by

Fk(x) = Φ
(
x

σ

)
. [5]

where Φ(·) is the CDF of the standard zero-mean, unit variance
normal distribution and σ2 = k. The survival probability is
then the probability that the maximum of E(Xt, q) over the
set of amino acids q is less than En. The distribution of the
maximum of a large number of Gaussian random deviates can
be approximated by a Gumbel distribution with CDF (see SI
for details):

ps(En) ≈ exp
[
−e−

En−µ
W

]
[6]

where

µ(Nn) = σ
√

2 lnNn/N0(Nn)

W (Nn) = σ√
2 lnNn/N0(Nn)

[7]

are the Nn-dependent mode and width parameters of the
Gumbel distribution and N0(Nn) is a parameter that is found
by solving the implicit equation

N2
0 (Nn) = 4π lnNn/N0. [8]

This approximation for ps, as well as more detailed analytic
approaches which also include the role of the variance of the
mean energy for a given TCR due to the finite number of
amino acids, are compared to direct simulations of negative
selection in the SI.

We now wish to compare two cases of single TCR recog-
nition probabilities, one of a random peptide and one of a
point-mutated self-peptide. For the random peptide, we de-
note this probability by p̂. A simple analytical estimate is
given by p̂ ≈ p̂0, the value for the recognition probability
obtained by ignoring selection completely as there are not
likely to be any self-peptides close to one chosen completely
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at random:

p̂0 = P
(
E(X, q) ≥ En

)
= 1− Fk(En). [9]

The ‘0’ subscript here denotes that no selection takes place
(or equivalently Nn = 0 peptides) for this event. The analytic
expressions for p̂0 is compared to simulations for Nn from 1
to 104 (Fig. 4A). Note that in the selection threshold range of
interest (En ≥ 11), the agreement is semi-quantitative even
for Nn = 104.

One can similarly construct an analytic estimate for the
single TCR recognition probability for a point mutated self-
peptide, which we will refer to as a tumor neoantigen (TAN)
assuming that a tumor may be detected by its creation of
singly mutated peptides. We will denote this TAN as q̃ which
is a mutated version of self-peptide q, differing only at posi-
tion i∗. We let p̃ be the probability that TCR t negatively
trained on Nn self-peptides would nonetheless recognize TAN
q̃. We estimate p̃ by evaluating the probability that TCR t
trained exclusively on the single (non-mutated) self-peptide
q can detect q̃. We denote this probability by p̃1 to indicate
that it survived selection against a single self-peptide. This is
motivated by the fact that q is most closely related to q̃, and
therefore should account for a significant amount of the depen-
dency of TCR t recognition ability on t’s survival under full
thymic selection. The probability, p̃1, that TCR t recognizes
q̃, conditioned on surviving thymic selection by q, is given by:

p̃1 = P
( n∑

i=1

Xi,q̃i > En

∣∣∣ n∑
i=1

Xi,qi ≤ En
)

This probability is computed in the SI; the result is approxi-
mately

p̃1 = e−E
2
n/2(k−1)

π
√

2kΦ
(

En√
k−1

) [10]

This expression for p̃1 estimating the probability of TAN
recognition is compared to simulations with Nn ranging from
1 to 104 (Fig. 4B). We find that recognition estimates are
again reasonably accurate even for large Nn in the regime of
realistic negative selection thresholds (En ≥ 11), despite the
potential influence of many negative selectors. This suggests
that cross-dependencies between self-peptides due to sharing
amino acids in the same position have a weak effect on the
overall selection of a repertoire. Moreover, reductions in the
ability of a repertoire to detect closely-related (TAN) peptides
are quite modest when compared to foreign or non-mutated
self-peptides (Fig. 4C). The ratio ranges from 0.6 to 0.9 in
the range 7 < En < 15. Also shown in the figure is the
theoretical estimate deriving from p̃1 and p̂0, which shows the
same trends, with slightly larger variation with En. These
findings support the hypothesis that TCR selection against
self-peptides has a minimal influence on the recognition of
peptides which are ‘close’ to self and that these peptides are
detected with rates similar to those of completely random
(foreign) antigens. In the RICE model, the immune system
appears to simply memorize the list of self-antigens and by
doing so generates a surprising level of immune protection
against peptides not included on that precise list.

Observed Thymic Selection is Close to Optimality for TCR
Recognition Ability. The above analysis provides a convenient
context for framing negative selection as an optimization prob-
lem. Aside from maximally producing thymocytes, the im-
mune system could be attempting to choose the TCR interac-
tion threshold (En) in such a way as to encourage recognition
of foreign antigen. In other words, the host benefits from pro-
ducing TCRs that have the ability to survive negative selection
and subsequently recognize random (currently unknown) for-
eign antigens. We again approximate the detection probability
by the probability of recognition by TCRs undergoing no
selection (p̂0), and obtain

p̂ps ≈ p̂0ps

≈
[
1− Fk(En)

]
·
[
Fk(En)

]Nn
. [11]

Then, existence of an extremum, E∗n, requires

d(p̂0ps)
dEn

= F ′kF
Nn−1
k

[
Nn − (Nn + 1)Fk

]
= 0. [12]

Thus, at the optimal threshold,

Fk(E∗n) = Nn
Nn + 1 . [13]

The rate of optimal negative selection for large numbers of
peptides (Nn � 1) is characterized by

ps(E∗n) =
(

Nn
Nn + 1

)Nn
≈ 1/e. [14]

This value, consistent with the (low end) of measured
survival probabilities, corresponds to a system optimized for
recognition and agrees with an independent analysis that
considered the optimal diversity of the T and B cell repertoires
(16). We should note of course that we expect there to be slight
differences in the optimum threshold for p̃ps case as opposed
to our estimate based on p̂0ps. We do expect these to be close
in general and in fact can prove that the true maximum is
always no less than E∗n (Proposition S1) in selection regimes
of interest.

Effects of Host-Donor Sequence Differences on Alloreactivity
Percentages. Let us now turn to the setting of transplants
with MHC-matched host and donor. Even with the matching,
there will be some single nucleotide polymorphisms (SNPs)
between host and donor. These SNPS may give rise to amino
acid differences that are detectable by the host T-cells. Let
us denote by Y the number of such differences. Since p̃ is
the probability of a given TCR detecting a peptide with a
single amino-acid difference, the probability PA of a host
TCR recognizing a difference in the donor tissue (termed
alloreactivity) is given by

PA = 1−
(
1− p̃

)Y
. [15]

We now need to calculate the distribution of Y . We consider
MHC matched donor and host and use the frequency of SNPs
in the genome (≈300/bp) (36) to estimate the number of 10-
mer peptides which contain a SNP. Since each peptide comes
from 30bp of sequence, the chance that this sequence will
contain a mutation is 30/300 = 0.1. Assuming that all donor
peptides being probed by the immune system are contained in
the size Nn training set, the number of peptides that exhibit

George et al. PNAS | July 25, 2017 | vol. XXX | no. XX | 5
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Fig. 5. The Effects of Increasing Differences in Host and Donor Thymic Self-Peptides
on Alloreactivity percentages in the RICE model. The simulation was performed with
an original cohort of 105 TCRs, of which 50% survived selection under 104 self-
peptides (En = 11.52). Increasing numbers of nonnative peptides (either random
(black curves) or single-difference mutants (red)) were introduced and the numbers of
TCRs reacting to these were recorded. The theoretical estimate is from Eq. (16) with
single TCR recognition probabilities for random and single-mutant peptide taken from
Fig. 4A,B

differences from the training set is distributed according to
Z∼Poisson(λ=Nn/10). As alluded to above, a point mutation
may or may not actually manifest as an amino acid difference
between host and donor. We assume approximately equal fre-
quencies of DNA base pairs, and calculate the probability of an
amino acid difference given a SNP as pd ≈ 0.6 by considering
the likelihood of missense mutations arising from DNA codons.
Thus, Y , the number of self-peptides that actually manifest a
different amino acid is distributed as [Y |Z=z]∼Binomial(z, pd).
By use of the probability generating functions of Z, it can
be shown that Y∼Poisson(λpd) (see SI). From this, we may
obtain the first and second moments of PA, i.e., the mean and
variance of the fraction of TCRs exhibiting alloreactivity:

E
[
PA
]

= 1− e−λpdp̂. [16]

E
[
P 2
A

]
= 1− 2e−λpdp̃ + e−λpdp̃(2−p̃). [17]

Var(PA) = E
[
P 2
A

]
− E
[
PA
]2 = e−2λpdp̃

(
eλpdp̃

2
− 1
)
. [18]

The percentage of alloreactive TCRs given by above equations,
in other words the allogeneic CTL response, equals 2.02±0.08%
in MHC-matched host and donor pairs due to SNPs (Fig.
5). This response is obtained from contributions of roughly
600 potential allogeneic p-MHC. This number is on the low
end of experimentally observed estimates of MHC-unmatched
alloreactivity falling between 1% to 24% (13). We note in
passing that the case of maximal single amino acid sequence
differences in our model with Nn = 104 would correspond to
an alloreactive rate of 26%, while maximal numbers of random
peptides would correspond to rates as high as 38%; see Fig.
S12.

Discussion

The development of a generative model relating T-cell reper-
toires to thymic selection against individual self-peptides rep-

resents an important theory-driven milestone to better under-
stand CTL cancer immunotherapy. Here, we were primarily
interested in studying the influence of thymic negative selection
on CTL repertoire recognition of relevant non-self-peptides,
with applications to TAN recognition and SNP recognition by
MHC-matched CTLs. It was, therefore, important that the
analysis be sensitive to small differences in individual thymic
self-peptides that sculpt T-cell repertoires. This, in turn, re-
quired that the model appropriately capture the behavior of
thymic negative selection on an individual self-peptide level.

We started by comparing an adaptation of the previously
proposed MJ discrete model of thymic selection, focusing on
negative selection effects. We discovered that this model does
not behave in a statistically reasonable manner. Specifically,
single peptides can have inordinate consequences and there
is concomitant fluctuations in the selection behavior; these
are the result of correlations in the MJ matrix. Instead of
trying to modify the form of a peptide-peptide matrix, perhaps
following the shape space ideas of (13), we introduced a more
general perspective on how the t-cell sequence creates binding
pockets for the p-MHC. This then allowed us to formulate
two alternative models, PIRA and RICE, and found that
wide-spread participation by thymic self-peptides action in
T-cell selection was observed only in the latter alternative,
which supposed a position-dependent character of TCR-p-
MHC interaction.

Using RICE, we analytically characterized events of rele-
vance to the problem of immune action including T-cell survival
during negative selection, SNP detection, and non-self peptide
recognition probabilities. We observed that TCR negative
selection by host peptides has only a weak suppressive effect
on detecting peptides which closely resemble self. This finding
suggests that self-education during central tolerance in the
thymus is a strategy that seeks to memorize as many of the
self-peptides commonly found in the periphery (Fig. 1B) as
possible, as opposed to selection by a few self-peptides capable
of mitigating autoimmunity, and is a testament to the level
of specificity exhibited by TCRs. Using the RICE model,
we showed that parameter selection which generates realistic
survival percentages also results in an near-optimal generation
of thymocytes best suited to survive selection and most effec-
tively identify foreign peptides. Finally, the model produced
realistic characterizations of alloreactivity when applied to the
setting of MHC-matched individuals. A potential advantage of
an immune system designed to follow the RICE model over MJ
is that the latter presents only a static challenge that foreign
peptides must undergo in order to evade detection; evasion of
this detection which might then be evolutionarily selected by
pathogens. In contrast, there is no a priori strategy assumed
within the RICE model with its energy landscape that varies
randomly from TCR to TCR.

We cannot expect a simple hypothesis such as RICE to
fully capture every detail of actual TCR-pMHC binding. In
the absence of a quantitatively reliable molecular biophysics
approach, we have chosen to work backwards and illustrate
the type of statistical model that makes functional sense and
that allows for new questions (such as the penalty imposed
by negative selection on tumor neoantigen detection) to be
addressed. One criticism of RICE might be that it does not
allow for similar peptide recognition by very similar TCR’s
or conversely for TCR activation by very similar peptides.
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There are two reasons why this does not immediately concern
us. First, the coverage of the entire possible space of TCR
sequences by actual TCR clones is so sparse that the chance of
getting two TCRs with (nearly) identical chemical sequences
should be very small. (Note; if there are a few “public" clones
which are specifically programmed into the TCR formation
rules, these would presumably also be programmed to auto-
matically survive negative selection; our considerations apply
to all the others). Second, the results of the RICE model are
not significantly changed if we first group together chemically
similar amino acids (37, 38) (i.e. use a reduced amino acid
alphabet) and then proceed with the repertoire construction
(see SI).

The overall objective of optimizing CTL therapy is complex,
and may require future analysis that incorporates additional
relevant aspects of acquired immunity and T-cell tolerance.
Understanding this complex process holds the promise of
one day optimizing and extending CTL immunotherapy to
additional therapeutic contexts.
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