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Stochastic rearrangement of germline V-, D-, and J-genes to create
variable coding sequence for certain cell surface receptors is at the
origin of immune system diversity. This process, known as ‘VDJ
recombination’, is implemented via a series of stochastic molecu-
lar events involving gene choices and random nucleotide insertions
between, and deletions from, genes. We use large sequence reper-
toires of the variable CDR3 region of human CD4+ T-cell receptor
beta chains to infer the statistical properties of these basic biochem-
ical events. Because any given CDR3 sequence can be produced in
multiple ways, the probability distribution of hidden recombination
events cannot be inferred directly from the observed sequences; we
therefore develop a maximum likelihood inference method to achieve
this end. To separate the properties of the molecular rearrangement
mechanism from the effects of selection, we focus on non-productive
CDR3 sequences in T-cell DNA. We infer the joint distribution of
the various generative events that occur when a new T-cell receptor
gene is created. We find a rich picture of correlation (and absence
thereof), providing insight into the molecular mechanisms involved.
The generative event statistics are consistent between individuals,
suggesting a universal biochemical process. Our distribution pre-
dicts the generation probability of any specific CDR3 sequence by
the primitive recombination process, allowing us to quantify the po-
tential diversity of the T-cell repertoire and to understand why some
sequences are shared between individuals. We argue that the use
of formal statistical inference methods, of the kind presented in this
paper, will be essential for quantitative understanding of the gener-
ation and evolution of diversity in the adaptive immune system.

Introduction
Receptor proteins on the surfaces of B- and T-cells in the
immune system interact with pathogens, recognize them and
initiate an immune response. The diversity of these receptors
is the outcome of a remarkable process in which germline DNA
is edited to produce a repertoire of (T- or B-) cells with varied
antigen receptor genes [1]. The process is called ‘VDJ recom-
bination’ because the germline contains multiple versions of
so-called V-, D-, and J-genes, particular instances of which
are quasi-randomly selected, stochastically edited and joined
together to produce a new surface receptor gene each time a
new immune system cell is generated.

The statistical distribution of these biochemical events
(and the resulting receptor coding sequences) in a popula-
tion of newly-created receptors is an important quantity: it
contains information about the in vivo functioning of the bio-
chemical editing mechanism and provides the baseline for a
quantitative assessment of the downstream workings of selec-
tion in the adaptive immune system. Here, we address the
problem of inferring this distribution from the large sequence
repertoires that are becoming available via high-throughput
sequencing technology [2, 3, 4, 5]. In particular, we fo-
cus purely on a subset of receptor sequences that are non-
productive, due to a reading frame shift or an accidental stop
codon, to isolate the statistics of the molecular mechanism
from the effects of selection on the functional repertoires.

In the beta chain of human T-cell receptors (the focus of
this work), the germline has 48 different V-genes, 2 D-genes
and 13 J-genes. VDJ recombination proceeds by first joining
a D-gene with a J-gene, and then a V-gene with the DJ junc-
tion. First, the recombination activating gene (RAG) protein
complex brings two randomly chosen D- and J-genes together,
cuts out the intervening chromosomal DNA, and forms a hair-
pin loop at the end of each gene [6, 7]. In further steps [8, 9]
the hairpin loops are opened, creating overhangs at the end of
both genes that may eventually survive as P-nucleotides (short
inverted repeats of gene terminal sequence) [10]. This is fol-
lowed by nucleotide deletions and insertions at the junctions
and ends with ligation. The process is then repeated between
a random V-gene and the DJ junction. The end product is the
so-called CDR3 region of the receptor gene: a short, highly
variable region that plays an essential role in determining the
antigen specificity of the cell.

Each recombined sequence can thus be thought of as the
outcome of a generative event described by several random
variables (Fig. 1): V-, D-, and J-gene choices, deletions of
variable numbers of nucleotides from the selected genes, inser-
tions of random nucleotides between them, and the possible
creation of P-nucleotides (short palindromic nucleotides as in
Fig. 1A at the 3 ′ end of the D-gene). From the set of observed
CDR3 sequences, we wish to infer the underlying probability
distribution of these generative events.

To date, this inference has been done via a determinis-
tic alignment procedure which assigns a unique event to each
sequence [2, 3, 4]. However, because individual CDR3 se-
quences can arise in multiple ways (Fig. 1), this assignment
must be done probabilistically. Deterministic alignment in-
troduces spurious biases and correlations in the statistics of
generative events (Fig. 2). Thus, a statistical inference proce-
dure is needed to accurately infer the underlying event prob-
ability distribution from the data. In this paper we present
such a method, based on likelihood maximization via an iter-
ative expectation-maximization algorithm [12], and apply it
to recent data on human T-cell receptor sequences.
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Fig. 1. A 60bp CDR3 read (grey box) can be aligned to different genes (nomenclature follows IMGT conventions [11]) with different deletions (white), insertions (yellow),

and P-nucleotides (red). (A) Alignment to specific V-, D-, and J-genes with insVD=13, insDJ=6, delV=5, delJ=6, del5’D=6, del3’D=−2 (in other words, pal3’D=2). (B)

Alignment of the same read to different V- and D-genes, and with insVD=15, insDJ=9,delV=7, del5’D=9, del3’D=3 (no P-nucleotides). Note that the alignment to the

V-gene is not maximal in this case. A few heavily penalized mismatches are allowed (in the V-gene in this example) in order to accommodate a small sequencing error rate.

The location of the sequencing primer is indicated: it is chosen to uniquely identify the start of the CDR3 read within each J-gene.

Analysis
We work with sequence data on CD4+ T-cell beta chain

CDR3 regions obtained from nine human subjects by methods
described in [4, 5] (see Acknowledgements). In these experi-
ments, T-cells are collected from a blood sample and sorted
into ‘näıve’ (CD45RO-) and ‘memory’ (CD45RO+) compart-
ments, DNA is extracted, and sequence reads long enough to
capture a 5 ′ piece of the J gene, a 3 ′ piece of the V gene and
the variable sequence lying in between, are obtained. Each
sequence is read multiple times, and a clustering algorithm is
used to correct for sequencing error. This process produces a
data set consisting of an average of 232,000 (140,000) unique
CDR3 sequences from the näıve (memory) compartments for
each individual subject. Each unique sequence comes with
a multiplicity reflecting the prevalence of that particular cell
type in the blood sample.

Roughly 14% of the unique CDR3 sequences are ‘non-
productive’: either their J genes have been shifted out of the
correct reading frame or the CDR3 sequences have a prema-
ture stop codon. They arise from a recombination event on
one of a cell’s two chromosomes that failed to make a func-
tional receptor, followed by a successful recombination on the
other chromosome. Such sequences should not be subject
to functional selection [5], and their statistics should reflect
only the VDJ recombination process (see SI Appendix Sec. 10
for evidence that the non-productive constraint introduces no
bias). Because this is our primary concern, we focus on the
non-productive CDR3 sequences, of which there are an aver-
age of 35,000 (22,000) in the näıve (memory) compartments
for each individual subject. We analyze the näıve and memory
data sets separately to verify the absence of selection effects.
See SI Appendix Secs. 1,2 for online access to our data sets.

Structure of recombination event distributions. Each CDR3
generating recombination event can be fully characterized by
a set E of discrete variables comprising: the identities of
the V-, D- and J-genes selected for recombination1 (V,D,J);
the numbers of bases deleted from the 3’ end of the V-gene
(delV ), the 5’ end of the J-gene (delJ), and both ends of the
D-gene (del5 ′D and del3 ′D for the 5’ and 3’ ends, respec-
tively); the number of palindromic nucleotides at each of the
gene ends (palV, palJ,pal5 ′D,pal3 ′D); the specific sequence
(x1, . . . , xinsVD) of length insV D inserted at the VD junction,
and the specific sequence, (y1, . . . , yinsDJ) of length insDJ in-
serted at the DJ junction (see Fig. 1). We choose a convention
in which both sequences are read in the 5’ to 3’ direction, but

the VD (DJ) inserted sequence is read from the sense (anti-
sense) strand.

We seek a joint distribution over all of these variables con-
taining the minimal set of dependences between the variables
that is required to self-consistently capture the observed cor-
relations in the data. We find that the following factorized
form for the probability of a recombination event E (defined
by specific values for all the event variables) successfully cap-
tures all the significant correlations between sequence features
that are present in the data (see Fig. 2):

Precomb(E) = P (V )P (D, J)×
P (delV |V )P (delJ |J)P (del5 ′D,del3 ′D|D)×

P (insV D)

insVD∏
i=1

p
(2)
VD(xi|xi−1)P (insDJ)

insDJ∏
i=1

p
(2)
DJ(yi|yi−1).

[1]

The various factors are normalized joint or conditional dis-
tributions on their respective arguments. P (V ) and P (D, J)
account for the fact that the various genes have different us-
age probabilities (and that D- and J-gene usage is correlated).
The factors P (delV |V ), etc., are distributions on the num-
ber of nucleotide deletions, conditioned on the gene being
deleted (deletion profiles turn out to be very gene-dependent).
P (insV D) and P (insDJ) give the probabilities of different
numbers of nucleotide insertions at each junction. The pa-

rameters p
(2)
VD and p

(2)
DJ account for possible nucleotide bias

in the insertions: they give the conditional probabilities of
inserting a specific nucleotide given the identity of the imme-
diately 5’ nucleotide, with x0 referring to the last nucleotide
at the 3’ end of the truncated V-gene on the sense strand for
a VD insertion, or at the end of the truncated J-gene on the
antisense strand for a DJ insertion.

P-nucleotides do not appear explicitly in Eqn. 1: we treat
them as ‘negative’ deletions (i.e. a palindrome of half-length
2, as in Fig. 1A, is counted as a deletion of value −2). This is
possible because we find that when the number of nucleotide
deletions is greater than zero, occurrences of palindromic nu-
cleotides at the end of the gene segment are completely ex-
plained by chance insertions of the corresponding nucleotides
(SI Appendix Sec. 11 and Fig. S10). Thus, true P-nucleotides,

1Here we distinguish only the genes, not their various alleles. The gene list includes germline pseudo-
genes: they cannot produce functioning receptor proteins but, because we work with non-coding
VDJ rearrangements, pseudogene sequences can appear in the data.
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not attributable to chance insertions, only occur in associa-
tion with zero nucleotide deletions and it is consistent to label
them as ‘negative’ deletions.

The factors in our equation for Precomb(E) (Eqn. 1) are
probability distributions on event variables that take on a fi-
nite number of values. Specifying this joint distribution re-
quires a total of 2865 probabilities (more than 90% of which
are needed for the deletion length probabilities of the individ-
ual V-, D- and J-genes). Despite the large number of probabil-
ities to be inferred, we are able to determine them accurately
and without overfitting. We emphasize that our goal is to ob-
tain an accurate description of recombination event statistics,
and not (yet) to explain those statistics mechanistically.

Generation probability and likelihood of observed sequences.
The probability Pgen(σ) of generating a specific CDR3 se-
quence σ is the sum of the probabilities of all recombination
events Eσ that produce σ:

Pgen(σ) =
∑
E∈Eσ

Precomb(E). [2]

The likelihood L(σ) of observing a specific CDR3 sequence
read σ, however, must take into account residual sequencing
error as well as allelic variation, and is given by a sum over a

larger set of recombination events Ẽσ that generate sequences
close to σ:

L(σ) =
∑
E∈Ẽσ

P (E, σ) where [3]

P (E, σ) = Precomb(E)× 1

(1 +R)L

×
∑

alleles a

P (Va|VE)P (Ja|JE)P (Da|DE)

(
R

3

)nerr(σ
a
E ,σ)

. [4]

In the latter equation, nerr is the number of mismatches be-
tween the observed read σ and the CDR3 sequence σaE that
would be produced by the recombination event E with allele
choices a. L is the length of the sequence read. The mismatch
rate R is determined in the inference with the rest of the distri-
bution parameters and reflects both sequencing error as well
as unknown allelic variation. In practice, we only consider re-

combination events Ẽσ that lead to CDR3 sequences with at
most a few mismatches from σ. The sum over alleles2 arises
because we do not know a priori which alleles are present
and reads may not go deep enough into the gene sequence to
clearly distinguish alleles from each other [13]. The probabili-
ties of the different alleles, given a gene, are also inferred and
are expected to differ from individual to individual.

The likelihood of the whole data set D is then the product
of the individual sequence likelihoods: L(D) =

∏
σ∈D L(σ).

This expression depends implicitly on the parameters defin-
ing the generative probability distribution (along with the al-
lele distributions and the sequencing error parameter), and
we infer their correct values by maximizing L(D) using an ex-
pectation maximization algorithm [12, 14] (see SI Appendix
for algorithmic details). In order to identify universal features
of the diversity generation machinery, we perform this infer-
ence separately for each subject. A complete analysis software
package is available online (see SI Appendix for details).

Results
In what follows, we present results of our analysis of näıve,
non-productive, CDR3 sequence repertoires of nine individ-
uals (see SI Appendix for a parallel analysis of memory se-
quence repertoires). All of our analysis results are available
as downloadable data files (see SI Appendix for links).

Correlations between event variables. It is important to ver-
ify that correlations not present in the assumed structure of
the probability distribution (Eqn. 1) are in fact not present in
the data. To perform this self-consistency check, we use the
inferred generative distribution to compute the probability-
weighted counts distribution of recombination event variables
in the data, and then use this distribution to calculate the
mutual information of all pairs of event variables. The matrix
of mutual information values is shown in the upper-triangular
part of Fig. 2A, where the entries outlined in red are depen-
dences accounted for by individual factors in our assumed
form of Precomb(E) (Eqn. 1), entries outlined in green are in-
direct dependences that can be induced by these factors, and
the rest would vanish if the data were perfectly described by
the assumed structure of Precomb(E). There are a few de-
tectable correlations that are not consistent with the assumed
structure: (insV D,delV ), (insDJ,delJ) and (V,D). They are,
however, all so weak (mutual information < 0.02 bits) that we
do not model them explicitly (indeed, they might arise from
subtle biases in our inference procedure).

For comparison, in the lower-triangular part of Fig. 2A we
show the mutual information values of all pairs of variables,
but now calculated from a deterministic assignment of events
to sequences based on maximal alignments. The resulting dis-
tributions exhibit spurious correlations that are absent from
the corrected, maximum likelihood estimate (MLE) of the dis-
tributions. For instance, the number of insertions at the two
junctions are found to be independent in our analysis while
the uncorrected estimate shows a dependence (Fig. 2B,C).

Gene usage distributions. The inferred frequencies of V- and
J-genes vary significantly from gene to gene, a phenomenon
for which no mechanistic explanation has yet been given. In
particular, linear location on the chromosome does not ex-
plain the pattern of either V- or J-gene usage (see SI Ap-
pendix Fig. S4A, C). The usage frequencies are consistent be-
tween individuals, though of all the inferred parameters in
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Fig. 2. (A) Data-derived correlations between sequence features: each entry is

the mutual information I(X,Y ) of a feature pair over the näıve non-productive
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Precomb(E): red identifies a direct effect of a factor in Eqn. 1 (e.g. D↔ J) and

green indirect effects (e.g. D ↔ J ↔ delJ). The top-left half of the matrix shows
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corresponds to a deterministic maximum-alignment based identification of recombi-

nation events. (B) Probability distribution of the number of VD insertions conditioned

on the number of DJ insertions for MLE (top) and deterministic (bottom) analysis.

Each curve corresponds to a different value of insDJ, ranging from 0 (blue) to 10.

The curves collapse for MLE indicating independence.

2We use the known alleles for each gene listed in the IMGT data base [11] augmented by a few
additional variants observed in the data (see SI Appendix for details).
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insertions is completely accounted for by dinucleotide statistics.

Precomb, these usage patterns show the most relative variation
between individuals.

The pattern of D-gene use conditioned on J-gene choice
(Fig. S4D) reveals the known mechanistic constraint prohibit-
ing utilization of D-genes that lie 3 ′ of the chosen J-gene [1, 5].
The inferred distribution assigns a total probability of less
than 0.1% for joining events using TRBD2 and any TRBJ1
gene. We note that such a determination is impossible with-
out probabilistic analysis due to the uncertainty in identifying
genes in specific sequences. The dependence between V gene
choice and D or J gene choice is very weak to non-existent
(with mutual information less than 0.01 bits). Thus, we be-
lieve that previously reported correlations in the use of these
genes [15] reflect the effects of selection rather than VDJ re-
combination. Finally, we note the presence of pseudo V-genes,
which occur in almost 10% of the non-productive CDR3s (see
SI Appendix for details).

Nucleotide insertions. In Fig. 3 we show the factors related
to insertions in the inferred distribution Precomb(E). The
VD and DJ insertions are uncorrelated (Fig. 2) and their
length distributions are nearly identical, with exponential tails
(Fig. 3A). The nucleotide frequencies in the inserted segments
are not uniform and are well explained by a di-nucleotide
Markov model where the probability of inserting A, C, G,
or T depends on the immediately 5’ nucleotide (see Fig. 3B).
The VD inserted segment, on the sense strand, and the DJ

inserted segment, on the antisense strand, show a preference
for Cs. The frequencies of tri-nucleotides are almost per-
fectly accounted for by the di-nucleotide preferences (Fig. 3C),
suggesting that the sequence statistics are fully captured by
dinucleotide statistics. Additionally, the VD insertion di-
nucleotide bias, taken on the sense strand in the 5’-3’ direc-
tion, is virtually identical to the DJ insertion di-nucleotide
bias, taken on the antisense strand in the 5’-3’ direction. This
suggests that the mechanism of junctional nucleotide inser-
tions is strand specific and occurs on opposite strands for the
VD and DJ junctions. The molecular mechanistic basis of
these features is not evident.

Nucleotide deletions. Because there is a strong correlation be-
tween number of deletions and gene identity (see the entries
for I(delV, V ) and I(delJ, J) in Fig. 2), we allow for gene-
dependent deletion profiles in Precomb(E) (Eqn. 1). The re-
sults for a few genes are shown in Fig. 4A (see Figs. S12-S16 for
all the profiles). P-nucleotides are counted as negative dele-
tions as they occur only in association with zero nucleotide
deletions (Fig. S10). The profiles have substantial variation
from gene to gene, suggestive of a nuclease activity that de-
pends on sequence context, but they are highly consistent
between individuals. We have modeled this context depen-
dence using a position weight matrix summing independent
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3Recall that this estimate is for the β-chain only. The α-chain will yet add more diversity to this
estimate.
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contributions from the bases in a 6 nucleotide window (four
3 ′ and two 5 ′ ) around the cutting point to the log probabil-
ity of deletion (see Fig. 4B and Fig. S11 for details). We find
that only bases 3 ′ of the deletion site have a strong effect on
the probability, with T and A nucleotides having the greatest
contribution, consistent with previous observations [16]. This
simple model, which ignores both the P-nucleotides as well as
the effects of distance from the end of the gene, does reason-
ably well in explaining the variation in deletion probabilities
(r2 = 0.7). This modeling is simply meant to suggest that
the complexity of the observed deletion distributions may ul-
timately be explained by a parsimonious mechanistic model
that reflects the underlying biochemistry of the deletion pro-
cess.

Consistency of distributions across individuals. The insertion
profiles, and the many different gene-dependent deletion pro-
files, are very consistent between individuals (Figs. 3, 4 and
Figs. S12-16), suggesting the action of a universal molecular
mechanism of rearrangement and providing convincing evi-
dence against overfitting. We note that finite sample size
statistics accounts for less than 50% of the observed inter-
individual variance (indicated by the error bars) in some of
our plots, possibly reflecting biological variation.

Potential diversity of repertoire. Our inferred distribution of
recombination events (Eqn. 1) implies a probability distribu-
tion Pgen(σ) on the space of all CDR3 sequences (Eqn. 2)
whose entropy Sseq = −

∑
σ Pgen(σ) logPgen(σ) is a measure

of the potential sequence diversity of VDJ recombination.
Since multiple recombination events can lead to the same se-
quence, we cannot calculate Sseq directly. We do, however,
have an explicit description of Precomb, the entropy of which
we can calculate: Srecomb = 52 bits; in addition, we can show
that sequence entropy and recombination event entropy are
related by

Sseq = Srecomb − 〈S(E|σ)〉σ ' 47 bits , [5]
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Fig. 5. (A) Entropy decomposition. Top bars: sequence entropy is smaller than

recombination entropy by 5 bits because of convergent recombination; Bottom bars:

recombination event entropy decomposed into contributions from gene choice, in-

sertions, and deletions. (B) Statistics of the 21 CDR3 sequences shared between

pairs of individuals: actual (red) vs. expected on the basis of the inferred Pgen(σ)
(blue). (C) Histogram of Pgen(σ) for all sequences (blue) and for the 21 shared

sequences (red, kernel density estimate); 〈Pgen〉 for the full repertoire is indicated

by the vertical green line.

where the correction term, 〈S(E|σ)〉σ ' 5 bits, is the entropy
of recombination events that give the same sequence (which
we know for sequences in the repertoire as a byproduct of the
inference), averaged over sequences. This means that CDR3
sequences can be generated in ∼ 32 different ways, on aver-
age, by VDJ recombination; this is the fundamental reason
why we must resort to probabilistic inference methods. The
total sequence diversity of 47 bits corresponds to a poten-
tial CDR3 repertoire size of ∼ 1014 sequences3. This is to
be compared with the estimated 4 × 106 unique CDR3 se-
quences in an individual [4, 17] , the ∼ 1011 T-cells in the
blood of an individual [18] and the ∼ 1013 potential peptide-
MHC complexes [19]. While convergent recombination means
that the sequence entropy cannot be neatly partitioned into
contributions from gene choice, deletions and insertions, the
entropy of recombination events Srecomb can be so partitioned
(Fig. 5A). We note that the bulk (60%) of the recombination
entropy comes from the nucleotide insertions, and little from
gene choice (5 bits from V and 4 bits from D and J) consistent
with previous estimates [20]. For comparison, uniform usage
of the genes would result in an entropy of 5.9 bits for V and
4.7 bits for D and J gene choices.

Overlap of repertoires between individuals. Some sequences
appear in the repertoires of more than one individual, and
we can ask whether their number and specific identities are
consistent with chance on the basis of our generative distribu-
tion Pgen(σ). We see evidence of inter-sample contamination
in some of our data leading to a large number of shared se-
quences between specific individuals. Eliminating such ques-
tionable cases (see SI Appendix for details), we are left with
21 sequences that occur in the non-productive repertoires of
two individuals and none that occur in more than two.

The total number of shared sequences between the reper-
toire samples of any pair of individuals with sample sizes
N1 and N2 is expected to be Poisson distributed with mean
n̄ = N1N2〈Pgen〉σ where 〈Pgen〉σ =

∑
σ P

2
gen(σ). Note that

while the specific shared sequences are likely to have high
probabilities of generation, the number of shared sequences,
without regard to their identities, is determined by 〈Pgen〉σ
which is the average value of Pgen over the potential repertoire.
We estimate this quantity to be 〈Pgen〉σ ' 3.4± 0.1× 10−10,
by taking the mean of Pgen over the observed repertoire.

In Fig. 5B, we compare the expected number of pairs of
individuals with a certain number of shared sequences (cal-
culated as a sum of Poisson distributions over the pairs) to
the observed number of such pairs, showing excellent agree-
ment. The specific shared sequences have particularly high
generation probabilities according to our distribution, with a
median value of ∼ 10−8 compared to the repertoire median
of ∼ 10−14 (Fig. 5C). Because the generative distribution is
trained on individual repertoires, and is highly consistent be-
tween individuals, its success in accounting for recurring se-
quences between individuals is a non-trivial test of its validity.
We find similar results for the shared sequences among the
memory repertoires (Fig. S6).

Convergent recombination has been proposed as an ex-
planation for the occurrence of ‘public’ T-cell receptors [21,
22, 23]. However, the recombination entropy S(E|σ) is only
weakly correlated with the generation probability Pgen(σ)
(correlation coefficient 0.13, see Fig. S7), and we find that
the shared non-productive sequences in our data do not have
higher recombination entropies than other sequences.

Results from other repertoires. Inference of Precomb(E) from
the non-productive memory repertoires of the same nine in-
dividuals leads to results identical with those reported above
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for the näıve non-productive repertoires (Figs. S5,6). The con-
sistency of the inferred generative distribution between these
repertoires as well as between the nine individuals is strong
evidence that the non-productive CDR3 sequence statistics,
memory or näıve, reflect only the basic recombination process
and not selection. In Fig. S8, we show the distributions of gen-
eration probabilities of CDR3 sequences from the productive
repertoires. While it is tempting to apply our algorithm to
the productive sequence repertoires, it would be inconsistent
to do so: these sequences have passed selection filters, thymic
and adaptive, and we have no analog of Eqn. 1 to parametrize
the probability of such success. This is an important subject
for future investigation.

Discussion
We have presented a method for inferring the statistics of VDJ
recombination events from the large T-cell receptor sequence
repertoires that are made available by high-throughput se-
quencing. We emphasize the crucial importance of using a
probabilistic approach: the typical CDR3 sequence can be
produced by about 32 different recombination events, and
using a deterministic assignment of events to each sequence
results in systematic biases and spurious correlations. Our
general approach allows us to cope with not-yet-indexed al-
leles [13] and, most importantly, with sequencing errors, an
essential task given the rapid growth of high-throughput but
error-prone sequencing technologies.

Since we focus on non-productive sequences, our results
describe the probability distribution over CDR3 sequences
produced by the recombination machinery before any func-
tional selection has occurred. Its remarkable reproducibility
across individuals and repertoires (näıve and memory) pro-
vides compelling evidence for the consistency and accuracy of
our method. The obtained distribution is a central feature of
the adaptive immune system and serves as a baseline (or, in
evolutionary terms, a neutral model) for analyzing the sub-
sequent processes of the immune system. By calculating the
entropy of the generative distribution, we can estimate the
potential diversity of the CDR3 sequences (∼ 1014 sequences)
and the contributions of insertions, deletions and gene choices
to this entropy. We find that insertions contribute most (60%)
of the diversity.

We are able to evaluate the probability of generating any
specific CDR3 sequence (including as yet unobserved ones).

This probability could be used to estimate the strength of
selection on a sequence or group of sequences, or the likeli-
hood that a sequence is shared between individuals or reper-
toires. Thus, it could help better characterize the significance
of shared or ‘public’ T-cell receptor sequences [23]. We have
verified that the sequences that are shared between the non-
productive repertoires of different individuals in our data are
consistent with the predictions of the inferred probability dis-
tribution (Fig. 5B,C), a very stringent test of its accuracy.

The recombination event distributions also provide insight
into the molecular mechanism of recombination, and should
serve as a starting point for detailed mechanistic models of re-
combination. We find that the recombination processes at the
two junctions are essentially independent of each other, and
that insertion events are independent of gene choice and dele-
tions. The inferred distribution confirms that a D-gene can
only recombine with downstream J-genes. We derive a pre-
cise model for the composition of inserted nucleotides, based
solely on frequencies of di-nucleotides. We also show that
a relatively crude model of sequence-specific nuclease activ-
ity can account for the deletion probabilities reasonably well.
Our observed distribution, which is specified by a large num-
ber of probabilities, should be reproduced by parsimonious,
but more realistic, mechanistic models.

We have focused on characterizing the molecular gen-
eration of nucleotide sequences that code for T-cell recep-
tors. The functional receptor repertoire is first shaped by this
molecular process and then by thymic selection and adap-
tation to pathogens. Quantitative models of the latter pro-
cesses are needed for understanding the adaptive immune sys-
tem. While the underlying biochemistry conveniently served
to parametrize our sequence distributions, finding an analo-
gous functionally relevant parametrization of amino-acid se-
quences to model the effects of selection is much more chal-
lenging [24]. Statistical analysis of the productive receptor
repertoires, with our precise characterization of the unselected
repertoire in hand, will hopefully aid in this effort.
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