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The efficient recognition of pathogens by the adaptive immune sys-
tem relies on the diversity of receptors displayed at the surface of
immune cells. T-cell receptor diversity results from an initial ran-
dom DNA editing process, called VDJ recombination, followed by
functional selection of cells according to the interaction of their sur-
face receptors with self and foreign antigenic peptides. To quantify
the effect of selection on the highly variable elements of the recep-
tor, we apply a probabilistic maximum likelihood approach to the
analysis of high-throughput sequence data from the β-chain of hu-
man T-cell receptors. We quantify selection factors for V and J
gene choice, and for the length and amino-acid composition of the
variable region. Our approach is necessary to disentangle the ef-
fects of selection from biases inherent in the recombination process.
Inferred selection factors differ little between donors, or between
naive and memory repertoires. The number of sequences shared
between donors is well-predicted by the model, indicating a purely
stochastic origin of such “public” sequences. We find a significant
correlation between biases induced by VDJ recombination and our
inferred selection factors, together with a reduction of diversity dur-
ing selection. Both effects suggest that natural selection acting on
the recombination process has anticipated the selection pressures
experienced during somatic evolution.

Significance statement
The immune system defends against pathogens via a di-
verse population of T-cells that display different antigen
recognition surface receptor proteins. Receptor diversity is
produced by an initial random gene recombination process,
followed by selection for a desirable range of peptide bind-
ing. Although recombination is well-understood, selection
has not been quantitatively characterized. By combining
high throughput sequencing data with modeling, we quan-
tify the selection pressure that shapes functional reper-
toires. Selection is found to vary little between individuals
or between the naive and memory repertoires. It reinforces
the biases of the recombination process, meaning that se-
quences more likely to be produced are also more likely to
pass selection. The model accounts for “public” sequences
shared between individuals as resulting from pure chance.

The T-cell response of the adaptive immune system begins
when receptor proteins on the surface of these cells recognize
a pathogen peptide presented by an antigen presenting cell.
The immune cell repertoire of a given individual is comprised
of many clones, each with a distinct surface receptor. This di-
versity, which is central to the ability of the immune system to
defeat pathogens, is initially created by a stochastic process of
germline DNA editing (called VDJ recombination) that gives
each new immune cell a unique surface receptor gene. This
initial repertoire is subsequently modified by selective forces,
including thymic selection against excessive (or insufficient)
recognition of self proteins, that are also stochastic in nature.
Due to this stochasticity and the large T-cell diversity, these
repertoires are best described by probability distributions. In

this paper we apply a probabilistic approach to sequence data
to obtain quantitative measures of the selection pressures that
shape T-cell receptor repertoires.

New receptor genes are formed by choosing at random
from a set of genomic templates for several sub-regions (V,
D and J) of the complete gene. Insertion and deletion of nu-
cleotides in the junctional regions between the V and D and
D and J genes greatly enhances diversity beyond pure VDJ
combinatorics [1]. The variable region of the gene lies between
the last amino acids of the V segment and the beginning of
the J segment; it codes for the Complementarity Determining
Region 3 (CDR3) loop of the receptor protein, a region known
to be functionally important in recognition [2]. Previous stud-
ies have shown that immune cell receptors are not uniform in
terms of VDJ gene segment usage [3, 4, 5, 6], or probability of
generation [1], and that certain receptors are more likely than
others to be shared by different individuals [7, 4]. In other
words, the statistical properties of the immune repertoire are
rather complex, and their accurate determination requires so-
phisticated methods.

Over the past few years, advances in sequencing technol-
ogy have made it possible to sample the T-cell receptor di-
versity of individual subjects in great depth [8], and this has
in turn led to the development of sequence statistics-based
approaches to the study of immune cell diversity [9, 10]. In
particular, we recently quantitatively characterized the pri-
mary, pre-selection diversity of the human T-cell repertoire
by learning the probabilistic rules of VDJ recombination from
out-of-frame DNA sequences that cannot be subject to func-
tional selection and whose statistics can reflect only the re-
combination process [1]. After generation, T-cells undergo a
somatic selection process in the thymus [11] and later in the
periphery [12]. Cells that pass thymic selection enter the pe-
ripheral repertoire as ‘naive’ T-cells, and the subset of naive
cells that eventually engage in an immune response will sur-
vive as a long-lived ‘memory’ pool. Even though we now
understand the statistical properties of the initial repertoire
of immune receptors [1], and despite some theoretical studies
of thymic selection at the molecular level [13, 14], a quantita-
tive understanding of how selection modifies those statistics
to produce the naive and memory repertoires is lacking.
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In this paper, we build on our understanding of the prim-
itive pre-selection distribution of T-cell receptors to derive
a statistical method for identifying and quantifying selection
pressures in the adaptive immune system. We apply this
method to naive and memory DNA sequences of human T-
cell β chains obtained from peripheral blood samples of nine
healthy individuals (Fig. 1). Our goal is to characterize the
likelihood that any given sequence, once generated, will sur-
vive selection. Our analysis reveals strong and reproducible
signatures of selection on specific amino acids in the CDR3
sequence, and on the usage of V and J genes. Most strikingly,
we find significant correlation between the primitive genera-
tion probability of a sequence and the probability it will pass
selection. This suggests that natural selection, which acts on
very long time scales to shape the generation mechanism it-
self, may have tuned it to anticipate somatic selection, which
acts on single cells throughout the lifetime of an individual.
The quantitative features of selection inferred from our model
vary very little between donors, indicating that these features
are universal. In addition, our measures of selection pressure
on the memory and naive repertoires are statistically indis-
tinguishable, consistent with the hypothesis that the memory
pool is a random subsample of the naive pool.

Methods
We analyzed human CD4+ T-cell β-chain DNA sequence
reads (60 or 101 nucleotides long) centered around the CDR3
region. T-cells were obtained from nine individuals and
sorted into naive (CD45RO-) and memory (CD45RO+) sub-
sets, yielding datasets of ∼200,000 unique naive and ∼120,000
unique memory sequences per individual, on average. The
datasets are the same as those used in [1] and were obtained
by previously described methods [15, 16].

In [1] we used the “nonproductive” sequences (those where
either the J sequences are out of frame, or the CDR3 sequences
have a stop codon) to characterize the receptor generation pro-
cess. The result of that analysis was an evaluation of the prob-
ability Ppre(~σ) that a VDJ recombination event will produce a
β-chain gene consistent with the specific DNA sequence read
~σ. In this study we focus instead on the in-frame, productive,
sequences (from both the naive and the memory repertoires)
with the goal of quantifying how the post-selection proba-
bility distribution on sequences is modified from the original
distribution Ppre(~σ). In what follows we distinguish between
the read ~σ and the CDR3 region ~τ , the latter defined to run
from a conserved cysteine near the end of the V segment to
the last amino acid of the read (leaving two amino acids to
the conserved Phe). The CDR3 amino acid sequence can be
uniquely read off from each in-frame sequence read; by con-
trast, the specific V- and J-genes responsible for the read may
not be uniquely identifiable (because of the relatively short
read length). An unambiguous selection effect can be seen by
comparing the length distribution of CDR3 regions between
the pre-selection ensemble and the naive, or memory, datasets
(Fig. 2A): sequences that are longer or shorter than the mean
are suppressed resulting in a more peaked distribution.

For each receptor sequence, we define a selection factor
Q(~σ) that quantifies whether selection (thymic selection or
later selection in the periphery) has enriched or impoverished
the frequency of ~σ compared to the pre-selection ensemble.
Since the generation probability of sequences varies over many
orders of magnitude, such a comparison is the only way to de-
fine selection strength. Denoting by Ppost(~σ) the distribution
of sequences in the selected naive or memory pools, we will set
Ppost(~σ) = Q(~σ)Ppre(~σ). Due to the large number of possi-

ble sequences, we cannot sample the post-selection probability
Ppost for each sequence directly from the data; we need a re-
duced complexity model to estimate it. We propose a simple
model, summarized in Fig. 1A, that we we will show captures
the main features of selection:

Q(~τ, V, J) =
Ppost(~τ, V, J)

Ppre(~τ, V, J)
=

1

Z
qL qV J

LY
i=1

qi;L(ai), [1]

where V and J denote the choice of V and J segments in the
sequence ~σ, L is the amino-acid length of the CDR3 speci-
fied by the read, (τ1, . . . , τ3L) is CDR3 nucleotide sequence,
and (a1, . . . , aL) its amino-acid sequence. The factors qL,
qi;L(a) and qV J denote, respectively, selective pressures on the
CDR3 length, its composition, and the associated VJ identi-
ties. Note that the D segment is entirely included in this
junctional region, so selection acting on it is encoded in the
qi;L factors. Z enforces the model normalization conditionP
~τ,V,J Q(~τ, V, J)Ppre(~τ, V, J) = 1.

It is important to understand why we do not write Q di-
rectly as a function of the read ~σ. While (~τ, V, J) determines ~σ
and ~σ determines ~τ , V and J cannot always be inferred deter-
ministically from the read ~σ. The VJ assignment of any given
read will have to be treated as probabilistically defined hidden
variables. In addition, because of correlations in Ppre, the q
factors cannot be identified with marginal enrichment factors
(so that, for example, Pi;L,data(ai)/Pi;L,pre(ai), cannot be set
equal to qi;L(ai)). For all these reasons, we must use a maxi-
mum likelihood procedure to learn the qL, qi;L and qV,J factors
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Fig. 1. A. T-cell receptor β chain sequences are formed during VDJ recombi-

nation. Sequences from this probability distribution, described by Ppre, are then

selected with a factor Q defined for each sequence, resulting in the observed Ppost
distribution of receptor sequences. Selection is assumed to act independently on the

V and J genes, the length of the CDR3 region and each of the amino acids, ai,
therein. B. A schematic of the fitting procedure: the parameters are set so that

Ppost fits the marginal frequencies of amino acids at each position, the distribution

of CDR3 lengths and VJ gene choices. Since the latter is not known unambiguously

from the observed sequences, it is estimated probabilistically using the model itself in

an iterative procedure.

2 www.pnas.org — — Footline Author



of Eq. 1. We use an expectation maximization algorithm (EM)
that iteratively modifies the q′s until the observed marginal
frequencies (for CDR3 length, amino acid usage as a function
of CDR3 position, and VJ usage) in the data match those
implied by the model distribution Eq. 1 (the pre-selection dis-
tribution Ppre being taken as a fixed, known, input). The
procedure is schematically depicted in Fig. 1B (see SI for full
details).

One important assumption of the model is that selection
factors act independently of each other on the sequence. Con-
sequently, while the model is fit only to single point marginal
frequencies, and not to pairwise frequencies. To check the
validity of this assumption, we plot the correlation functions
of amino acid pairs in the model post-selection repertoire vs
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Fig. 2. A. CDR3 length distributions, pre- and post-selection and the length se-

lection factor qL (green). Selection makes the length-distribution of CDR3 regions in

the pre-selection repertoire more peaked for the naive and memory repertoires (over-

lapping). Error bars show standard variation over 9 individuals. B. Comparison

between data and model of the connected pairwise correlation functions, which were

not fitted by our model. The excellent agreement validates the inference procedure.

As a control, the prediction from the pre-selection model (in gray) does not agree

with the data as well. C. Values of the inferred amino-acid selection factors for

each amino acid, ordered by length of the CDR3 region (ordinate) and position in the

region (abscissa). D. Values of the V J gene selection factors.

the observed naive ones (Fig 2B). These pairwise correlations
are well predicted, even though they are not model inputs.
It is also noteworthy that they are nonzero, even though the
selection model does not take into account the possibility of
interactions in the selection factors qi;L. This is because the
pre-selection distribution does not factorize over amino acids
in the CDR3 region, and has correlations of its own, as shown
by the green points of Fig 2B (note that these pre-selection
correlations do not agree well with those observed in the post-
selection data).

Another assumption of our model is that selection acts at
the level of the amino acid sequence, regardless of the under-
lying codons. To test this, we learned more general models
where a represented one of the possible 61 codons, instead of
one of the 20 amino acids. We found that codons coding for
the same residue had similar selection factors (see Fig. S2),
except near the edges of the CDR3 where amino acids may ac-
tually come from genomic V and J segments and reflect their
codon biases.

To compare the different donors, we learned a distinct
model for each donor, as well as a “universal” model for all
sequences of a given type from all donors taken together (see
SI for details). We also learned models from random subsets
of the sequence dataset to assess the effects of low-number
statistical noise.

Results
Characteristics of selection and repertoire variability.The
length, single-residue, and VJ selection factors, learned from
the naive datasets of all donors taken together, are presented
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Fig. 3. A.-C. Variability between repertoires. The scatter between qi;L selec-

tion factors between two sample individuals A and B for naive (A) and memory

repertoires (B) compared to that of memory and naive repertoires for the same indi-

vidual (C) shows great similarity between them. See also Fig. S4. D. The entropy

of the pre-selection repertoire (top) is reduced in the post-selection repertoire (bot-

tom). E.-F. Distribution of V J (E) and DJ (F) insertions in the pre-selection

and naive repertoires shows elimination of long insertions. Error bars show standard

deviations over 9 donors. The insertion distributions for the memory repertoire are

the same as for the naive repertoire (see scatter plots in insets).
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in Fig. 2A,C,D. The qV J distribution shows that the different
V and J genes are subject to a wide range of selection factors
(note that these factors act in addition to the quite varied gene
segment usage probabilities in Ppre(~σ)). We looked for cor-
relations between the selection factors qi;L(a) on amino acids
and a variety of amino-acid biochemical properties [17]: hy-
drophobicity, charge, pH, polarity, volume, and propensities
to be found in α or β structures, in turns, at the surface of
a binding interface, on the rim or in the core [18] (see SI for
details and references). We found no significant correlations,
save for a negative correlation with amino acid volume and
α helix association, as well as a positive correlation with the
propensities to be in turns or in the core of an interacting
complex (Fig. S7).

To estimate differences between datasets, we calculated
the correlation coefficients between the logs of the qV J and
qi;L(a) selection factors (see Fig. S4). Comparing naive vs.
naive, memory vs. memory or naive vs. memory between
donors (see Fig. 3A-C for an example for qi;L, and Fig. S3 for
qV J) gave correlation coefficients of ≈ 0.9 in log qi;L, while
the naive vs. memory repertoires of the same donor gave
0.95. To get a lower bound on small-number statistical noise,
we also compared the factors inferred from artificial datasets
obtained by randomly shuffling sequences between donors (see
SI), yielding an average correlation coefficient of 0.98. Repeat-
ing the analysis for log qV J , we found correlation coefficients of
≈ 0.8 between datasets of different donors, 0.84 for the naive
and memory dataset of the same donor, all of which must be
compared to 0.94 obtained between shuffled datasets. Thus,
the observed variability between donors of qi;L and qV J are
small, and consistent with their expected statistical variabil-
ity.

We use Shannon entropy, S = −
P
~σ Ppost(~σ) log2 Ppost(~σ),

to quantify the diversity of the naive and memory distribu-
tions. Entropy is a diversity measure that accounts for non-
uniformity of the distribution and is additive in independent
components. Since S = log2 Ω when there are Ω equally likely
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Fig. 4. Probability of passing selection. A.-B. Ratio of the distributions of

sequence-wide selection factors Q between the observed sequences and the pre-

selection ensemble (red line), plotted as a function of Q for naive (A.) and memory

(B.) repertoires. The model prediction Ppost(Q)/Ppre(Q) = Q is shown in
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The selection ratio saturate around ≈ 7, which may be interpreted as the maximum

probability of being selected. Naive and memory repertoires show similar behaviors.

C. A cartoon of the effective selection landscape captured by our model (red line).

Our method does not capture localized selection pressures (such as avoiding self)

specific to each individual, but captures general global properties.

outcomes, the diversity index 2S can be viewed as an effec-
tive number of states. The entropy of the naive repertoire
according to the model is 38 bits (corresponding to a diversity
of ∼ 3.0 · 1011) down from 43.5 bits in the primitive, pre-
selection repertoire (Fig. 3D). This is a reduction of ∼ 6 bits,
or 50-fold in diversity. The majority of the reduction comes
from insertions and deletions, which accounted for most of the
diversity in the pre-selection repertoire. The entropies of the
memory and naive repertoires are the same, indicating that
selection in the periphery does not further reduce diversity.

Knowing the post-selection distribution of sequences, we
can ask how different features of the recombination scenario
fare in the face of selection. This does not imply that selec-
tion acts on the scenarios themselves —it acts on the final
product— but it is an a posteriori assessment of the fitness
of particular rearrangements. For example, the distributions
of insertions at VD and DJ junctions in the post-selection en-
semble have shorter tails (Fig. 3E-F), while the distribution
of deletions at the junctions seems little affected by selec-
tion (Fig. S5), although large numbers of deletions are selected
against.

Selection factor as a measure of fitness. The selection factor
Q is a proxy for the probability of a particular sequence to
be selected or amplified, and sequences with large Q values
should thus be enriched in the observed dataset. To test this,
we consider the distributions of Q both in the pre-selection
model, Ppre(Q), and in the dataset from which Q was learned,
Pdata(Q) (insets of Fig. 4; see SI Text for details on how the
distributions are calculated when V and J are hidden vari-
ables). This approach is very similar to the one used by Mu-
stonen et al. [19, 20] to characterize the fitness landscape of
transcription factor binding sites.

By construction, the distribution of Q in the post-selection
model satisfies exactly Ppost(Q) = QPpre(Q). In Fig. 4A-B
we plot the ratio Pdata(Q)/Ppre(Q) as a function of Q, both
for the naive and memory models learned from all donors. We
observe that for Q ≤ 5, i.e. for > 90% of sequences, this ratio
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shows an abundance of positive correlations. B. Heatmap of the joint distribution
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selected repertoire (green line) had a higher probability to have been generated by

recombination than unselected sequences (blue line). Agreement between the post-

selection model (red line) and data distribution (green line) is a validation of the

model.
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is exactly equal to Q — a validation of our model prediction
at the sequence-wide level. For larger values of Q however,
this ratio saturates to around Qmax ≈ 7.

This plateau may be viewed as a limiting value, above
which selection is insensitive to Q. A similar plateau was
observed in the fitness of transcription factor binding sites
below a certain binding energy [20]. In the case considered
here, the plateau can be rationalized if we assume that Q is
proportional to the probability for a sequence to be selected,
Psel(~σ) = αQ(~σ). Since Psel cannot exceed one, Q cannot
exceed α−1. The average probability of selection is given byP
~σ Ppre(~σ)Psel(~σ) = α. The observed plateau gives a lower

bound to the true maximum of Q: α−1 ≥ Qmax, and thus the
average fraction of cells to pass selection satisfies α ≤ 15%.
This can be compared to estimates [2] for passing positive and
negative thymic selection: 10−30% for positive selection only,
and ≈ 5% for both. This analysis only includes the β chain,
and including the α chain could further reduce our estimate.

The saturation also seems to indicate that our model may
be too simple to describe the very fit (high Q) sequences. Be-
cause of its fairly simple factorized structure, our model can
only account for the coarse features of selection, and may not
capture very individual-specific traits such as avoidance of the
self (corresponding to Q � 1 in localized regions of the se-
quence space) or response to pathogens (Q� 1 for particular
sequences). This individual-dependent ruggedness of the fit-
ness landscape Q, schematized in Fig. 4C, is probably ignored
by our description, and may be hard to model in general.

To check that the saturation does not affect our inference
procedure, we relearned our model parameters from simulated
data, where sequences were generated from Ppre and then se-
lected with probability min(Q/Qmax, 1) (see SI Text for de-
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Fig. 6. Shared sequences between individuals. A. The mean number of shared se-

quences between any pair of individuals compared to the number expected by chance

(model prediction) for one common model for all individuals (red crosses) and private

models learned independently for each individual (blue crosses). Error bars are stan-

dard deviations from distributions over pairs. The distribution of shared sequences

between triplets (B.) and quadruplets (C.) of individuals for the data (black his-

togram), from common (red line) and private models (blue line). D. The shared

sequences are most likely to be generated and selected: comparison of the Ppost
post-selection distribution for sequences from the pre-selection (dotted line), and

post-selection repertoires (according to the model in gray, and to the data in black),

as well as the sequences shared by at least two donors (model prediction in magenta,

data in red).

tails), and we found that the model was correctly recovered
(Fig. S6).

Natural selection anticipates somatic selection.Comparing
the pre- and post-selection length distributions in Fig. 2A
shows that the CDR3 lengths that were the most probable
to be produced by recombination are also more likely to be
selected. Formally, Spearman’s rank correlation coefficient
between Ppre(L) and qL is 0.76, showing good correlation be-
tween the probability of a CDR3 length and the correspond-
ing selection factor. We asked whether this correlation was
also present in the other sequence features. The histogram of
Spearman’s correlation between the selection factors qi;L(a)
and the pre-selection amino-acid usage Pi;L,pre(a) for different
lengths and positions (i, L) (Fig. 5A) shows a clear majority of
positive correlations. Likewise, the selection factors qV J are
positively correlated with the pre-selection VJ usage PV J,pre

(Spearman’s rank correlation 0.3, p < 2 · 10−20).
The correlations observed for each particular feature of the

sequence (CDR3 length, amino acid composition and VJ us-
age) combine to create a global correlation between the prob-
ability Ppre(~σ) that a sequence ~σ was generated by recombina-
tion, and its propensity Q(~σ) to be selected (Spearman’s rank
correlation 0.4, p = 0, see Fig. 5B). Consistent with this obser-
vation, the post-selection repertoire is enriched in sequences
that have a high probability Ppre(~σ) to be produced by re-
combination (Fig. 5C). This enrichment is well predicted by
the model, providing another validation of its predictions at
the sequence-wide level.

Taken together, these results suggest that the mechanism
of VDJ recombination (including insertions and deletions)
has evolved to preferentially produce sequences that are more
likely to be selected by thymic or peripheral selection.

Shared sequences between individuals.The observation of
unique sequences that are shared between different donors has
suggested that these sequences make up a “public” repertoire
common to many individuals, formed through convergent evo-
lution or a common source. However, it is also possible that
these common sequences are just statistically more frequent,
and are likely to be randomly recombined in two individu-
als independently, as previously discussed by Venturi et al.
[21, 7, 6]. In other words, public sequences could just be
chance events. Here we revisit this question by asking whether
the number of observed shared sequences between individuals
is consistent with random choice from our inferred sequence
distribution Ppost.

We estimated the expected number of shared sequences
between groups of donors in two ways: (i) by assuming that
each donor α had its own “private” model learned from his
own sequences or (ii) by assuming that sequences are drawn
from a “universal” model learned from all sequences together.
While the latter ignores small yet perhaps significant differ-
ences between the donors, the former may exaggerate them
where statistics are poor. For details on how these estimates
are obtained from the models, we refer the reader to the SI
Text. In Fig. 6A we plot, for each pair of donors, the ex-
pected number of shared nucleotide sequences in their naive
repertoires under assumptions (i) and (ii), versus the observed
number. The number is well predicted under both assump-
tions, the universal model assumption giving a slight overes-
timate, and the private model giving a slight underestimate.
We repeat the analysis for sequences that are observed to be
common to at least three or at least four donors (Fig. 6B-C).
The universal model predicts their number better than the
private models, although it still slightly overestimates it.
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These results suggest that shared sequences are indeed the
result of pure chance. If that is so, shared sequences should
have a higher occurrence probability than average; specifically,
the model predicts that the sequences that are shared between
at least two donors are distributed according to Ppost(~σ)2 (see
SI Text). We test this by plotting the distribution of Ppost for
regular sequences, as well as for pairwise-shared sequences,
according to the model and in the naive datasets (Fig. 6D),
and find excellent agreement. In general, sequences that are
shared between at least n individuals by chance should be dis-
tributed according to Ppost(~σ)n. For triplets and quadruplets,
this model prediction is not as well verified (see Fig. S8). This
discrepancy may be explained by the fact that such sequences
are outliers with very high occurrence probabilities, and may
not be well captured by the model, which was learned on typ-
ical sequences.

We repeated these analyses for sequences shared between
the memory repertoires of different individuals, with very sim-
ilar conclusions, except for donors 2 and 3, and donors 2 and
7, who shared many more sequences than expected by chance
(see Fig. S9). We conclude that the vast majority of shared se-
quences occur by chance, and are well predicted by our model
of random recombination and selection.

Discussion
We have introduced and calculated a selection factor Q(~σ)
that serves as a measure of selection acting on a given receptor
sequence ~σ in the somatic evolution of the immune repertoire.
Our approach accounts for the fact that the pre-selection prob-
abilities of sequences vary over orders of magnitude.

Using this measure, we show that the observed repertoires
have undergone significant selection starting from the initial
repertoire produced by VDJ recombination. We find little dif-
ference between the naive and memory repertoires, in agree-
ment with recent findings showing no correlation between re-
ceptor and T-cell fate [22], as well as between the repertoires
of different donors. This is perhaps surprising, because the
donors have distinct HLA types (which determine the inter-
action between T-cell receptors and peptide-MHC complexes),
and we could expect their positive and negative selective pres-
sures to be markedly different. Besides, memory sequences
have undergone an additional layer of selection compared to
the naive ones —recognizing a pathogen— and we could also
expect to see different signatures of selection there. A possible
interpretation is that our model only captures coarse and uni-

versal features of selection related to the general fitness of re-
ceptors, and not the fine-grained, individual-specific selective
pressures such as avoidance of the self, as illustrated schemat-
ically in Fig. 4C. In other words, our selection factors may
“smooth out” the complex landscapes of specific repertoires
and fail to capture their rough local properties, such as would
be expected from specific epitopes that would correspond to
very tall peaks or deep valleys in the landscape of selection
factors. To really probe these specific deep valleys, we need
to develop methods based on accurate sequence counts. An-
other interesting future direction would be to see whether at
this global level the signatures of selection are similar between
(relatively) isolated populations. Lastly, comparing data from
different species (mice, fish), in particular where inbred indi-
viduals with the same HLA type can be compared, would be
an interesting avenue for addressing these issues.

Our results suggest that natural selection has refined the
generation process over evolutionary time scales to produce
a pre-selection repertoire that anticipates the actions of se-
lection. Sequences that are likely to be eliminated and fail
selection are not very likely to be produced in the first place.
Because of this “rich become richer” effect, the diversity of
the repertoire is significantly reduced by selection, by a 50-
fold factor in terms of diversity index. This does not mean
that only 2% of the sequences pass selection. In fact, our re-
sults are consistent with as much as 15% of sequences passing
selection. This apparent paradox is resolved by noting that
selection, by keeping clones that were likely to be generated,
get rids of very rare clones that contributed to the large initial
diversity.

Although we did observe sequences that were present in
the repertoires of different donors, we showed using our model
that their number was broadly compatible with that expected
by pure chance. This suggests that the “public” part of the
repertoire is made of sequences that are just more likely to be
randomly produced and selected.

To summarize, our work clearly shows that thymic se-
lection and later peripheral selection modify the form of the
generated repertoire. Our work is a starting point for a de-
scription of a mechanism of the two processes.

Acknowledgements. The work of YE, TM and AW was
supported in part by grant ERCStG n. 306312. The work of
CC was supported in part by NSF grants PHY-0957573 and
PHY-1305525 and by W.M. Keck Foundation Award dated
12/15/09.

1. Murugan A, Mora T, Walczak AM, Callan CG (2012) Statistical inference of the

generation probability of t-cell receptors from sequence repertoires. Proceedings of

the National Academy of Sciences 109:16161–16166.

2. Janeway C (2005) Immunobiology, the immune system in health and disease (Garland

Pub).

3. Weinstein JA, Jiang N, White RA, Fisher DS, Quake SR (2009) High-throughput

sequencing of the zebrafish antibody repertoire. Science 324:807–10.

4. Ndifon W, et al. (2012) Chromatin conformation governs t-cell receptor j gene seg-

ment usage. Proc Natl Acad Sci USA 109:15865–70.

5. Mora T, Walczak AM, Bialek W, Callan CG (2010) Maximum entropy models for

antibody diversity. Proceedings of the National Academy of Sciences of the United

States of America 107:5405–5410.

6. Quigley MF, et al. (2010) Convergent recombination shapes the clonotypic landscape

of the naive t-cell repertoire. Proc Natl Acad Sci USA 107:19414–9.

7. Venturi V, Price DA, Douek DC, Davenport MP (2008) The molecular basis for public

t-cell responses? Nat Rev Immunol 8:231–8.

8. Baum PD, Venturi V, Price DA (2012) Wrestling with the repertoire: The promise

and perils of next generation sequencing for antigen receptors. Eur. J. Immunol.

42:2834–2839.

9. Six A, et al. (2013) The past, present, and future of immune repertoire biology – the

rise of next-generation repertoire analysis. Front. Immunol. 4:1–16.

10. Robins H (2013) Immunosequencing: applications of immune repertoire deep se-

quencing. Current Opinion in Immunology 25:646–52.

11. Yates AJ (2014) Theories and quantification of thymic selection. Front. Immunol.

5:13.

12. Jameson SC (2002) Maintaining the norm: T-cell homeostasis. Nature Reviews

Immunology 2:547–56.

13. Detours V, Mehr R, Perelson AS (1999) A quantitative theory of affinity-driven t cell

repertoire selection. J Theor Biol 200:389–403.

14. Kosmrlj A, Jha AK, Huseby ES, Kardar M, Chakraborty AK (2008) How the thymus

designs antigen-specific and self-tolerant t cell receptor sequences. Proc Natl Acad

Sci USA 105:16671–6.

15. Robins HS, et al. (2009) Comprehensive assessment of T-cell receptor beta-chain

diversity in alphabeta T cells. Blood 114:4099–4107.

16. Robins H, et al. (2010) Overlap and effective size of the human CD8+ T cell receptor

repertoire. Science translational medicine 2:47ra64.

17. Stryer L, Berg JM, Tymoczko JL (2002) Biochemistry, 5th edition (W.H. Freeman &

Co Ltd) Vol. 5th edition.

18. Martin J, Lavery R (2012) Arbitrary protein-protein docking targets biologically rele-

vant interfaces. BMC Biophysics 1:7.
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