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Review
Attempts to formulate a protective HIV-1 vaccine
through classic vaccine design strategies have not been
successful. Elicitation of HIV-1-specific broadly neutral-
izing antibodies (bnAbs) at high titers that are present
before exposure might be required to achieve protec-
tion. Recently, the application of new technologies has
facilitated the study of clonal lineages of HIV-1 envelope
(Env) antibodies, which have provided insights into HIV-
1 antibody development during infection and upon vac-
cination. Strategies are being developed for the analysis
of infection and vaccine candidate-induced antibodies,
their gene usage, and their maturation pathways such
that this information can be used to attempt to guide
rational vaccine design.

Hurdles to overcome for the development of a
preventive HIV-1 vaccine
As of 2010 it was estimated that 34 million people were
living with HIV-1 worldwide [1]. The HIV-1 pandemic
remains a global emergency for which there is currently
no cure. Vaccination has historically been the most effec-
tive measure for controlling the transmission of infectious
agents [2]; therefore, the development of a protective HIV-
1 vaccine is a global public health priority [3].

Many licensed vaccines (e.g., smallpox, hepatitis B,
measles, pertussis, polio, rabies, and yellow fever) induce
specific antibodies that are correlates of protection [2,4,5].
Since the introduction of vaccination against smallpox,
there have been scientific and technical advances that
have led to the development of vaccines against numerous
human diseases [6,7]. Despite these advances, there are
pathogens, such as HIV-1 [8,9] and influenza [8], for which
vaccination has not led to broad and long-lasting protec-
tion. For HIV-1 and influenza, this is due in part to genetic
diversity of the pathogen [10], difficulty in eliciting broadly
neutralizing antibodies (bnAbs) to epitopes conserved
among different strains [8,11,12], and for HIV-1, the ability
for the virus to integrate into the host genome [13].

In the 20th century, one major technological advance
that enabled vaccine development was the use of cell
culture that permitted the growth of viruses in vitro
[6,14]. Although HIV-1 is readily grown in cell culture, a
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vaccine for HIV-1 has remained elusive. The establishment
of a latent pool of infected cells provides a persistent
reservoir that is resistant to antiviral immune responses
and to antiretroviral drugs [15]; the integration event that
establishes this latent pool is thought to occur within hours
to days after HIV-1 transmission [16–18]. This implies that
a successful preventative HIV-1 vaccine will need to pro-
vide sterilizing immunity that is present at the time of
exposure [17,18]. All other vaccines rely upon secondary T
and B cell anti-pathogen responses to prevent disease;
thus, an effective HIV-1 vaccine may have to provide
something achieved by no other vaccine to date. One
response that may be able to provide protective immunity
is anti-HIV-1 envelope antibodies. Recently, new techni-
ques have probed the B cell repertoire of humans in the
settings of infection [19–21] and vaccination [22], providing
new insights into immune mechanisms that have pre-
vented vaccine-induced protective HIV-1 antibody
responses [23,24]. In this review, we discuss how analysis
of infection and vaccine candidate-induced antibodies and
their genes may guide vaccine design.

The nature of HIV-1 protective antibody responses
The HIV-1 genome has extraordinary variability [10]. This
feature combined with strategies for immune evasion
exploited by the virus poses unprecedented challenges
for inducing neutralizing antibodies with breadth of activ-
ity against most of the circulating strains of HIV-1. bnAbs
against most clades and circulating recombinant forms can
be spontaneously produced by rare subjects infected with
HIV-1, but such antibodies only appear several years after
infection [25]. During acute HIV-1 infection (AHI), the
initial anti-HIV-1 antibody response is directed toward
non-neutralizing epitopes on the gp41 envelope glycopro-
tein and does not appear to exert an anti-HIV-1 effect, as
indicated by AHI gp41 antibody failure to select for virus
escape mutants [26–29]. The first antibody response that
can select virus escape mutants and neutralize transmit-
ted/founder viruses does not appear until �12–16 weeks
after transmission, targeting the gp120 envelope glycopro-
tein, and has very limited breadth [30,31]. The variability
of the HIV-1 envelope glycoprotein effectively permits
escape from immune control and quickly renders strain-
specific neutralizing antibodies ineffective [10]. However,
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Box 1. Outstanding questions

� Can non-neutralizing antibodies exert a protective function

through mechanisms other than classic neutralization as mea-

sured by conventional neutralizing assays (e.g., ADCC)?

� Can immunogens be found that drive memory B cell maturation

toward the production of bnAbs by targeting immunogens to bind

to bnAb unmutated ancestors?

� Can a vaccination regimen induce bnAbs in vaccinated subjects

with diverse genetic backgrounds?

� Can immunogens be optimized to drive the maturation of B cell

clonal lineages toward the generation of bnAbs as opposed to

toward easier to induce non- or poorly neutralizing HIV-1

envelope reactive antibodies?
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several years after HIV-1 transmission, approximately
20% of chronically HIV-1-infected subjects develop anti-
bodies that neutralize multiple HIV-1 strains, with 2–4% of
subjects developing serum antibodies that broadly neutral-
ize most of the tested HIV-1 strains [25,32,33]. When they
are made, bnAbs generally do not control viremia [25]; this
lack of clinical impact might be a consequence of the
appearance of bnAbs long after virus integration. None-
theless, bnAbs can select for virus escape mutants, indi-
cating promise for the prevention of HIV-1 transmission if
bnAbs are present prior to HIV-1 exposure [34]. That anti-
HIV-1 bnAbs may be effective in preventing infection if
present at the time of exposure to the virus is also sup-
ported by results from non-human primate passive protec-
tion trials in which anti-HIV-1 envelope glycoprotein
bnAbs at concentrations predicted to be achievable by
immunization were able to block infection with chimeric
simian-human immunodeficiency virus challenge [35–38].
Thus, to be effective, a preventive HIV-1 vaccine will need
to induce broadly protective antibodies that are present at
mucosal surfaces at the time of HIV-1 exposure.

Envelope targets of potentially protective antibodies
During the first two decades of the HIV-1 pandemic, only
five bnAbs capable of neutralizing multiple primary HIV-1
isolates were identified (reviewed in [38–40]). These anti-
bodies identified three epitope targets on the HIV-1 enve-
lope glycoprotein: a post-translational glycan epitope on
gp120 recognized by 2G12 [41,42]; the CD4 binding site
(CD4bs) recognized by b12 [43,44]; and the membrane
proximal external region (MPER) of gp41 recognized by
2F5 [42,45,46], 4E10 [42,47], and Z13 [48]. Each of these
antibodies display one or more unusual characteristics
[24]: polyreactivity with human and/or non-human anti-
gens, unusually long heavy chain complementarity deter-
mining region 3 (HCDR3) loops, and high levels of somatic
mutation [23,24,49]. These characteristics suggested that
bnAbs of these types might be limited by immune tolerance
controls and/or be the result of tortuous and/or unfavored
antibody maturation pathways [23,24]. Attempts to con-
sistently elicit antibodies with the activity of bnAbs
through vaccination using conventional approaches have
been unsuccessful [8,23,50]. The recent use of novel immu-
nogens has been able to elicit antibodies that bind to the
core epitope of bnAb 2F5, but such induced antibodies do
not display broad neutralization, probably because they
lack the lipid binding activity of the bnAb [51,52]. The
tolerance deletion faced by B cells expressing 2F5-like
bnAbs was confirmed by experiments in mice that had
2F5 bnAb variable heavy (VH) chain and variable light
(VL) chain genes knocked in, where bnAb-expressing B
cells were limited by both central and peripheral tolerance
mechanisms [53,54].

In 2009, the ALVAC-prime AIDSVAX-boost RV144 trial
demonstrated a modest degree of short-lived protection
[55]. This trial had an estimated vaccine efficacy of 31%
without inducing high levels of classical neutralizing anti-
bodies [56], suggesting that vaccines targeting epitopes
that induce non-neutralizing envelope antibodies might
also be able to provide a measure of protection from
HIV-1 transmission [57].
A recent immune correlates analysis of samples collect-
ed during the RV144 efficacy trial found that antibodies to
the V1/V2 region of the HIV-1 envelope may have corre-
lated inversely with infection risk [57]. This analysis raised
the hypothesis that non-neutralizing V1/V2 antibodies
may have played a role in protection, perhaps via anti-
body-dependent cellular cytotoxicity or other as yet un-
identified mechanisms [57,58]. Thus, IgG antibodies
directed against the V1/V2 region may have non-neutral-
izing modes of virus inhibition that could be an important
component of an effective vaccine strategy. At present, it
remains unknown if this type of antibody response, as well
as improvements to the magnitude and durability of the
response, could be optimized by rational vaccine designs
(Box 1). These new findings have provided new directions
for investigation of the immune correlates of protection
from HIV-1 transmission.

The application of new technologies has resulted in the
isolation of a large number of anti-HIV-1 bnAbs (summa-
rized in Table 1). The first of the new bnAb epitopes was
defined by PG9 and PG16, a pair of clonally related anti-
bodies with greater neutralization potency than previously
described bnAbs [20]. These bnAbs bind to an epitope on
the gp120 envelope glycoprotein that is dependent on an
asparagine in position 160 and that is usually conferred or
stabilized by trimer formation [20,21]. Subsequently, two
additional groups of bnAbs that recognize this epitope were
found; these were clonally related sets of four (CH01–CH04
[21]) and five (PGT141–PGT145 [59]) bnAbs. These new
quaternary structure preferring conformational epitope-
specific V1/V2 bnAbs share characteristics with previously
described bnAbs in that they are all highly mutated, with
VH nucleotide mutation frequencies ranging from 11.5% to
16% [20,21,59] (the mean frequency of human VH muta-
tions found in secondary immune responses is approxi-
mately 5% [12,26,60]). This group of bnAbs also has
exceptionally long, anionic HCDR3 sequences that are rich
in tyrosines that are frequently sulfated (Figure 1)
[20,21,61–64]. Structure/function analyses of the crystal
structures of PG16 and CH04 antigen-binding fragments
(Fabs) and the V1/V2 domain in complex with PG9 Fab
revealed that the unusual conformation of the HCDR3 loop
in these bnAbs is a critical feature necessary for neutrali-
zation breadth and potency [62–64]. Interestingly, these
groups of bnAbs neutralize viruses with different patterns
of breadth and potency, display different degrees of sensi-
tivity to amino acid substitution, and different orientations
of the HCDR3 loop in complex with the V1/V2 domain
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Table 1. Broadly neutralizing and crossreactive antibodies isolated since 2009

Technology used Antibody name Antibody specificity Refs

Broadly neutralizing antibodies (bnAbs)

Neutralization screening of cultured,

unselected IgG+ memory B cells

PG9, PG16 V1/V2 conformational epitope [20]

CH01–CH04 V1/V2 conformational epitope [21]

PGT141–PGT145 V1/V2 conformational epitope [59]

PGT121–PGT123 V3 epitope involving carbohydrates [59]

PGT125–PGT128, PGT130, PGT131 V3 epitope involving carbohydrates [59]

PGT135–PGT135 V3 epitope involving carbohydrates [59]

Fluorescence-activated cell sorting

(FACS) using a resurfaced core gp120

molecule (RSC3)

VRC01, VRC02 CD4 binding site [19]

CH30–CH34 CD4 binding site [69]

VRC-PG4, VRC-PG4b CD4 binding site [69]

FACS and 454 deep sequencing 3BNC117, 3BNC55, 12A12,

8ANC195, NIH45–46a

CD4 binding site [70]

Crossreactive neutralizing antibodies

Neutralization screening of cultured,

unselected IgG+ memory B cells

HJ16 Near CD4 binding site [66]

FACS of colostrum-derived B cells CH08 CD4-inducible epitope [86]

FACS using MPER tetramer reagent CAP206-CH12 gp41 membrane proximal external region [77]

Phage displayed immunoglobulin library m66.6 gp41 membrane proximal external region [79]

aRepresentative antibodies of clonally related sequences.
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[21,63]. Few of these bnAbs have been found to be poly-
reactive [20,21,59], suggesting that most quaternary struc-
ture preferring V1/V2 conformational epitope-specific
bnAbs may not be subjected to deletion by tolerance control
during their maturation. In fact, this specificity of bnAbs is
now known to be relatively frequent among chronically
infected broad neutralizers [20,65]. These findings make
the quaternary structure preferring V1/V2 conformational
epitopes an attractive vaccine target.

The new CD4bs bnAb group includes antibodies that
bind to epitopes near the CD4bs (e.g., HJ16 [66]) and those
with footprints overlapping that of the CD4–gp120 contact
region (i.e., VRC01–VRC03 [19,67], PGV04, also known as
VRC-PG04, [68], CH30–CH34 [69], and the HAAD motif
antibodies [70]). Although these bnAbs recognize a similar
epitope at the CD4bs as the previously described antibody
b12, the new antibodies display greater neutralization
breadth and potency. The crystal structures of Fabs of
PG9
PG16

CH01
CH02
CH03
CH04

PGT141
PGT142
PGT143
PGT144
PGT145
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Figure 1. Heavy complementarity determining region 3 (HCDR3) amino acid

sequences of the new quaternary structure preferring conformational epitope-

specific V1/V2 broadly neutralizing antibodies. The HCDR3 amino acid sequences

of each of the PG9/PG16, CH01–CH04 and PGT141–PGT145 clonal lineages were

obtained from GenBank deposited sequences and manually aligned. Conserved

amino acids within each clonal lineage are indicated by a dot (.); deletions are

indicated by a dash (–). Anionic residues (aspartic acid and glutamic acid) are bold

and highlighted in yellow; tyrosine residues are inverted and highlighted in blue.
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PGV04, VRC01, and VRC03 in complex with a gp120 core
protein, combined with the analysis of large sets of heavy
chain sequences obtained by 454 pyrosequencing, sug-
gested a convergent mode of epitope recognition among
CD4bs-specific bnAbs from different individuals [69]. The
similarities in epitope recognition occurred despite only
�50% amino acid similarity in heavy chain sequence and
the acquisition of divergent amino acid changes during
somatic hypermutation [69]. These divergent changes
maintained amino acids with similar chemical character-
istics in the antibody binding domains, suggesting that
epitope recognition may have been a driving force during
affinity maturation [69]. Similarly, the CD4bs-specific
HAAD motif antibodies were shown to have a core of amino
acid similarities despite being derived from different sub-
jects [70].

Unlike the quaternary structure preferring V1/V2 con-
formational epitope-specific bnAbs, the recently described
CD4bs-specific bnAbs appear to use a restricted set of VH
gene families. The majority, although not all, of these
bnAbs use VH1–2 or VH1–46 gene segments despite being
derived from different subjects [19,68–70]. In addition,
each of these CD4bs bnAbs has an extraordinarily high
number of somatic mutations (30–32% for the VH gene, 17–
20% for light chain variable gene nucleotides) and this level
of mutation may be required for these antibodies to medi-
ate broad neutralization [19,69,70]. Thus, CD4bs-specific
bnAbs may be particularly difficult to induce by vaccines,
given the level of chronic antigen stimulation needed to
induce such profound levels of heavy and light chain
mutation.

A third group of recently described bnAbs bind to car-
bohydrate epitopes in the gp120 V3 region (PGT121–
PGT123 and PGT135–PGT137) or to gp120 protein
carbohydrate-dependent V3 epitopes (PGT125–PGT128,
PGT130 and PGT131) [59]. This group of antibodies
appears to be more diverse than the V1/V2 bnAbs or the
CD4bs bnAbs, with recognition of multiple carbohydrate-
dependent epitopes. PGT130 and PGT131 show sensitivity
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to mutations in both the V3 and C4 regions of gp120,
whereas PGT125–PGT128 show sensitivity to mutations
in multiple locations in the V3 loop [59]. Antibodies
PGT121–PGT123 and PGT135–PGT137 are sensitive to
mutation of an asparagine at position 332 (N332) of the V3
loop, a position known to be critical for the recognition of
the well-described bnAb 2G12 [71]. This group of bnAbs
also competes with the binding of 2G12 to gp120, indicat-
ing that bnAbs with this pattern of reactivity can be found
in different HIV-1-infected subjects. The high mannose
glycans recognized by these bnAbs are similar to host
glycans, suggesting that they may also be regulated by
tolerance mechanisms.

The isolation of many new bnAbs and the efficacy seen
in the RV144 trial boosted optimism for the possibility that
a preventive HIV-1 vaccine can be formulated to induce
protective antibody-mediated responses. The isolation of
multiple specificities of bnAbs from chronically HIV-1-
infected subjects suggests that the immune system has
the capability to generate bnAb responses when properly
stimulated. However, many challenges remain that neces-
sitate the dissection of bnAb responses by integrating
functional, genomic, and computational approaches to elu-
cidate bnAb clonal lineage trees and to use them as tem-
plates for immunogen design.

B cell lineage vaccine design
For the design of future vaccine candidates, it may be
useful to use clues provided by the newly isolated bnAbs,
many of which have been found as clonal families of related
antibodies [19–21,59,69,70], and to use a newly proposed
strategy, termed B cell lineage immunogen design [23], for
construction of new vaccine candidates. B cell lineage
design builds upon the observation that immunogens with
the highest affinity for naı̈ve B cell receptors are the most
potent immunogens [72,73]. Using the nucleotide sequence
information from recovered clonally related bnAbs, unmu-
tated ancestor (UA) and intermediate ancestor (IA) anti-
bodies can be inferred using a combination of maximum
likelihood methods and Bayesian inference [23]. The prob-
ability that a given UA or IA is correct can be calculated,
and those UAs and IAs that are most likely to be correct
can then be synthesized. Using these UA and IA antibo-
dies, HIV-1 envelope constructs can be screened to select
those with the highest binding affinity; the resulting series
of envelopes can then be used as a set of experimental
immunogens that should be the best priming and boosting
immunogens for Env antibody induction [23]. Thus, study
of clonal lineages of bnAbs and application of B cell lineage
immunogen design can provide a theoretical map of the
maturational pathway used by HIV-1-infected subjects,
and thus provide us with a possible blueprint for their
induction by vaccines [23,74]. It is hoped that by using the
information derived from clonal lineages along with
computational biology approaches, it is possible to use
the inferred sequence of the original B cell receptor that
began the bnAb maturational process as a template to
design immunogens that would drive B cells to make
bnAbs in vaccinees (Figure 2).

The bnAb response differs considerably from the initial
antibody response in AHI [25–27,75]; how the bnAb
response evolves from the AHI response is not known.
The B cell response during AHI is primarily directed
against gp41 [27] and analysis of antibody clonal families
during this response shows that such antibodies are often
polyreactive [26]. In addition, inferred UAs of these clonal
families often do not react with HIV-1 antigens, suggest-
ing that they may have been originally directed against
non-HIV-1 targets [26]. A similar pattern has been seen for
some bnAbs; inferred UA of CD4bs-specific bnAbs show
weak affinity, in the high micromolar range, for HIV-1
envelope glycoproteins [67,69,70]. By contrast, the in-
ferred ancestor of the quaternary structure preferring
V1/V2 conformational epitope-specific bnAb lineage
CH01–CH04 bound to the AE.A244 gp120 Env at an
affinity thought to be biologically relevant for naı̈ve B cell
triggering [21,73,76] and this inferred ancestor was able to
neutralize four HIV-1 strains, including C.ZM233, a strain
also neutralized by an inferred ancestor of PG9 [21,62].
These data suggest that there are common motifs capable
of binding UAs of disparate bnAb clonal lineages. It will be
essential to map antibody maturation from AHI through
the 3–4 years of infection required for the development of
bnAbs in order to define the maturational pathways taken
by B cells. The sequence and structural changes that bnAb
B cell receptors undergo, driven by Env antigens,
should provide a blueprint for future vaccine candidates
(Box 1) [23].

Another unanswered question is whether all vaccinated
subjects will be able to make bnAbs with typical vaccina-
tion regimens (i.e., two to three immunizations) (Box 1).
Although the mechanism of B cell gene rearrangement
ensures a very broad initial antibody repertoire, person-to-
person variation in this initial repertoire may preclude the
existence of a B cell with the same specificity as the
inferred ancestor of a given bnAb family. In this regard,
the observed restriction of VH gene segments usage that
has been described for CD4bs bnAbs may be a benefit or
hindrance for vaccine design. The isolation of this class of
bnAbs from multiple subjects indicates that some degree of
convergent evolution among bnAbs of this specificity may
occur [69,70]. Conversely, if such restrictions are absolute,
people with a limited use of the necessary gene segments
may not be able to make such bnAbs, regardless of the
immunogen used. Whether a similar situation holds for
antibodies directed against the gp41 MPER is not yet
known; the antibody CAP206-CH12 directed against the
MPER uses the same VH1-69 gene segment as bnAb 4E10
[77]. An analysis of inferred ancestors of bnAb 2F5 showed
that allelic variants of VH2–5 that encoded an aspartic acid
at position 54 were capable of binding the 2F5 epitope,
whereas those encoding an asparagine at that position
bound much more weakly with an order of magnitude
lower affinity; these data suggest that allelic variation
could determine whether a vaccine recipient could make
2F5-like antibodies [78]. However, although bnAb 2F5 uses
VH2–5, a new 2F5-like crossreactive neutralizing antibody
(m66.6) uses VH5–51 [79], implying that there may be
alternative pathways to 2F5-like bnAbs. Convergent anti-
body evolution may also apply to the quaternary structure
preferring V1/V2 conformational epitope-specific bnAbs,
which display HCDR3s with similar features despite using
535
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Figure 2. Steps of a B cell lineage-based approach to vaccine design. Step 1 is to isolate variable heavy (VH) and variable light (VL) chain members from the peripheral

blood or tissues of patients containing broadly neutralizing antibodies (bnAbs) and to express these native Ig chain pairs as whole antibodies. Step 2 is to infer intermediate

ancestor (IA) antibodies (labeled 1, 2, and 3) and the unmutated ancestor (UA) antibody. Step 3 requires producing the unmutated and intermediate ancestors as

recombinant monoclonal antibodies (mAbs) and using structure-based alterations in the antigen [changes in envelope (Env) constructs predicted to enhance binding to the

unmutated or intermediate ancestors] or deriving altered antigens using a suitably designed selection strategy. Vaccine administration might prime with the antigen that

binds the unmutated ancestor most tightly, and this is then followed by sequential boosts with antigens optimized for binding to each intermediate ancestor. Shown here is

an actual clonal lineage of the V1/V2-directed bnAbs CH01–CH04 [21]. Targeting the unmutated ancestor with an immunogen that has enhanced binding may induce higher

antibody responses. If high-affinity ligands for unmutated ancestors cannot be found, then high-affinity ligands targeting the intermediate ancestors may be equally useful

for triggering a response. Modified from [23] and reprinted with permission.
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a diverse pool of VH families (Figure 1), thus suggesting
that people with diverse genetic backgrounds may be able
to make antibodies with similar reactivity against the
same antigen [61,62,64]. These data suggest that there
is no one single maturational pathway that every individ-
ual must follow in order to generate bnAbs of a particular
specificity. Rather, it suggests that there may be many
evolutionary possibilities and maturational pathways that
share common features that can achieve the production of
bnAbs. To maximize the success of lineage vaccine design
strategies, immunogens should also be optimized to better
bind to the desired Env bnAb paratopes in comparison to
Env paratopic variants predicted to result in non-protec-
tive antibodies. Thus, immunogens may need to be selected
for their ability to steer the immune response away from
non-protective responses at critical checkpoints during
clonal evolution and induce dominant responses that con-
tain signatures of broadly neutralizing antibodies (Box 1).

Manipulation of the naı̈ve B cell pool may also provide a
way to improve vaccine response. Knock-in mice expres-
sing 2F5 VH and VL genes demonstrated that both central
and peripheral tolerance mechanisms inhibit bnAb expres-
sing B cells [53,54]. Recent work suggests that manipula-
tion of the B cell pool with the cytokine B lymphocyte
stimulator (BLyS) can partially relieve peripheral toler-
ance in mice, thereby improving anti-HIV-1 responses [80].
Whether similar manipulation of human B cells combined
with novel immunogen designs will result in vaccine-in-
duced bnAbs is not known.

Finally, the design of immunogens should also take into
account the variability in human leukocyte class II antigen
536
(HLA class II) gene and allele usage, as differences in the
HLA class II genetic make-up restrict the pool of peptides
presented on the surface of antigen-presenting cells to
CD4+ T helper cells: in the RV144 HIV ALVAC-prime
AIDSVAX-boost efficacy trial, usage of the DRB1*11 and
DRB1*16:02 HLA class II alleles was associated with lack
of HIV-1 clade-specific neutralizing antibody responses,
and vaccine recipients with HLA-DQ heterodimers
encoded by DQA1*05:01 and DQB1*03:01 alleles were less
likely to produce neutralizing antibodies [81].

Using new tools to assess vaccine-induced antibody
responses
Plasma neutralization breadth can be mediated by either
many [82] or only one or a few [19,65] antibody specificities.
Thus, the ability to detect precursors of bnAbs induced by
vaccine candidates would be helpful. Several recent studies
[65,75,82,83] have shown that more than one specificity of
antibodies contributing to plasma neutralization breadth
can be generated in a single individual, suggesting it is
unlikely that immunological barriers prevent concurrent
development and maturation of multiple specificities of
bnAbs. Concurrent production of both CD4bs (CH30–
CH34) and quaternary structure preferring V1/V2 confor-
mational epitope-specific (CH01–CH04) bnAbs was recent-
ly demonstrated in a chronically HIV-1-infected subject,
showing that there is no absolute block on the development
of more than one bnAb specificity [83]. It has been shown
that the combination of two bnAbs can achieve almost pan-
HIV-1 neutralization in vitro, both for CH01 and CH31 [83]
and for PG9 and VRC01 [84]. Thus, determining if a
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candidate vaccine can initiate the maturation of multiple
specificities of bnAbs is of critical importance.

The high degree of somatic mutation of isolated bnAbs
suggests that they may require prolonged or multiple
rounds of antigen-driven maturation to achieve breadth
[85]. For this reason, a current critical question is whether
bnAb or vaccine-driven maturation results in the persis-
tence of antibody clonal families over time. This question
has only recently been addressed, and, at present, the data
from vaccination studies are mixed. The most studied
model is influenza vaccination, where multiple antibody
lineages are induced by repeated exposure to hemaggluti-
nin antigens either through infection or vaccination
[12,60]. The mean VH mutation frequency of antibodies
induced by repeated vaccination is �5% [12,60], although
some antibodies with exceptionally high mutation frequen-
cies (>25%) can be detected [12]. Interestingly, in the case
of influenza vaccination, these highly mutated antibodies
are not broadly crossreactive, suggesting that high degrees
of somatic mutation by itself is not predictive of broad
activity [12].

The techniques used to isolate bnAbs have recently been
extended to the assessment of HIV-1 vaccine trials. Re-
peated immunization with gp120W6.1D resulted in increas-
ing levels of mutation over the course of four
immunizations, although the final mutation level (3.8%)
was still rather modest compared with bnAbs [22]. In this
same study, evidence was found for the persistence of
clonal lineages over time, suggesting that candidate vac-
cines may be able to overcome one hurdle to bnAb devel-
opment [22]. Furthermore, examination of the ALVAC-
prime AIDSVAX-boost RV144 trial found that vaccine-
induced monoclonal antibodies with modest degrees of
mutation were able to mediate Tier 1 virus neutralization
and antibody-dependent cellular cytotoxicity [56,58]. Un-
fortunately, neither ALVAC-AIDSVAX nor gp120W6.1D

vaccine induced high levels of bnAbs, and so new vaccine
designs and formulations will be required to determine if a
HIV-1 vaccine that induces bnAbs can be created [23].

Concluding remarks
The application of several new technologies has led to the
isolation of a large number of new anti-HIV-1 bnAbs and
crossreactive neutralizing antibodies. These new groups of
HIV-1 envelope antibodies as well as the recent immune
correlates analysis of the RV144 HIV efficacy trial have
provided clues for strategies of rational vaccine design
based on understanding of bnAb clonal lineage pathways.

By using the same recombinant antibody techniques to
study human vaccine trials, we are now able to gauge the
effectiveness of candidate vaccines by comparing matura-
tion and clonal families of vaccine-induced antibodies with
those of bnAbs arising in HIV-1-infected subjects. Current
HIV-1 vaccine strategies appear to elicit antibodies with
diverse specificities similar to those seen in chronic infec-
tion, but with somatic mutation profiles more comparable
with those seen in AHI. This suggests that to elicit bnAbs
by HIV-1 vaccines, we must harness our knowledge of the
maturational pathways taken by those antibodies to guide
maturation toward bnAb specificities and around tolerance
deletion checkpoints.
Thus, identifying new clonal lineages of bnAbs, acquir-
ing information on the reactivities of UA and intermediate
antibodies, and identifying signatures that differentiate
bnAbs from non-protective antibodies targeting the same
epitopes are critical steps to facilitate the design of opti-
mized immunogens capable of selectively eliciting broadly
neutralizing responses.
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