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Checkpoint blockade immunotherapies enable the host immune system to 46 
recognize and destroy tumor cells1. Their clinical activity has been 47 
correlated with activated T-cell recognition of neoantigens, which are 48 
tumor-specific, mutated peptides presented on the surface of cancer 49 
cells2,3. How these underlying processes determine the success of 50 
immunotherapies has remained unclear. Here, we show that a fitness 51 
model for tumors based on immune interactions of neoantigens predicts 52 
response to immunotherapy. Two factors determine a neoantigen’s fitness 53 
cost. First, the cost depends on its presentation by the major 54 
histocompatibility complex (MHC), estimated as a function of that 55 
neoantigen’s relative MHC binding affinity. Second, it depends on T-cell 56 
recognition of a neoantigen, which is modeled as a non-linear function of 57 
its sequence similarity to known antigens. To describe the evolution of a 58 
heterogeneous tumor, we evaluate its fitness as a weighted average over 59 
dominant neoantigens in the tumor’s subclones. Our model predicts 60 
survival in anti-CTLA-4 treated melanoma patients4,5 and anti-PD-1 treated 61 
lung cancer patients6. Importantly, low-fitness neoantigens identified by 62 
our method may be leveraged for developing novel immunotherapies. By 63 
using an immune fitness model to study immunotherapy, we reveal broad 64 
evolutionary similarities between cancers and fast-evolving pathogens7-9.  65 
  66 
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Recent clinical trials using immune checkpoint blocking antibodies, such as anti-67 
cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4), or anti-programmed 68 
cell death protein-1 (anti-PD-1), have improved overall survival in many 69 
malignancies by disinhibiting the immune system1. However, only a minority of 70 
patients achieves a durable clinical benefit, suggesting there may be genetic 71 
determinants of response. De novo somatic mutations within coding regions can 72 
create neoantigens – novel protein epitopes specific to tumors, which MHC 73 
molecules present to the immune system and which may be recognized by T-74 
cells as non-self. An elevated number of mutations or neoantigens has been 75 
linked to improved response to checkpoint blockade therapy in multiple 76 
malignancies4-6. Hence, inferred neoantigen burden is a coarse-grained proxy for 77 
whether a tumor is likely to respond to therapy. Other implicated biomarkers of 78 
response include T-cell receptor (TCR) repertoire profiles10, assays of checkpoint 79 
status11,12, immune based microenvironment signatures4,13, and tumor 80 
heterogeneity14. Despite high overall mutational load, a heterogeneous tumor 81 
may have immunogenic neoantigens present only in certain subclones. As a 82 
result, therapies targeting only a fraction of the tumor could disrupt clonal 83 
competitive balance and inadvertently stimulate growth of untargeted clones16,17. 84 
Moreover, mass spectrometry-based validation of neoantigens, already limited by 85 
sensitivity, does not sample all of the many relevant clones in heterogeneous 86 
tumors nor account for clonal variations across metastases15. A mathematical 87 
model using genomic data has the advantage of broad consideration of 88 
neoantigen space. Worldwide efforts are being undertaken to model neoantigens 89 
and quantify neoantigen features from genomic data, and a predictive 90 
neoantigen-based model for immunotherapy response is therefore a highly 91 
sought-after goal. 92 
 93 
We propose a fitness model of immune interactions to describe the evolutionary 94 
dynamics of cancer cell populations under checkpoint-blockade immunotherapy 95 
(Fig. 1). Fitness models of this kind have been successful in capturing immune 96 
interactions for human influenza7, HIV8 and chronic viral infections9, and we aim 97 
to introduce this approach to the study of immunotherapy. Checkpoint blockade 98 
exposes cancer cells to strong immune pressure on their neoantigens and 99 
thereby reduces their reproductive success.  Our fitness model, which is detailed 100 
below, predicts the evolution of a cancer cell population under such selection 101 
pressure. Specifically, we compute ݊(߬), the predicted effective size of a cancer 102 
cell population in a tumor relative to its effective size at the start of therapy. This 103 
effective size is a weighted sum over tumor’s genetic clones (Fig. 1a, Methods), 104 
 105 ݊(߬) =  ܺఈ exp(ܨఈ߬)ఈ  (1)

 106 
where ܨఈ  is the fitness and ܺఈ is the initial frequency of clone ߙ  and ߬  is a 107 
characteristic evolutionary time scale (Methods). Our effective size estimates the 108 
number of cancer cells required to generate the observed population diversity 109 
and is not an estimate of the physical tumor size. Patients with less 110 
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immunologically fit tumors will have more significant size reductions and, we 111 
assume, improved survival prognosis, which is it what we aim to predict. To 112 
reconstruct the clonal tree structure of a tumor from exome sequencing data, we 113 
use a likelihood scheme based on the allele frequencies of its mutations18. Unlike 114 
in previous approaches14, here we learn the ancestral dependencies between 115 
clones. These determine the mutations and neoantigens that are inherited by 116 
clones from their ancestors (Fig. 1a). Our fitness model assigns to subclones the 117 
same or lower fitness than their ancestral clones, depending on whether they 118 
acquired new dominant neoantigens.  119 
 120 
Our approach quantifies two essential factors that determine immunogenicity of    121 
a neoantigen: an amplitude determined by MHC-presentation, ܣ, and the 122 
probability of TCR-recognition, ܴ (defined below). We call the product of these 123 
two factors, ܣ × ܴ, the cross-reactivity load of the neoantigen. Next, we quantify 124 
total fitness for cancer cells in a tumor clone by aggregating over the fitness 125 
effects due to its neoantigens (Fig 1b, Methods). Specifically, we model the 126 
fitness of a given clone ߙ by the cross-reactivity load of the immunodominant 127 
neoantigen, 128 
ఈܨ 129  = − max∈ Clone α (ܣ × ܴ) (2)

 130 
where index ݅ runs over all neoantigens in clone α (we discuss other choices for 131 
aggregating neoantigen fitness effects in Methods). We utilize nonamer 132 
neoantigens inferred by a consistent identification pipeline with dissociation 133 
constants for both mutant and wildtype peptides for a patient’s HLA type18 (SI). 134 
 135 
We quantify the MHC-presentation factor for a neoantigen using the relative 136 
MHC affinity between the wildtype and the mutant peptide. This ratio, which was 137 
used to analyze computational neoantigen predictions20, defines our amplitude 138 ܣ 
(Methods). We show that, unlike considering the mutant or wildtype affinity value 139 
alone, the ratio has consistent predictive value within our model (Extended Data 140 
Table 1). The interpretation of this model component is consistent with the 141 
competitive advantage gained by a neoantigen due to increased concentration, 142 
and a neoantigen being less likely to have immune tolerance due to presentation 143 
of its closest self-peptide (see discussion in Methods). 144 
 145 
For TCR-recognition, we model cross-reactivity of neoantigens with positive, 146 
class I restricted T-cell antigens from the Immune Epitope Database21 (IEDB). 147 
This approach does not assume preexisting immunity due to this set of epitopes. 148 
Rather, we posit that neoantigens predicted to be more cross-reactive with           149 
a member of this set are more “non-self” and, therefore, more likely to be 150 
immunogenic. As cross-reactivity is caused by physical binding of a TCR and a 151 
neoantigen, we use an established thermodynamic model to estimate this 152 
binding probability from sequence22. For a neoantigen with peptide sequence 153 ܛ 
and IEDB epitope with sequence ܍, the alignment score between ܛ and ܍ is used 154 
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as a proxy for the binding energy between this neoantigen and a TCR specific to 155 
epitope ܍. Under this assumption, each mutation that changes a residue in ܍ into 156 
a corresponding residue in ܛ in their alignment will increase the binding energy 157 
between ܛ and the TCR recognizing epitope ܍, proportionally to the alignment 158 
mismatch cost. Importantly, the probability a TCR binds a neoantigen is given by 159 
a nonlinear logistic dependence on sequence alignment score (Fig. 2). A similar 160 
nonlinear dependence on sequence similarity was previously used to estimate 161 
cross-immunity between influenza strains: strains with homologous epitope 162 
regions are likely to be antigenically similar7. Our model does not require full 9-163 
amino acid identity of the neoantigen and epitope sequences for recognition.  164 
The total TCR-recognition probability,  ܴ, is defined as the probability that 165 
neoantigen ܛ is recognized by at least one TCR corresponding to an IEDB 166 
epitope (Methods). 167 
 168 
We apply the model to three datasets: two melanoma patient cohorts treated with 169 
anti-CTLA-44,5, and one lung tumor cohort treated with anti-PD-16. We assess 170 
our predictions with available patient survival data: total survival times of patients 171 
in the melanoma cohorts and progression free survival data on the lung cohort. 172 
Neoantigen amino-acid anchor positions, 2 and 9, are constrained due to their 173 
molecular function and display a hydrophobic bias, which is also reflected by 174 
non-informative MHC affinity amplitudes (Extended Data Fig. 1a). Hence, 175 
neoantigens with mutations in these positions are excluded from predictions with 176 
our model. Amino-acid diversity in remaining positions is unconstrained 177 
(Extended Data Fig. 1b)23. Parameter ߬, a characteristic evolutionary time scale 178 
for a patient cohort, is a finite value at which we expect cancer populations from 179 
responding tumors to have been affected by the therapy. This is the time at 180 
which, following equation (1), samples are predicted to have a resolved 181 
heterogeneity, with their highest fitness clone dominating the evolutionary 182 
dynamics. We show that we are able to choose a consistent value of ߬ across 183 
datasets and that predictions are stable in a broad interval around it (Methods 184 
and Extended Data 2). Two model parameters are optimized: the midpoint and 185 
the steepness of the logistic binding function, which describes the probability of 186 
binding between neoantigens and epitope-specific TCRs (Methods). We 187 
maximize the survival log-rank test score to fit the binding curve parameters to 188 
the data on the largest dataset, Van Allen et al.5 (103 metastatic patients). The 189 
parameter choice is confirmed to give high log-rank test scores also in the two 190 
smaller datasets from Snyder et al., and Rizvi et al., (64 and 34 patients 191 
respectively) (Fig. 2 and Extended Data Fig. 3). When using these logistic 192 
function parameters in all three datasets, the binding probability of 0.5 is obtained 193 
by alignments of average length of 6.55 amino acids; for almost certain binding of 194 
probability above 0.95 the average alignment length is 6.98 amino acids.  195 
 196 
The predicted evolutionary dynamics of tumors separates long- and short-term 197 
survivors in our datasets (Fig. 3). Long-term survivors (patients with survival time 198 
longer than two years in the Van Allen et al. and Snyder et al. datasets, and one 199 
year of progression free survival in Rizvi et al. dataset) are predicted to have 200 
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faster decreasing relative population sizes ݊(߬) . Moreover, our fitness model 201 
results in highly significant separation of patients in survival analysis of all three 202 
datasets (Fig. 4). We use the median value of ݊(߬) to separate patients into high 203 
and low predicted response groups. Using the median as opposed to an 204 
optimized threshold4,5,14 prevents overfitting and allows for robust validation. Log-205 
rank test p-values are p=0.001 for the Van Allen et al., p=0.011 for Snyder et al., 206 
and p=7.8e-5 for Rizvi et al. For comparison, a model considering only total 207 
neoantigen burden is significant only for Rizvi et al. (p=0.007), when also using 208 
unsupervised median partitioning of patients. We also use an alternative 209 
neoantigen load model that accounts for clonal structure (Methods). Again, only 210 
the Rizvi et al. cohort has a significant patient survival separation (p=0.0009, 211 
Extended Data Table 1).  212 
 213 
The success of our model strongly depends on the joint contribution of two 214 
fitness components, the MHC presentation amplitude and TCR recognition 215 
probability in equation (2). We deconstruct the model by removing each of          216 
the components one at a time (Fig 4, bottom panels and Extended Data Table 1). 217 
The MHC-only model, achieved by fixing ܴ = 1, results in consistently worse 218 
segregation of patients (not significant in Snyder et al., decreased significance in 219 
Van Allen, et. al, and Rizvi, et. al, p=0.027 and p=0.004 respectively). The TCR-220 
recognition-only model, achieved by fixing ܣ = 1, does not result in a significant 221 
segregation in any cohort. It is important to assess the clonal structure of a tumor 222 
when trying to identify dominant neoantigens. We compare the performance of 223 
the full model to one assuming homogenous, single-clone tumor structure, with 224 
all neoantigens at tumor frequency = 1 (Methods). This model does not 225 
segregate patients significantly in Van Allen et al., and performs worse in Rizvi et 226 
al. (p =0.019). In Snyder et al., the homogenous structure model gives slightly 227 
better separation than the full model (p=0.008); however, the score difference 228 
between the two is within error bars of the original model. 229 
 230 
In a broader context, our model suggests strong similarities in the evolution of 231 
cancers and fast-evolving pathogens. In both systems, immune interactions 232 
govern the dynamics of a genetically heterogeneous population; fitness models 233 
can predict these dynamics over limited periods, as recently shown for seasonal 234 
human influenza7. Yet there are important differences between the immune 235 
interactions of these systems. Influenza evolution is determined by antigenic 236 
similarity with previous strains in the same lineage. Cancer cells originate from 237 
normal cells and acquire mutations in a large set of proteins. Hence, their 238 
immune interactions are distributed in a larger antigenic space. The fitness 239 
effects of these interactions have a specific interpretation: they capture 240 
neoantigen “non-selfness”; that is, they formalize aspects of what makes a tumor 241 
immunologically different from its host24. Thus, our fitness model quantifies         242 
the presence of non-self peptides in cancers, which offers insight into adaptive 243 
immunity analogous to that for innate recognition of non-self nucleic acids25.  244 
Our approach can be naturally extended to other fitness effects, such as positive 245 
selection due to acquisition of driver mutations, the impact of other components 246 
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in the tumor microenvironment or the hypothesized role of the microbiome26,27,28. 247 
Modeling evolutionary dynamics of a cancer cell population can also be useful in 248 
studies of acquired resistance to therapy, which is a more distant response 249 
effect. The proposed fitness model is based on biophysical interactions 250 
underlying the presentation of neoantigens and their immune cross-reactivity. 251 
Therefore, besides its predictive function, it may also inform the choice of 252 
therapeutic targets for tumor vaccine design. Moreover, this insight may be 253 
crucial for understanding when cross-reactivity with self-peptides may result in 254 
side effects29,30.  255 
 256 
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Figures 315 
 316 

 317 
Figure 1 | Evolutionary tumor dynamics under strong immune selection and 318 
a neoantigen fitness model based on immune interactions. a, Clones are 319 
inferred from a tumor’s phylogentic tree. We predict ݊(߬), the future effective size 320 
of the cancer cell population, relative to its size at the start of therapy (equation 321 
(1)), by evolving clones forward under the fitness model over a fixed time-scale, 322 ߬. Application of therapy can decrease fitness of tumor clones depending on their 323 
neoantigens. Tumors with strongly negative fitness have a greater loss of 324 
population size than more fit tumors. b, Our fitness model accounts for the 325 
presence of dominant neoantigens within a clone, ߙ, by modeling the presen-326 
tation and recognition of inferred neoantigens and assigning a fitness to a clone, 327 ܨఈ. 328 
  329 
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 330 

 331 
Figure 2 | Survival landscape as a function of TCR binding model.  332 
a, The landscape is a contour plot of log-rank test scores in survival analysis with 333 
patient data split by median relative population size (equation (1)). The locally 334 
smoothed landscape is plotted for the Van Allen et al. dataset as a function of the 335 
model parameters for the logistic curve midpoint (ܽ ) and steepness ( ݇ ) 336 
(Methods). b, Logistic binding curve at inferred midpoint and steepness para-337 
meters used across all three datasets from parameters in Van Allen et al.  338 
The curve represents the binding probability of a neoantigen and a T-cell 339 
receptor specific to a given IEDB epitope as a function of alignment score 340 
between the neoantigen’s peptide sequence and the epitope.  341 
  342 
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 343 

 344 
 345 
Figure 3 | Evolutionary dynamics predictions in patient cohorts. a, Relative 346 
population size predictions for long-term and short tem survivors across the a, 347 
Van Allen et al.; b, Snyder et al.; and c, Rizvi et al. cohorts. Long-term survivors 348 
are defined in the text. Error bars are 95% confidence intervals around the 349 
population average. The dashed line indicates the consistent choice of ߬ = 0.06 350 
used across all three datasets for patient survival predictions (Methods and 351 
Extended Data Figure 3). 352 
  353 
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 354 

 355 
 356 
Figure 4 | Neoantigen fitness model is predictive of patient survival after 357 
checkpoint blockade immunotherapy. a,b, Kaplan-Meier survival curves are 358 
calculated across two melanoma patient datasets with patient survival data, 359 
which were treated with anti-CTLA-4 antibodies4,5 and c, one dataset of lung 360 
patients with progression free survival data, which were treated with anti-PD-1 361 
antibodies6. The samples are split in an unsupervised manner by the median 362 
value of their tumor’s relative population size ݊(߬) defined in equation (1); the 363 
error bars represent the standard error. For comparison we show the log-rank 364 
test score for models, which account for removal of one feature of our model 365 
(bottom panels, higher score values indicate better patient segregation): an 366 
MHC-presentability only model (light blue) and a TCR-recognition only model 367 
(yellow). We compare their values with a tumors’ neoantigen burden (red). All 368 
models are computed both over a tumor’s clonal structure (clonal, left) and 369 
without taking heterogeneity into account (homogenous, right). Dashed lines on 370 
the bottom panels marks the score value corresponding to the significance 371 
threshold of 5%, scores above that threshold raise significant patient 372 
segregation. The error bars are the standard deviation of log-rank test score 373 
acquired from the survival analysis with one sample removed from the cohort at a 374 
time. 375   376 
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Extended Data Figures 377 

 378 
Extended Data Figure 1 | Positions 2 and 9 in neoantigens are of less 379 
predictive value. a, Neoantigens with mutations at anchor residues at position 2 380 
and 9 have highly diverging amplitude values and are of less overall predictive 381 
value than neoantigens at other positions. b, Patients classified in studies as 382 
responders are marked in blue and non-responders are marked in red. Positions 383 
2 and 9 are highly constrained by a bias to be hydrophobic. Their Shannon 384 
entropy is lower than that of other residues, across all three datasets regardless 385 
of classification of their neoantigens in those datasets. Other residue sites have 386 
the same entropy as the overall proteome22 and are therefore unconstrained. 387 
  388 
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 389 

 390 
Extended Data Figure 2 | Consistency of evolutionary time-scale across 391 
datasets. a, The distribution of characteristic times scales of samples with clonal 392 
fitness heterogeneity (Methods) for the three patient cohorts. These distributions 393 
consistently define the interval for relevant time scales of ߬, in all datasets we 394 
subsequently investigate ߬ ∈ [0,0.5] . b-d, Significance of survival analysis 395 
reported as the result of the log-rank test on the three datasets with sample split 396 
at a median value ݊(߬) plotted as a function of ߬. The chosen value of parameter 397 ߬ =0.06 and a broad surrounding interval gives highly significant sample 398 
segregation in each of the datasets.  399 
  400 
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 401 

 402 
 403 
Extended Data Figure 3 | Survival landscape for Snyder et al., and Rizvi et 404 
al., cohorts. The survival landscape is defined by the log-rank test score as a 405 
function of the model parameters for the logistic curve shape, i.e the midpoint (ܽ) 406 
and steepness (݇) (Methods). The locally smoothed landscape is plotted for the 407 
a, Snyder et al., and b, Rizvi et al., datasets. An X marks the optimal parameters 408 
from Van Allen et al., ܽ  =23 and ݇  =1 (cf. Fig. 2), which are used to derive 409 
survival curves for these two datasets and are at high score regions of the 410 
landscapes. 411 
  412 
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 413 

 414 
 415 
 416 
Extended Data Figure 4 | Word usage in the proteome is exhausted 417 
between 5 and 6 letter words.  Given the entropy of the genome from Ref. 23, 418 
we calculate the expected number of words of a given length in the proteome as 419 
a function of word length. We compare that to the number of unique words in the 420 
proteome of a given length. Between 5 and 6 letters the two curves diverge due 421 
to the finite size of the genome. By the time one reaches 9 letter nonamers (the 422 
length of a neoantigen) this divergence is of several orders of magnitude. 423 
  424 
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Extended Data Table 1 | Ranking of fitness models. We compare survival 425 
prediction of our full fitness model (Methods, equation  (9)) with alternative 426 
models described in Methods: (1) models that eliminate one of the features of the 427 
full model, namely the MHC-presentability only model (Methods, equation (13)) a 428 
nd a TCR-recognition only model (Methods, equation (14)); absolute MHC-429 
amplitude model and absolute wildtype MHC-amplitude model (Methods, 430 
equations (15) and (16) respectively); simple neoantigen load model and 431 
mutational load model (Methods, equations (17) and (18)); and finally an additive 432 
neoantigen fitness model (Methods, equation (19)), which summates fitness 433 
contributions of neoantigens in a clone as opposed to maximizing them as in our 434 
original model. (2) Above models evaluated without accounting for clonal 435 
structure structure of tumors. For each model we report the following parameters 436 
(if applicable):  the aggregating function for neoantigen effects within a clone 437 
(MAX or SUM replacing Ag in equation (11)), the value of parameter ߬ used in 438 
predictions, the parameters of the logistic function ܽ and ݇ (Methods, equation 439 
(7)). Finally, we report the predictive value of the models as the log-rank test p-440 
value and the corresponding log-rank test score. The comparison is shown on all 441 
three immunotherapy datasets.  442 
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Methods 472 
 473 
1. Evolutionary dynamics of a cancer cell population in a tumor 474 
 475 
The fitness of a cancer cell in a genetic clone ߙ is its expected replication rate, 476 
i.e.  477 
 478 ݀ ఈܰ݀߬ = ఈܨ ఈܰ (3)

 479 
where ఈܰ is the population size of clone ߙ. Checkpoint-blockade immunotherapy 480 
introduces a strong selection challenge, which we anticipate overshadows pre-481 
therapy fitness effects in a productive response. For a given clone ߙ  the 482 
dynamics of its absolute size are hence given by ఈܰ(߬) = ఈܰ(0)exp(ܨఈ߬), and the 483 
total cancer cell population size is computed as a sum over its clones  484 
 485 ܰ(߬) =  ఈܰ(߬) =ఈ  ఈܰ(0)exp(ܨఈ߬)ఈ . (4)

 486 
The absolute size ܰ(߬) is meant as the effective population size, the number of 487 
cells estimated to have generated the observed clonal diversity; it is not to be 488 
understood as the physical tumor size. As our diagnostic of survival we use the 489 
relative effective population size ݊(߬) = ܰ(߬)/ܰ(0),  which compares the 490 
predicted evolved population size after a characteristic time scale of evolution ߬ 491 
(discussed below) to the initial pretreatment effective size ܰ(0). We denote the 492 
initial clone ߙ  frequency ܺఈ = ఈܰ(0)/ܰ(0), these frequencies are inferred from 493 
bulk exome reads from a tumor sample17. Hence, to compute ݊(߬)  we only 494 
require estimates of the initial frequencies and fitness values for each clone, as 495 
shown in equation (1); the absolute population size estimates are not needed. 496 
 497 
Clonal structure of a tumor and clone frequencies. Tumor clones are 498 
reconstructed using the PhyloWGS software package18 (SI). The trees estimate 499 
the nested clonal structure of the tumor and the frequency of each clone, ܺఈ. The 500 
differences between  the high scoring trees are marginal on our data, concerning 501 
only peripheral clones and small differences in frequency estimates. We compute 502 
the predicted relative size of a cancer population ݊(߬) as an averaged prediction 503 
over 10 trees with the highest likelihood score. 504 
 505 
2. Fitness model 506 
 507 
MHC-amplitude. The amplitude due to the dissociation constant between a 508 
neoantigen and its wildtype peptide is defined as 509 ܣ = ெ். (5)ܭ/ௐ்ܭ

The dissociation constants are inferred for each peptide sequence and patient 510 
HLA type19; all mutant peptide sequences considered as neaontigens meet the 511 
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standard cutoff, ܭெ் < 500 nM  (SI). The amplitude in this form has a high 512 
predictive value for patient survival predictions (discussed in section 4., 513 
demonstrated in Fig. 4 and Extended Table 1), consistently over the three patient 514 
cohorts, which is not the case of either the mutant or wildtype dissociation 515 
constants on their own. 516 
 517 
We offer two interpretations of why this amplitude is relevant, which are not 518 
mutually exclusive of one another. The first is that the amplitude can be thought 519 
of as an approximate form derived with the use of simple equilibrium kinetics, 520 
where the concentration of peptide bound to MHC is given by their individual 521 
concentrations and inferred binding constant ܭ , derived from NetMHC19. The 522 
underlying dependencies are 523 
= ܣ 524  [MHC: neoantigen]ெ்[MHC: neoantigen]ௐ் = ெ்[MHC]ௐ்[neoantigen]ௐ்,  (6)ܭௐ்[MHC]ெ்[neoantigen]ெ்ܭ

 525 
where [MHC: neoantigen]ெ்  is the concentration of the mutant form of the 526 
neoantigen to MHC, with the ܹܶ superscript representing the same quantity for 527 
the wild-type peptide. This interpretation assumes the above quantity is 528 
dominated by the ratio of dissociation constants, which derives the formula for 529 ܣ 
in equation (5). In this sense, the amplitude reflects the relative concentration of 530 
mutant to wildtype peptide and therefore the likelihood that the mutant peptide 531 
would be presented versus its wildtype peptide. As such it may reflect the 532 
competitive advantage a neoantigen has acquired in terms of presentation 533 
through mutation, as posited in other in silico analyses31. 534 
 535 
The second interpretation is that the amplitude reflects the likelihood a 536 
neoantigen is similar to a peptide that has undergone immune tolerance. As we 537 
exclude neoantigens with mutations on positions 2 and 9, a high value of 538 
amplitude means the wildtype peptide is also likely to have hydrophobic residues 539 
at the anchor position and hence can be presented by the MHC. Since 540 
neoantigens differ from their wildtype peptides by a single mutation, and given 541 
the uniqueness of nonamer sequences in the proteome (Extended Data Fig. 4), 542 
the self-nonamer in the genome with the greatest similarity to a neoantigen is 543 
likely to be its wildtype peptide. We verified that this is the case for 92% of all 544 
neoantigens, with the remainder largely emanating from gene families with many 545 
paralogs (SI). Therefore a high amplitude usually stands for the self peptide most 546 
similar to a neoantigen not being likely to have been abundantly presented by the 547 
MHC. Following this reasoning, the mutant peptide with high affinity is likely to be 548 
novel to T-Cells as its immunogenicity is not mitigated by a homologous self-549 
peptide.  550 
 551 
TCR-recognition.  We model ܴ, the cross-reactivity of a neoantigen with a TCR-552 
pool defined as the probability that a neoantigen cross-reacts with at least one 553 
TCR corresponding to a known immunogenic epitope. We profile in silico the 554 
cross-reactivity of neoantigen with a set of epitopes given by the Immune Epitope 555 
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Database and Analysis Resource21 (IEDB). We restrict ourselves to IEDB 556 
epitopes that are positively recognized by T-cells after class I MHC presentation. 557 
We hypothesize that a neoantigen that is predicted to cross-react with a TCR 558 
from this pool of immunogenic epitopes is a neoantigen more likely to be 559 
immunogenic itself. 560 
 561 
The probability that a TCR for a given epitope binds a given neoantigen is 562 
defined by a simple two-state thermodynamic model with logistic shape. In this 563 
model we use sequence alignment as a proxy for binding energy22. To assess 564 
sequence similarity between a neoantigen with peptide sequence ܛ and an IEDB 565 
epitope ܍, we compute a gapless alignment between the two sequences with a 566 
BLOSUM62 amino-acid similarity matrix32. For an alignment score, |ܛ, ,|܍  we 567 
compute the binding probability as 568 

 569 Prbinding(ܛ, (܍ = 11 + ݁ି(|܍,ܛ|ି), (7)

 570 
where ܽ represents the horizontal displacement of the binding curve and ݇ sets             571 
the steepness of the curve at ܽ. These are two free parameters to be fit in our 572 
model (see below). The parameters that we use in predictions are ܽ=23 and ݇=1; 573 
these parameters give binding probability Prbinding(ܛ, (܍ =0.5 at alignment score 574 |ܛ, ,ܛ| the probability drops to below 0.05 at ;23=|܍  and reaches value of 575 20=|܍
above 0.95 at |ܛ,  The corresponding alignment score span of 6 is 576 .(Fig. 2b) 26=|܍
close to the average identity match score in the BLOSUM62 matrix (5.64). The 577 
average alignment length corresponding to score 26 is 6.98 amino acids in our 578 
datasets and it is 6.55 for binding probability 0.5. The logistic function is therefore 579 
a strongly nonlinear function of the alignment score, where a mismatch on 1-2 580 
positions can decide about lack of binding between the neoantigen and the 581 
epitope specific TCR. 582 
 583 
For a given neoantigen ܛ we calculate the probability it is recognized by a TCR 584 
within a repertoire as the probability it cross-reacts with at least one IEDB 585 
epitope: 586 

 587 ܴ =  1 − ෑ IEDB∋܍] 1 − Prbinding(ܛ, (8) [(܍

 588 
Neoantigen-based fitness cost for a tumor clone. Our model associates each 589 
neoantigen with a fitness cost, the cross-reactivity load, defined as the product of          590 
the MHC-amplitude in equation (5) and TCR-recognition probability in equation 591 
ܣ ,(8) × ܴ. 592 
To assess the total fitness effect for a clone ߙ  with multiple neoantigens, we 593 
aggregate the individual neoantigen fitness effects as ܨఈ =  − max∈ Clone α (ܣ ×594 ܴ), where ݅ is an index running over neoantigens in the clone. Therefore, the full 595 
form of the predicted relative cancer cell population size is given by 596 

 597 
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݊(߬) =  ܺఈ exp[ − max∈ Clone α (ܣ × ܴ) ߬]ఈ . (9)

 598 
One could use a more general model for fitness model of a clone, 599 
ఈܨ 600  = − Ag∈ Clone α 

ܣ) × ܴ) (10)

and use different function Ag to aggregate over cross-reactivity fitness effects of 601 
neoantigens within a clone, such as a summation over all neoantigens (Extended 602 
Data Table 1), summation over a fixed set, or other nonlinear dependency. 603 
Taking the best score within a clone is consistent with the notions of 604 
heterologous immunity and immunodominance – that a small set of antigens 605 
drive the immune response, whereas summing over neoantigens would imply a 606 
more uniform distribution of contributions.  607 
 608 
3. Model parameters 609 
 610 
Logistic binding function parameter optimization.  To choose model 611 
parameters ܽ  and ݇  in equation (7) we investigate the log-rank-test scores of 612 
patient segregation as a function of these parameters. The survival analysis is 613 
performed by splitting patient cohort into high and low fitness groups by the 614 
median cohort value of ݊(߬), the predicted relative cancer cell population size at 615 
a characteristic time ߬ (we discuss the choice of ߬ below). The survival score 616 
landscapes (Fig. 2 and Extended Data Fig. 3) appear to be consistent between 617 
the datasets, with an optimal value of parameter ܽ around 23 and parameter ݇ 618 
living on a trivial axis above value 1, suggesting strong nonlinear fitness 619 
dependence on the sequence alignment score. We choose parameters that 620 
optimize the log-rank-test score in the largest dataset in our study, the melanoma 621 
anti-CTLA4 cohort from Van Allen, et al5. 622 
 623 
Characteristic time scale parameter estimation. In the survival analysis the 624 
samples are split by the median cohort value ݊(߬) at a specified time scale ߬. 625 
Intuitively, this time should be set to a finite value at which the tumors are 626 
expected to have responded to therapy. At this value of ߬  the clonal 627 
heterogeneity of tumors is supposed to have decreased, with the highest fitness 628 
clone dominating in the population. For one tumor this time scale is inversely 629 
proportional to the standard deviation of intra-tumor fitness (i.e. of the order of 630 1/(ܨ)ߪ), where 631 
(ܨ)ଶߪ 632  =  ܺఈఈ ఈଶܨ − ൭ ܺఈܨఈఈ ൱ଶ. (11)

 633 
In each cohort we determined the interval of characteristic times of heterogenous 634 
samples (Extended Data Fig. 2a) and we tested the dependence of prediction 635 
power on ߬ by performing log-rank test (Extended Fig. 2b-d). The optimal values 636 
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of ߬ in each cohort belong to a relatively wide interval. The consistent broadness 637 
of these intervals suggests low sensitivity of predictive power on ߬. Moreover, the 638 
parameter intervals giving highly significant patient segregation are also 639 
consistent between the cohorts. We choose ߬ = 0.06 for our predictions in all 640 
datasets. As ߬  is an inverse fitness it also defines a typical maximum cross-641 
reactivity load in a clone beyond which one would expect to have a clone that 642 
responded to therapy. For instance, at ߬ = 0.06 this typical fitness value would be 643 
about 16.67. This would indicate that a neoantigen with a TCR recognition 644 
probability ܴ = 1 would on average lead to a productive response if the ratio of its 645 
dissociation constants would be greater 16.67. Well beyond that value 646 
amplitudes would essentially carry the same predictive value. 647 
 648 
Heterogenous samples were selected with criterion ݁ுಷ ≥ 2, where ܪி  is clonal 649 
fitness entropy defined as 650 
ிܪ 651  = −  ఉܻఉ log ఉܻ, (12)

 652 
where the frequencies of clones with the same fitness are added together and 653 
denoted as ఉܻ. The index ߚ then refers to all clones with a given fitness. 654 
 655 
4. Alternative fitness models 656 
 657 
We compare our full model in equation (9) to the following alternative models 658 
(Extended 659 
 Data Table 1): 660 
 661 

1. Heterogenous structure models 662 
 663 

a. MHC-presentability only model: 664 
In this model the recognition factor is ignored and fitness is 665 
assumed to be determined only by MHC-amplitude of neoantigens. 666 
The defining equation is given by 667  ݊(߬) =  ܺఈ exp[ − max∈ Clone α 

ܣ ߬]ఈ . (13)

 668 
b. TCR-recognition only model: 669 

Conversely, in this model the MHC-presentation factor is ignored 670 
and fitness is assumed to be determined only by TCR-recognition 671 
of neoantigens. The defining equation is given by 672 
 673 ݊(߬) =  ܺఈ exp[ − max∈ Clone α 

ܴ ߬]ఈ .  (14)

 674 
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c. Absolute MHC-amplitude model 675 
In this model the likelihood of MHC presentation for a neoantigen is 676 
inversely correlated with its inferred dissociation constant,  677 ܣୟୠୱ =  ெ்(cf. equation (5)). The model is defined as 678ܭ/1
 679 ݊(߬) =  ܺఈ exp[ − max∈ Clone α 

൫ܣୟୠୱ × ܴ൯ ߬]ఈ .
 

(15)

 

d. Absolute MHC-amplitude model 680 
In this model the likelihood of MHC presentation for a neoantigen is 681 
inversely correlated with its inferred dissociation constant,  682 ܣୟୠୱ, =  ௐ்(cf. equation (5)). The model is defined as 683ܭ
 684 ݊(߬) =  ܺఈ exp[ − max∈ Clone α 

൫ܣୟୠୱ, × ܴ൯ ߬]ఈ .
 

(16)

e. Neoantigen load model 685 
This model assigns uniform fitness cost to each neoantigen. For ܮఈ, 686 
the number of neoantigens in clone α, this model is defined by 687 
 688 ݊(߬) =  ܺఈ exp[ − ఈ߬]ఈܮ . 

(17)

We do not exclude neoantigens with mutations on positions 2 and 9 689 
in the neoantigen load model. 690 
 691 

f. Mutational load model 692 
This model assigns uniform fitness cost to each somatic mutations. 693 
For,  ܮఈெ, the number of somatic mutations (with respect to a normal 694 
cell) in clone α, this model is defined by 695 
 696 ݊(߬) =  ܺఈ exp[ − ఈெ߬]ఈܮ . (18)

 697 
g. Additive neoantigen fitness model 698 

This model implements an additive neoantigen aggregating 699 
function, namely  700 
 701 ݊(߬) =  ܺఈ exp − ൬ ܣ × ܴ∈ Clone α ൰ ߬൨ఈ .  (19)

 702 
2. Homogenous structure models 703 
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For each model defined in point (1) we can define its homogenous 704 
structure equivalent, which assumes tumor is strictly clonal with all 705 
neoantigens in the same clone at frequency 1. 706 
 707 

We assess the predictive power of these models with a survival analysis, by 708 
separating patients by the median value of ݊(߬) in each patient cohort and 709 
computing the log-rank test for such segregation. For stringency of comparisons, 710 
we adjust the value of parameter ߬ in a supervised manner to optimize the 711 
performance of each alternative model (Extended Data Table 1). 712 
 713 
5. Data availability 714 
 715 
Mutation data and inferred neoantigen peptide data for each dataset are 716 
submitted as supplementary data. 717 
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Supplementary Information 726 
 727 
Computational identification of neoantigens 728 
 729 
Neoantigens from the three datasets were inferred using a consistent pipeline 730 
established at Memorial Sloan Kettering Cancer Center. Raw sequence data 731 
reads were aligned to the reference human genome (hg19) using the Burrows-732 
Wheeler Alignment tool. Base-quality score recalibration, and duplicate-read 733 
removal were performed, with exclusion of germline variants, annotation of 734 
mutations, and indels as previously described4. Local realignment and quality 735 
score recalibration were conducted using the Genome Analysis Toolkit (GATK) 736 
according to GATK best practices33,34. For sequence alignment and mutation 737 
identification, the FASTQ files were processed to remove any adapter sequences 738 
at the end of the reads using cutadapt (v1.6)35. The files were then mapped using 739 
the BWA mapper (bwa mem v0.7.1236, the SAM files sorted, and read group tags 740 
added using the PICARD tools. After sorting in coordinate order, the BAM's were 741 
processed with PICARD MarkDuplicates. First realignment was carried out using 742 
the InDel realigner followed by base quality value recalibration with the Base-743 
QRecalibrator.  744 
 745 
A combination of 4 different mutation callers (Mutect 1.1.4, Somatic Sniper 1.0.4, 746 
Varscan 2.3.7, and Strelka 1.013) were used to identify single nucleotide variants 747 
(SNVs)37-39. As previously described, SNVs with an allele read count of less than 748 
4 or with corresponding normal coverage of less than 7 reads were filtered out40.  749 
 750 
The assignment of a somatic mutation to a neoantigen was estimated using a 751 
previously described bioinformatics tool called NASeek4. Briefly, NASeek is a 752 
computational algorithm that first translates all mutations in exomes to strings of 753 
17 amino acids, for both the wild type and mutated sequences, with the amino 754 
acid resulting from the mu-tation centrally situated. Secondly, it evaluates 755 
putative MHC Class I binding for both wild type and mutant nonamers using a 756 
sliding window method using NetMHC3.419 757 
(http://www.cbs.dtu.dk/services/NetMHC-3.4/) for patient-specific HLA types, to 758 
gene-rate predicted binding affinities for both peptides. NASeek finally assesses 759 
for similarity between nonamers that predicted to be presented by patient-specific 760 
MHC Class I. All nonamers with binding scores (i.e. the inferred dissociation 761 
constants ܭெ்) below 500 nM are defined as neoantigens.  762 
 763 
Clonal tree reconstruction with PhylowWGS  764 
 765 
Tumor clones are reconstructed using the PhyloWGS software package18. The 766 
input data for the algorithm is extracted from exome sequencing data: (1) 767 
mutation reads obtained with the pipeline described above, and (2) allele-specific 768 
copy-number variant data, obtained with FACETS v0.5.041. Briefly, the package 769 
clusters mutations into clones by the frequency of their reads and it infers 770 
possible nesting of clones (ancestral relations) between pairs of clones. 771 
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Intuitively, an ancestral clone needs to have higher frequency then its derived 772 
clone. From this information PhyloWGS reconstructs high likelihood tumor 773 
geneological trees.  774 
 775 
Amino acid diversity 776 
 777 
We define the amino acid diversity at ݅-th position in a neoantigen as ݁ு, where 778 ܪ is Shannon entropy42 of amino acid usage at this position, i.e. 779 
ܪ 780  = − ∑ ݂(ܽ) log(݂(ܽ))ଶୀଵ , 781 
 782 
where ݂(ܽ) is frequency of the ݅-th position in all neoantigens in a group. 783 
Inferred neoantigens are nonamers, so ݅  ranges in value from 1 to 9. The 784 
diversity of neoantigens at a given site were compared to the values found in the 785 
human proteome in Lehman, et al.23.  786 
 787 
To calculate the expected number of words in the proteome we utilize the 788 
frequency of amino acids from Lehman, et al. We compute the entropy 789 
associated with the frequency of amino acids in the human genome: 790 
(ܽ)ܪ 791  = − ∑ ݂( ܽ) log(݂( ܽ))ଶୀଵ , 792 
 793 
where ݂( ܽ) is the frequency of the ݆-th amino acid in the human genome. The 794 
expected number of words of length ݊ is therefore ݁ு(). This value is compared 795 
to the observed number of words of length ݊  in the reference proteome for 796 
GRCh38.p7 797 
 798 
Identification of closest nonamers in human proteome to neoantigens  799 
 800 
We have mapped the WT and MT 9-mer peptides to all proteins in the current 801 
human reference genome (GRCh38.p7) with at least 8 out of 9 matches and no 802 
gaps (allowing only mismatches). For this we used LAST43 (version 819) with the 803 
following parameters: 804 
lastal -f BlastTab -j1 -r2 -q1 -e15 -y2 -m100000000 -l4 -L4 -P0 805 
(9-mer mapping with at most one mismatch is guaranteed to have a matching 4-806 
mer word). 807 
  808 
One expects the mutated peptide to only map to the same location as the WT 809 
peptide, WT mapping exactly (9 matches) and MT mapping with one mismatch (8 810 
matches). The expected case is that the WT peptide maps to the proteome 811 
exactly and the MT peptide maps to the proteome with one mismatch and only to 812 
the loci WT peptide maps to. 813 
 814 
This rule can be violated in the following cases, sorted from the most to the least 815 
severe: 816 
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1. WT peptide does not map to the proteome exactly. Some possible reasons 817 
are:         a difference in the reference assemblies used for mutation calling and 818 
peptide mapping, a germline mutation mistakenly identified as somatic, or a 819 
difference between the pa-tient genome and the reference genome used for 820 
alignments.  821 
2. WT peptide maps to the proteome exactly (9 matches), MT peptide maps to 822 
the pro-teome exactly (9 matches) but to a different locus.  823 
3. WT peptide maps to the proteome exactly, MT peptide maps to the proteome 824 
with one mismatch; however, MT peptide maps with one mismatch to the 825 
subjects WT does not map exactly. 826 
4. WT peptide maps to the proteome exactly, MT peptide maps to the proteome 827 
with one mismatch; however, MT peptide maps with one mismatch to a different 828 
locus on    the gene WT maps to. 829 
  830 
We have examined each peptide for the worst possible scenario. We have gone 831 
from category 1 to 4 in the list. Category 1 indicates a difference in the reference 832 
genome. Categories 2-4 typically are due to mutations that occur in repetitive 833 
gene families with many paralogs. Once we identified that a peptide belongs to 834 
any category, we excluded it from further considerations. This way the numbers 835 
of peptides in each category add up to the total number of peptides. Below is a 836 
summary for the different datasets utilized in this study: 837 
 838 
Van Allen, et al.5: 839 
39373 total peptides, (1) 42 WT unmapped, leaving 39331 840 
36783 expected peptides (93.42%), (2) 387 have 9 matches in MT, (3) 2076 841 
have other alignments, (4) 85 have other alignments to the same subject. 842 
 843 
Snyder, et al4.: 844 
29781 total peptides, (1) 35 WT unmapped, leaving 29746 845 
27674 expected peptides (92.93%), (2) 361 have 9 matches in MT, (3) 1644 846 
have other alignments, (4) 67 have other alignments to the same subject. 847 
 848 
Rizvi, et al.6: 849 
5581 total peptides, (1) 6 WT unmapped, leaving 5575 850 
5125 expected peptides (91.83%), (2) 105 have 9 matches in MT, (3) 323 have 851 
other alignments, (4) 22 have other alignments to the same subject. 852 
 853 
Additional supplementary files for each dataset are included as Supplementary 854 
Data: 855 
 856 
mt-with-9.tsv – list of peptides from category 2 and the subjects each one aligns 857 
to . 858 
 859 
peptides-with-extra-aln.tsv – peptides from group 3 and the subjects each one 860 
aligns to.  861 
 862 
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peptides-multimapping-same-subj.tsv – peptides from group 4 and their 863 
alignments including the start and end coordinates 864 
 865 
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