
Extending Open Core Protocol to
Support System-Level Cache Coherence

Konstantinos Aisopos
Dept. of Electrical Engineering

Princeton University
Princeton, NJ 08544

kaisopos@princeton.edu

Chien-Chun Chou
Sonics Inc.

Milpitas, CA 95035
joechou@sonicsinc.com

Li-Shiuan Peh
Dept. of Electrical Engineering

Princeton University
Princeton, NJ 08544

peh@princeton.edu

ABSTRACT
Open Core Protocol (OCP) is a standard on-chip core inter-
face specification. The current release is flexible and config-
urable to support the communication needs of a wide range
of Intellectual Property cores, and is now in widespread use.
However, it does not support system-level coherence. This
paper summarizes an effort within the OCP-IP cache coher-
ence working group on incorporating cache coherence exten-
sions into OCP, which is expected to have strong impact on
the MPSoC industry. In this paper, we propose a backward-
compatible coherent Open Core Protocol interface and dis-
cuss the design challenges and implications introduced. This
interface is flexible and can support a range of coherence pro-
tocols and schemes: we show how it can specify a snoopy
bus-based scheme as well as a directory-based scheme. The
correctness of the specification and models was verified us-
ing NuSMV, via exploring the entire state space for the two
basic coherence schemes.

Categories and Subject Descriptors
B.4.0 [Hardware]: Input/Output and Data Communica-
tions—General

General Terms
Design, Standardization

1. INTRODUCTION
Open Core Protocol (OCP) [7] [13] is a common stan-

dard for Intellectual Property (IP) core interfaces or sockets,
introduced by the OCP International Partnership (OCP-
IP) organization in 2000. OCP facilitates IP core plug-
and-play and simplifies reuse, by decoupling the cores from
the Network-on-Chip (NoC) and from one another, using a
clearly-specified core interface protocol. This interface al-
lows IP core developers to focus on core design, without
having to know any details about the System-on-Chip (SoC)
that the core might eventually be used in. Since OCP be-
came available to the design community, widespread adop-
tion has occurred, and it is gradually becoming the uni-
versal on-chip socket standard for diverse SoC architectures
and cores. About 150 companies, including MIPS, Toshiba,
nVIDIA, Siemens, and Nokia, have adopted OCP for their
system designs. The evolution of OCP is industry-driven,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

meaning that companies provide constructive feedback by
requesting future OCP releases to support specific features,
allowing specification updates to reflect technology advance-
ments. This ability to support the continuous evolution of
market, while maintaining backwards compatibility, is OCP-
IP’s greatest strength.

Recently, numerous academic publications pointed out the
benefits of hardware coherence in MPSoCs [9] [10] [4], cit-
ing reasons such as enhanced performance versus software
approaches, faster time-to-market, flexibility, and ease of
programming. Numerous cache-coherent multi-core MPSoC
products, using a variety of embedded processor cores, have
been released: Freescale with PowerPC cores, PMC-Sierra,
Cavium and Broadcom with MIPS64 cores, and ARM with
ARM MPCores. However, OCP 2.2, as well as other core
interfaces for MPSoCs (i.e., AMBA 3.0 AXI [3] and VSI
2.0 [12]), do not support cache coherence, leading to IP
providers urgently pressing for OCP-IP to update the pro-
tocol specification [5]. Keeping the caches coherent requires
the interface to support extra signals to generate/receive co-
herence messages for invalidating copies or passing cache line
ownership between cores. At the same time, this interface
should be backward-compatible with previous OCP releases
and satisfy on-going industrial designs. It also needs to be
flexible to support any specific coherence protocol, even mul-
tiple coherence protocols within the same SoC (Section 4.4).
In addition, it must be adaptable to cache systems of differ-
ent configurations. All these features have to be supported
while guaranteeing correctness and without sacrificing per-
formance, thus enabling the system architect to apply reg-
ular performance optimizations like 3-way communication
and write back without response (Sections 4.2 and 4.3 re-
spectively).

In this paper, we propose coherence extensions to support
an OCP coherent interface, and walk through the trade-offs
and experiences of upgrading the OCP protocol. The struc-
ture of the paper is as follows: Section 2 gives a brief back-
ground about OCP, Section 3 introduces the proposed ex-
tended OCP specification, and Section 4 discusses the design
challenges. Section 5 describes the verification methodology
and, finally, Section 6 concludes the paper.

2. OCP BACKGROUND
In an OCP system, communicating components (e.g., pro-

cessors, memory modules, and I/O devices) need a wrapper
which implements the Open Core Protocol interface [13].
This interface enforces a point-to-point unidirectional com-
munication: when two components are communicating, the
one that utilizes a “master” OCP port sends to the other
that utilizes a “slave” OCP port. This section will focus
on dataflow communication, though OCP supports optional
sideband and test signals to handle interrupts, status flags,
errors, control/status inputs, and JTAG signaling between
master and slave.

Master-slave model. A master generates requests and
injects them into the NoC, while a slave receives these re-
quests, serves them, and responds to the master. To im-

plement multidirectional communication, two components
should instantiate both ports: a master port to send re-
quests and a slave port to receive requests. There are four
basic OCP requests: read, write, read-exclusive and broad-
cast. These requests enable masters to communicate data
to slaves via the shared memory address space: every re-
quest is accompanied by an OCP memory address, while a
predefined mapping of the address space to slaves indicates
to which slave to route to. However, the protocol does not
require the response to indicate the master, as it is auto-
matically identified by the NoC. Read requests the NoC to
return the data corresponding to the provided OCP memory
address. Write requests the NoC to write data to the OCP
memory address. Read-exclusive is a synchronization prim-
itive, used for atomic read-modify-write accesses. A “lazy
synchronization” scheme, where the shared resource is not
blocked between read and write accesses, is also available
in later revisions of the OCP specification [7], via two addi-
tional requests: read-linked and write-conditional. Broadcast
is similar to write, but the request can be routed to all slave
OCP ports that have been instantiated in the system.

Signals. Figure 1 depicts the signals required for this
communication, when a blocking hand-shake protocol is used
between a master and a slave. When master generates a
write/broadcast request, Write Data accompanies the Re-
quest. For read and read-exclusive requests, Read Data ac-
companies the Response. Because of the protocol being
blocking, once the master asserts the signals associated with
a request, it has to maintain these values until the slave con-
firms the reception of the request, through the assertion of
the Accept Request signal (i.e., SCmdAccept). The transac-
tion is completed upon this confirmation. The request may
also be completed at this point, if it is marked as “posted”.
A write/broadcast request is marked as “posted”when no re-
sponse is required to acknowledge its reception by the slave.
In contrast, a read/read-exclusive request should always be
“non-posted”, because a response is required to provide the
read data. Note that the response channel is also using a
blocking hand-shake protocol, thus the master has to assert
the Accept Response signal (i.e., MRespAccept) to confirm
the reception of the response.

A master may have multiple outstanding requests for dif-
ferent cache lines, but each will create a separate record of a
pending response. The stream of pending responses should
be returned in-order, to keep the protocol simple1.

Request

Accept Request

 Clock

Write Data

Response

Read Data

Control Signals

Test Signals

M
a
s
te

r
O

C
P

 P
o
rt

Accept Responsere
s

p
o

n
s

e

c
h

a
n

n
e

l

re
q

u
e

s
t

c
h

a
n

n
e

l

S
la

v
e

M
a

s
te

r

S
la

v
e
 O

C
P

 P
o
rt

re
s

p
o

n
s

e

c
h

a
n

n
e

l

re
q

u
e

s
t

c
h

a
n

n
e

l

Figure 1: OCP interface [13].

1OCP supports out-of-order responses through the usage of
multiple threads, or multiple tags within a thread. Cores are
free to re-order requests and responses belonging to distinct
threads, or belonging to distinct tags within a thread. How-
ever, this approach significantly increases complexity and
can lead to deadlocks in a cache coherent system. In this
paper, we are focusing on single-threaded OCP interfaces
without tags.

3. PROPOSED COHERENCE EXTENSIONS

3.1 Coherent Wrappers and Their Interfaces
Introducing OCP coherence extensions (OCPce)

port. In a coherent OCP system, communicating compo-
nents need an OCP wrapper preserving all OCP 2.2 requests
described in Section 2, which are called “legacy requests”,
while supporting new “coherent requests”. The coherent re-
quests enable the processor cores, which now maintain cache
line state information2 for each cache line, to request state
changes from the NoC. The proposed specification intro-
duces a new port with this augmented functionality: the
OCP coherence extensions (OCPce) port (shown in top-half
of Figure 2). The wrapped components that generate co-
herent requests (e.g., processor cores, coherent I/O devices,
and directory modules) are now called “coherent masters”,
and the components that receive and serve coherent requests
(e.g., memories, directory modules, and chipset modules) are
called “coherent slaves”. Note that a directory acts as a co-
herent slave when receiving requests from coherent masters
and as a coherent master when sending requests to coherent
slaves.

Accept Request

 Clock

C
o

he
re

nt
 M

a
st

e
r

O
C

P
i P

or
t

O
C

P
ce

 P
o

rt

 Request
legacy
coherent

Coherence State
Coherence Enable

 Routing Information

Write Data

Response

Read Data

Control Signals

Test Signals

C
oh

er
en

t S
la

ve

O
C

P
i P

o
rt

O
C

P
ce

 P
o

rt

Setup State

Request

 Routing Information
Accept Request

Response

Dirty Data

Setup State
 Routing Information

Accept Response

Accept Response

re
s

p
o

n
s

e
c

h
an

n
e

l
re

q
u

e
st

c

h
an

n
e

l
re

s
p

o
n

s
e

c
h

an
n

e
l

re
q

u
es

t
ch

a
n

n
el

re
s

p
o

n
s

e
c

h
an

n
e

l
re

q
u

e
st

c

h
an

n
e

l
re

s
p

o
n

s
e

c
h

an
n

e
l

re
q

u
es

t
ch

a
n

n
el

Figure 2: Proposed coherent OCP interface.

The OCPce port includes a boolean signal, Coherence
Enable, which indicates if the Request signal is to be in-
terpreted as legacy or coherent. When Coherence Enable is
not set, the protocol needs to be identical to the legacy OCP
protocol, for backward-compatibility. All introduced coher-
ent requests through the OCPce port’s Request signal (up-
grade, write back, read for ownership, read for shared, in-
validate) are listed in Table 13, along with the CPU re-
quest (read/write) and cache states (Modified, Shared, In-

2The proposed interface supports the coherence states Mod-
ified, Owned, Exclusive, Shared, Migratory, and Invalid.
3To avoid running into intellectual property issues, generic
names were used instead of the ones that will be used in the
specification in the future.

request cache state outgoing OCPce port request(s)
CPU cache Modified –
write hit Shared upgrade

cache Modified write back & read for ownership
miss Shared read for ownership

Invalid read for ownership
CPU cache Modified –
read hit Shared –

cache Modified write back & read for shared
miss Shared read for shared

Invalid read for shared
purge invalidate

Table 1: Algorithm to generate OCPce port requests

OCPi type of outgoing OCPi
port request request port response
self any request ack & SetupState
intervention
system read for ownership if (dirty copy)
intervention read for shared ack & SetupState & data

upgrade else
ack & SetupState

write back ack & SetupState
invalidate

Table 2: Algorithm to respond to OCPi port requests

valid) that will trigger the injection of these messages, in
an MSI protocol. To illustrate the generation of the co-
herent requests, we will walk through simple examples of
CPU requests in a coherent system. More detailed exam-
ples are shown in Section 3.2. For instance, upon a CPU
write, ownership of the cache line is required. If the line
does not exist (cache miss), a read for ownership request is
generated. If the currently cached line is dirty (in Modified
state), a write back precedes that request. If the line ex-
ists (cache hit) but the processor does not currently own the
right to modify it (in Shared state), then an upgrade request
is generated. Upon a CPU read request, ownership is not
required, thus a read for shared request is generated only if
the line does not exist (cache miss). In addition to CPU
reads and writes, it is not unusual for a CPU (or a coherent
I/O device) to request to purge outstanding cache line(s)
before executing a special operation. This will generate an
invalidate request.

Responses are always accompanied by a Setup State sig-
nal, indicating the new cache line state. Another optional4

signal, Coherence State, may be provided by the master
in some coherence protocols, to state explicitly the current
state of the cache line the request refers to.

Introducing OCP intervention (OCPi) port. The
previous paragraphs introduced coherent master’s outgoing
coherent requests. However, all coherence protocols also
require coherent masters to receive messages. These mes-
sages are used, for instance, to notify a master when other
masters, which cache the same copy, request a cache line
state change. Here, there are serious compatibility issues
with the legacy OCP port. One of the fundamental prin-
ciples of the OCP protocol is the request-response depen-
dency: every non-posted request requires a response, and
the stream of pending responses should be returned in-order.
However, incoming coherence messages are not in response
to any request. These non-deterministic notifications can-
not be supported by the OCPce port. Thus, masters and
slaves that participate in coherence must instantiate a sec-
ond port, called the OCP intervention (OCPi) port (shown
in the bottom-half of Figure 2). This port handles coherent
masters’ incoming communication to enforce coherence, via
coherence messages called “intervention port requests”.

When intending to change the coherence state of a cache
line, the corresponding coherent master sends an OCPce
port request, which is converted and routed to each of the
coherent masters caching this cache line, as an intervention
port request. Intervention port requests delivered to coher-

4Some coherence protocols have processor-side hidden tran-
sitions (eg. MOESI), meaning that the generated outgoing
coherence message does not imply the state of the cache line;
in such cases the state of the cache line might become visible
to the NoC through this signal.

ent masters other than the requestor are named “system
intervention requests” or “system interventions”. The inter-
vention request delivered to the requestor’s OCPi port is
named “self intervention request” or “self intervention”. The
proposed specification defines intervention port requests as
non-posted, thus they trigger responses acknowledging their
receipt.

System interventions. When a coherent master re-
ceives a read for ownership or upgrade system intervention,
this implies that some other coherent master requests the
cache line for ownership. Thus, it should invalidate this
cache line. In contrast, when receiving a read for shared sys-
tem intervention, it can still cache a Shared copy of the cache
line. In both cases, if the current copy is in Modified (dirty)
state, the acknowledgement should also provide the up-to-
date copy. Invalidate system intervention request has similar
functionality with read for ownership, but does not require
the response to include the up-to-date copy. Write back sys-
tem intervention request has no effect in master’s cache line
states because, if not in a race condition, a master should
not cache a copy that another master is writing back.

Self interventions. Self intervention requests differ from
system interventions, because the requestor is the master
who received the intervention itself. Note that the self in-
tervention is not a response to the OCPce port request, but
a notification from the NoC that the OCPce port request has
been received. Self intervention is of greatest importance to
serialize the request stream, to be discussed in Section 4.1.

All intervention port responses also provide a Setup State,
which is the new cache line state for the recipient of the inter-
vention port response. The algorithm for generation of inter-
vention port responses by masters is shown on Table 2. Each
coherent master is now equipped with an outgoing OCPce
port and an incoming OCPi port. A coherent slave, on the
other hand, is equipped with an incoming OCPce port and
an outgoing OCPi port, as shown in Figure 2. OCPi port’s
compliance to the basic OCP model is more relaxed: the
absence of backward-compatibility requirement implies that
basic principles, like the request-response dependency, may
be modified for performance benefits.

3.2 Snoopy Bus-based and Directory-based
Protocol Example

This section provides walk-through examples, where two
coherent systems are modeled using the proposed OCP spec-
ification. It serves to demonstrate the specification’s effec-
tiveness, as well as to explain the intricacies. In both ex-
amples, three coherent masters are involved: A master that
initiates a coherent transaction (initiating coherent master)
by requesting to read a cache line and obtain shared owner-
ship (Fig 3-Master A), a coherent master that has no cached
copy of this cache line (Fig 3-Master B), and a coherent mas-
ter having a dirty copy of the cache line (Fig 3-Master C).
A coherent slave is also present: a memory module for a
snoopy bus-based system, and a module representing both
directory and memory for a directory-based system.

Snoopy bus-based system. In a snoop-based coherent
system, the following transactions take place (Figure 3):

1 Coherent master A sends a coherent request (read for-
shared) on the OCPce port (labeled as OCPce Req),

to gain shared ownership on a memory address.
2a This coherent request is delivered to a memory slave

(the home of the read address), on its OCPce port
(labeled as OCPce Req).

2b Because of the snoopy bus being a broadcast scheme,
all coherent masters will receive this request. Thus, the
coherent request is turned into a corresponding system
intervention request, which is delivered to Master B’s
and Master C’s OCPi ports (labeled as OCPi Req).
The coherent request is also delivered to the initiating
coherent master’s (Master A’s) OCPi port (labeled as
OCPi Req), as a self intervention request.

3 Upon receiving the read for shared intervention request,
memory is triggered to read the addressed data line.

Master B
cache

Slave
Memory Module

Master C

 OCP wrapper

OCP wrapper M-hit

Master A
cache

 OCP wrapper

OCPce
Req

OCPce
Req

OCPce
Resp

OCPce
Resp

OCPi
Resp

OCPi
Req

OCPi
Resp

OCPi
Req

OCPi
Resp

OCPi
Req

OCPi
Resp

OCPi
Req

 ac know
ledge m

ent

ac

kn
ow

le
dg

em
en

t &
 d

at
a

 acknowledgem
ent

read_for_shared

read_for_shared

read_for_shared

system
intervention

request

system
intervention

request

self intervention

acknowledgement
& data

acknowledgement & data

XX
acknowledgement

& data

OCP
Coherence

NoC

cache

read_for_shared

request

7

1

2b

2a

3

4

5a

5b5b

6a

6b

8

OCPi
 request /
response

OCPce
 request /
response

Arrows:

Figure 3: Snoopy Bus-based Example.

After retrieving this data line, the OCP wrapper needs
to hold the data, waiting for further instruction com-
ing from its OCPi port (see Step 8), to decide whether
to drop or return the data line. Also, an intervention
port request is generated, to broadcast the initiating
coherent master’s request to all coherent masters.

4 However, in a snoopy-bus system this request is not
needed, because the request has already been broad-
casted in step 2b. So this request, being generated in
the snoop phase rather than the data request phase, is
dropped by the OCP NoC module.

5a The coherent master, which has the ownership and
the only dirty copy of the data for the memory ad-
dress (Master C), acknowledges the intervention port
request and returns the dirty data with coherence state
information (Setup State). This response relinquishes
its exclusive ownership of the memory address.

5b All other coherent masters also acknowledge, by re-
sponding to the intervention port request.

6a Once every coherent master has responded, the design
requires the NoC to deliver Master C’s intervention
response with data to the memory slave’s OCPi port.
This will update the slave.

6b Master C’s intervention response with data is also trans-
lated into a corresponding OCPce port response with
data, and sent back to the original initiating master.

7 Finally, the initiating master receives the latest data
response and updates its coherence state for the mem-
ory address accordingly.

8 Note that upon reception of the intervention port re-
sponse, slave returns an OCPce port response with
data and coherence state information back to the initi-
ating master. This response is redundant and is dropped
by the OCP NoC module. If no coherence master had
provided data with the acknowledgement, this would
imply that memory has the up-to-date copy and this
OCPce port response would be valid.

Directory-based system. In a directory-based coher-
ence environment, the same read for shared ownership trans-
action can trigger different communication messages (Fig-
ure 4):

1 Coherent master A sends a coherent request (read for-
shared) on the OCPce port, to gain shared ownership

on a memory address. This coherent request is deliv-
ered to the OCPce port of a memory/directory slave
(the home of the read address).

2 On the memory/directory slave, the directory-based
coherence logic realizes, through checking sharing vec-
tors, that it does not have the latest data for the mem-
ory address and master C has the latest dirty data.

7

Slave
Memory and Directory Module

OCP wrapper

re
ad

_f
or

_s
ha

re
d

read_for_shared ac
kn

ow
led

gm
en

t

& d
at

a

acknow
ledgem

ent

 OCPi port
 request /
response

OCPce port
 request /
response

Arrows:

OCP
Coherence

NoC

Master B
cache

Master C

OCP wrapper M-hit

Master A
cache

 OCP wrapper

OCPce
Req

OCPce
Resp

OCPi
Resp

OCPi
Req

OCPi
Resp

OCPi
Req

OCPi
Resp

OCPi
Req

cache

OCPce
Req

OCPce
Resp

OCPi
Resp

OCPi
Req

2

3a

system
intervention

request

self intervention
request

3b

4

5a5b

6

ack now
led gem

ent &
 data

r ead _for_sha red

1

Figure 4: Directory-based Example

3a Consequently, an intervention request is sent from the
OCPi port of memory/directory slave to the OCPi
port of master C, in order to retrieve the most recently
modified data.

3b At the same time, a self intervention request is re-
turned to the initiating master.

4 Master C acknowledges the intervention port request
and returns the dirty data, while relinquishing its ex-
clusive ownership of the memory address.

5a The acknowledgement with data is routed back to the
memory/directory slave’s OCPi port.

5b A self intervention response is generated by the initiat-
ing master and is also routed back to memory/directory
slave’s OCPi port.

6 Upon receiving all responses and the up-to-date copy,
both memory and directory are updated. In addition,
the memory/directory slave returns an OCPce port
response with data and coherence state information
(Setup State) back to the initiating master.

7 The initiating master receives the latest data response
and updates its coherence state for the memory ad-
dress accordingly.

4. CHALLENGES

4.1 Serialization
Blocking to enforce in-order completion. All coher-

ence schemes have a serialization point to guarantee consis-
tency. In other words, there is always a mechanism, so every
coherent master/slave participating in the coherence scheme
has the same notion of the request sequence. Also, there is
an implicit agreement, among all entities, that every request
reaching the serialization point will be served before any
other upcoming conflicting request. Once a request reaches
the serialization point, requestor’s OCPi port takes care of
the in-order completion of conflicting requests, via blocking
upcoming conflicting requests. Consider the snoopy bus ex-
ample in Figure 3. Once an OCPce port request shows up on
bus (which is the serialization point), all coherent masters
receive concurrent intervention requests (step 2b), implying
that this request is now served. Upon the reception of self
intervention, requestor’s OCPi port “blocks” the processing
of any upcoming request for conflicting address, until it re-
ceives the OCPce port response. Given that the completion
of an OCPce port request requires all OCPi ports to ac-
knowledge (step 5), no upcoming conflicting OCPce port
request will be completed, because the blocked OCPi port
will not acknowledge its corresponding system intervention.
In other words, if two conflicting OCPce port requests are
issued concurrently, the first to be turned to intervention

Processor/Caches Coherence State

OCPce port OCPi port

Self-intervention request

OCPce port
request

Intervention requests
coming from others

Request Response

OCPce port
response

Intervention
response

fencing point
for conflicting

OCPce port request
triggered by :

OCPce port request

fencing point
for conflicting system
intervention request

triggered by :
self intervention

reset reset

Request Response

Figure 5: hardware for serialization

port request and show up on bus will block the second; once
the first one is completed, the requestor’s OCPi port will
unblock and the second system intervention port request
will be acknowledged, enabling the generation of the second
OCPce port response.

Hardware implementation. Figure 5 depicts a hard-
ware implementation of the serialization mechanism in the
coherent master: both OCPce port and OCPi port have in-
coming and outgoing queues, which serve as temporal buffers.
Once a coherent request is injected from the OCPce port’s
outgoing queue into the NoC, the coherent master cannot
generate any more OCPce port requests for conflicting ad-
dresses. These requests will be blocked in the OCPce port’s
outgoing queue (denoted as “fencing point for conflicting
OCPce port request” in Figure 5), until OCPce port re-
ceives a response for the initial request. However, OCPi
port can receive, process, and respond to system interven-
tions for conflicting addresses: this will not cause correctness
issues until the initial OCPce port request reaches its seri-
alization point in the coherent system. Once that happens,
the coherent master will receive a self intervention and will
not process any more system interventions for conflicting ad-
dresses: no system intervention for a conflicting address will
cross the “fencing point for conflicting system intervention
request”, until the initial request’s OCPce port response is
received and releases these pending requests.

4.2 Message Routing
Master identification. In an OCP system, masters

communicate data to slaves via the shared memory address
space: every request is accompanied by an OCP memory
address, indicating the slave the request is routed to. The
introduction of OCPi port complicates this simple model.
When considering non-broadcasting coherence schemes, the
identification of masters cannot be implied by the memory
address for intervention requests. A typical example is the
directory-based scheme: directory should be able to send
intervention requests to sharers, for memory addresses they
cache but are mapped in the directory’s home memory. The
NoC should be able to use information other than mem-
ory address to route an intervention request to a coherent
master. Consequently, there is a need to uniquely identify
the masters by adding the Routing Information signal to
the intervention port request (Figure 2, from the coherent
slave’s OCPi port request channel to the coherent master’s
OCPi port request channel), indicating the recipient of the
message.

3-way communication. A typical optimization that
a system architect applies to non-broadcasting coherence
schemes is 3-way communication (or 3-party transaction). 3-
way communication enables a coherent master, who is forced
to write back a dirty copy due to a system intervention, to
forward the intervention response directly to the requestor.

In other words, the intervention port response is routed from
the cache line owner’s OCPi port to the response channel of
the requestor’s OCPce port. This transaction requires the
Routing Information signal in the OCPi port request chan-
nel to indicate both“who to route to”and“whom to forward
to”. In addition, there should be a Routing Information sig-
nal at the intervention port response, indicating “who is the
recipient”. The Routing Information signal should be in-
cluded in the OCPce port request as well, to indicate “to
whom to respond”, if 3-way communication is used. It is no-
table that OCP specification has several generic signals left
open for the designer to specify (e.g., MReqInfo, SRespInfo).
So, alternatively, the Routing Information signals do not
need to be included in the proposed specification, and the
system designer could map the needed routing information
to generic signals. The motivation to include them in the
basic interface is that they are expected to be heavily used
in future systems.

4.3 Posted Write Back
Many system architects design write back request as posted

(doesn’t require response). However, such an implementa-
tion may cause race conditions in an OCP system: suppose
that coherent master A has a Modified copy and is gener-
ating a write back OCPce port request while, at the same
time, coherent master B is generating a read for ownership
OCPce port request to get the copy. If coherent master A’s
write back request completes upon injection into the NoC
and the status of the cache line is changed to Invalid, con-
sistency issues may arise. Suppose that coherent master B’s
read for ownership OCPce port request reaches the serial-
ization point first; it will be unable to get the up-to-date
value of the copy, because coherent master A has marked its
copy as Invalid and the copy that resides in memory is stale.
There are two ways to overcome this race condition: the
“complex arbiter” solution and the “data from OCPi port”
solution.

In the “complex arbiter” model, NoC embeds a coherence
manager, which is intelligent enough to detect race con-
ditions: this is done by memorizing coherent master B’s
read for ownership OCPce port request and dropping the
stale memory’s response when detecting the conflicting write-
back OCPce port request from coherent master A. After

write back completes, coherence manager re-sends a read re-
quest to memory, so as to get the up-to-date copy. The“data
from the OCPi port”model implies that coherent master A is
not sending any data when generating a write back OCPce
port request. The data will be provided by the OCPi port,
once the coherent master responds to the self intervention.
At that point the request has already reached the serializa-
tion point and data can be safely invalidated. The choice
of either scenario is a typical system architecture trade-off:
if the designer opts for a simpler NoC, then the interface
will be more complex, because data may be provided from
different ports for different OCPce port requests. On the
other hand, if the NoC integrates hardware to detect race
conditions, then the protocol can be as simple as a posted
write back from the coherent master’s point of view.

4.4 Flexibility
One of the most critical requirements for MPSoC plat-

form design is flexibility; OCP has been serving its purpose
well by enabling a wide range of IP cores that have differ-
ent communication needs to communicate through a highly
configurable interface protocol. IP cores that have differ-
ent data word widths, endianness, and address widths may
co-exist in a system when interfacing with OCP.

The flexibility characteristics of OCP should be main-
tained and enhanced when extending the specification to
support cache coherence: coherent masters may have differ-
ent cache-line sizes, and even use different coherence proto-
cols: MOESI, MESI, MOSI, or MSI. The proposed coherent
interface supports different cache line widths, while the NoC
is responsible for merging multiple cache lines, for coherence
purposes, so as to match the system’s maximum cache line

width. There’s also support for all existing invalidate-based
coherence protocols. Even when masters have different co-
herence protocols, the specification enables the NoC to apply
various algorithms to efficiently maintain coherence [8] [10].

On the other hand, a variety of modules can be plugged in
an OCP coherent system using the extended interface: non-
coherent/coherent cores with/without caches. Whenever ac-
cessing coherent regions of the memory, NoC monitors the
requestor and raises an exception if it is not coherent: thus
not privileged to access this area. Note that although a
non-coherent (without OCPi port) master cannot access a
coherent region, a coherent master can access a non-coherent
region, because it can generate all the legacy requests.

5. FORMAL VERIFICATION
Model checking is a formal verification method, ver-

ifying systems’ functionality by exploring the entire state
space [6]. In order to verify an OCP coherent system, the
communicating components (i.e., coherent masters, slaves,
and directory module) are modeled as FSMs. The inter-
connection medium (i.e., bus/NoC) is modeled as a non-
deterministic multiport “black box”, receiving requests / re-
sponses from its ports, randomly reordering them, and deliv-
ering them to their destination. This verification approach
does not capture timing information and transaction phases,
but works as a high-level protocol checker, that can point
out race conditions and protocol bugs. A widespread model
checking tool, NuSMV [1], that was developed by ITC-IRST
and CMU, is used to model the communicating components
and the NoC. NuSMV is a structural language similar to
HDLs.

Abstractions. Because of the huge state space, certain
abstractions need to be adopted to verify the design in a rea-
sonable runtime: considering the master’s model, processor
cores non-deterministically decide to read or write, but there
is no need to read/write “real” data. The actual data value
may be a boolean variable marked as “up-to-date”or “stale”.
All requests are for the same memory address; non conflict-
ing requests can not cause race conditions. Thus, single
entry caches and a single entry memory is modeled, repre-
senting the highest shared level of the memory hierarchy.
Finally, three processor cores are considered an adequate
number for coherence verification purposes. Even for such a
simplified system (1K lines of code), the full exploration of
state space takes about four days.

Properties verified. Successful verification implies that
a set of properties, written in computational tree logic (CTL)
[2], are satisfied, while testing all reachable states. Four
groups of properties have been validated: 1) correct re-
sponses/requests and transitive states: while a response is
pending, the cache line is in a “transitive” state. This transi-
tive state should be consistent with the instruction that gen-
erated the request. Also, a self intervention request should
only be received when there’s a pending response. The
OCPce port response should be received after the self in-
tervention response and be the one implied by the transitive
state. 2) Mutual Exclusion: when a coherent master caches
a Modified/Exclusive copy, no other master can cache this
copy. When a Shared copy is cached, no other master can
have a Modified/Exclusive copy. 3) Staleness: responses
should only be accompanied by up-to-date data and when
the cache line state is not Invalid, the copy should be up-
to-date. 4) Liveness: every instruction should complete (no
deadlock, no livelock).

Schemes verified. The verification of a coherent inter-
face involves selecting a representative subset of coherence
protocols and schemes to verify. The proposed specification
was verified for the above properties by Sonics Inc. for a
MSI directory-based coherence scheme, and MIPS Inc. for
a MESI snoopy bus-based coherence scheme [11].

6. CONCLUSIONS
In this paper, an extended backward-compatible Open

Core Protocol interface was introduced. To the best of
our knowledge, this is the first interface to enable hardware
cache coherence in MPSoC designs. We walked through the
design challenges of serializing the requests to satisfy the se-
quential consistency model and identifying cores to enable
the routing of requests. We also explored how the interface
enables system architects to apply critical performance opti-
mizations, like 3-way communication and write-backs with-
out responses. This interface enables cores with caches of
different configurations, managed by different coherence pro-
tocols, to co-exist in the same system. At the same time,
various coherence schemes can be adapted. Model checking
results verified protocol correctness for the entire state space
of a snoopy bus-based scheme and a directory-based scheme.

7. ACKNOWLEDGMENTS
The authors would like to thank the OCP-IP Specifica-

tion Working Group, David Lau, Yasuhiko Kurosawa, Jay
Jayasimha, Drew Wingard, Wolf-Dietrich Weber, Steve Krue-
ger, and Sanjay Vishin for their guidance and contribu-
tions to the proposed OCP coherence extensions. We also
wish to thank the Computer Architecture Reading Group in
Princeton University, and especially Carole-Jean Wu, Ilias
Tagkopoulos, and Emmanouil Koukoumidis for their valu-
able comments on this work.

8. REFERENCES
[1] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,

M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. NuSMV 2: An opensource tool for
symbolic model checking. In Proc. Computer Aided
Verification, pages 241–268, Jul 2002.

[2] E. A. Emerson. Temporal and Modal Logic,
Handbook of Theoretical Computer Science,
volume B. Elsevier and MIT Press, 1990.

[3] D. Flynn. Amba: Enabling reusable on-chip designs.
IEEE Micro, 17(4):20–27, Jul 1997.

[4] M. Loghi, M. Poncino, and L. Benini. Cache coherence
tradeoffs in shared-memory MPSoCs. ACM
Transactions on Embedded Computing Systems,
5(2):383 – 407, May 2006.

[5] I. Mackintosh, OCP Chairman and President. MPSoC
and ‘The Vision Thing’. EDA Tech Forum Journal,
4(3):6–7, Sep 2007.

[6] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, Norwell, MA, USA, 1993.

[7] OCP International Partnership. Open core protocol
specification, release 2.2, Jan 2007.

[8] T. Suh, D. M. Blough, and H.-H. S. Lee. Supporting
cache coherence in heterogeneous multiprocessor
systems. In Proc. Design, Automation and Test in
Europe Conference and Exhibition, volume 2, pages
1150–1155, Feb 2004.

[9] T. Suh, D. Kim, and H. S. Lee. Cache coherence
support for non-shared bus architecture on
heterogeneous MPSoCs. In Proc. Design Automation
Conf., pages 553 – 558, Jun 2005.

[10] T. Suh, H.-H. S. Lee, and D. M. Blough. Integrating
cache coherence protocols for heterogeneous
multiprocessor systems, part 1. IEEE Micro,
24(4):33–41, Jul 2004.

[11] S. Vishin. Design and verification of a cache coherence
protocol for embedded Systems-on-Chip. MIPS Inc.,
internal documentation.

[12] VSI Alliance. Virtual Component Interface Standard
Version 2 (OCB 2 2.0), Apr 2001.

[13] W.-D. Weber. Enabling reuse via an IP core-centric
communications protocol: Open Core Protocol. In
Proc. IP 2000 System-on-Chip Conference, pages
217–224, Mar 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

