Approximation algorithms
+

Limits of computation & undecidability
+

Concluding remarks

Lecture 19
Instructor: Amir Ali Ahmadi, TA: G. Hall,C.Y. Liu, Spring 2017
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Convex relaxations with worst-case guarantees

="One way to cope with NP-hardness is to aim for suboptimal solutions with
guaranteed accuracy

=Convex relaxations provide a powerful tool for this task
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General recipe for convex optimization based approx. algs.
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Vertex Cover

=VVertex Cover: A subset of the the vertices
that touch all the edges.

"VERTEX COVER: Given a graph G(V,E) and an
integer k, is there a vertex cover of size smaller
than k?

=\VVERTEX COVER is NP-hard.
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2-approximation for vertex cover via LP

=\/ertex cover as an integer program:
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Rounding & Bounding
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MAXCUT
*MAXCUT

=Input: A graph G(V, E), nonnegative rational numbers G.on each edge, a rational
number k.

=Question: Is there a cut of value = k?

"Examples with edge | I
costs equal to 1:

=Cut value=8

=Cut value=23
(optimal)
="MAXCUT is NP-complete (e.g., relatively easy reduction from 3SAT)
=Contrast this to MINCUT which can be solved in poly-time by LP
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A .878-approximation algorithm for MAXCUT via SDP

=sSeminal work of Michel Goemans and David Williamson (1995)
=Before that the best approximation factor was %

=First use of SDP in approximation algorithms

=Still the best approximation factor to date

"An approximation ratio better than 16/17=.94 implies P=NP (Hastad)
=mUnder stronger complexity assumptions, .878 is optimal

®"No LP-based algorithm is known to match the SDP-based 0.878 bound
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The GW SDP relaxation
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The GW rounding
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The GW bound
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The GW bound
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Relating this to the SDP optimal value
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The final step
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"Bound term by term. You achieve this approximation ratio.
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Sometimes people obtain mathematically significant
license plates purely by accident, without making a per-
sonal selection. A striking example of this phenomenon is
the case of Michel Goemans, who received the following
innocuous-looking plate from the Massachusetts Registry of
Motor Vehicles when he and his wife purchased a Subaru at
the beginning of September 1993:

Massachuserrs [l

/8-CS

Two weeks later, Michel got together with his former stu-
dent David Williamson, and they suddenly realized how to
solve a problem that they had been working on for some
years: to get good approximations for maximum cut and
satisfiability problems by exploiting semidefinite program-
ming. Lo and behold, their new method—which led to a
famous, award-winning paper [15]—yielded the approxi-
mation factor .878! There it was, right on the license, with
C, S, and W standing respectively for cut, satisfiability, and
Williamson.

(By D.E. Knuth)
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Limits of
computation




What theory of NP-completeness established for us

=Recall that all NP-complete problems polynomially reduce to each other.

=|f you solve one in polynomial time, you solve ALL in polynomial time.

WL

T

=sAssuming P#NP, no NP-complete problem can be solved in polynomial time.

=This shows limits of efficient computation (under a complexity theoretic assumption)

"What’s coming next: limits of computation in general
PRINCETON —HH .
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Matrix mortality

Consider a collection of m n X n matrices {44, ..., A,,,}.

We say the collection is if there is a finite product out of the matrices (possibly
allowing repetition) that gives the zero matrix.

>> B1*A2
Example 1: <
a1 = A2 = ans =
0 0 0 1 ° °
= 0
0 1 = 0

0 0
0 0
Mortal.
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Matrix mortality
Consider a collection of m n X n matrices {44, ..., 4,,}.

We say the collection is
allowing repetition) that gives the zero matrix.

Example2: 21 = A2 = A3 =

Not mortal. (How to prove that?)

e Inthis case, can just observe that all three matrices have
nonzero determinant.

e Determinant of product=product of determinants.

But what if we aren’t so lucky?
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if there is a finite product out of the matrices (possibly

Fr BIXRZ*L3

ans =

2 5
Q 3
> RI*AZ*AZ*RI*0L3
ans =
17 38
9 is8
Fr BRI AZ*RI*0L3
ans =
T 16
-3 -6

Fr BI*RZ=R1*AL3

ans =

1
3 &
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Matrix mortality

*MATRIX MORTALITY

"Input: A set of m n X n matrices with integer entries.

=Question: Is there a finite product that equals zero?

Thm. MATRIX MORTALITY is already when

- n=3,m=7,
or
- n=21,m=2.

This means that there is no finite time algorithm that can take as input two 21x21

matrices (or seven 3x3 matrices) and always give the correct yes/no answer to the
guestion whether they are mortal.

This is a definite statement.
(It doesn’t depend on complexity assumptions, like P vs. NP or alike.)

e How in the world would someone prove something like this?

PRINCETON mm~
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The Post Correspondence Problem (PCP)

abb| b | | &
o abbo| | bbh
(VY (2 (3)

Given a set of dominos such as the ones above,
can you put them next to each other (repetitions allowed) in such a
way that the top row reads the same as the bottom row?

Answer to this instance is

abb || a OJol_z 0.‘01:1 a b b
(X bh |0 o bh ||abb ||abb

(D 3) Y (Y (3 (2 (2
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What about this instance?

Answer is

There is a length mismatch, unless we only use (3), which is not good enough.

The Post Correspondence Problem (PCP)

Why?

ab

—

&G b

ba

‘_',...——-l—-

bab

ab

,—#

ba

(1)

But what if we aren’t so lucky?
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The Post Correspondence Problem (PCP)

=PCP

=Input: A finite set of m domino types with letters a and b written on them. |

=Question: Can you put them next to each other (repetition allowed) to get
the same word in the top and bottom row?

Thm. PCPis 2ble already whenm = 7.

mAgain, we are ruling out any finite time algorithm.
=PCP is decidable form = 2.

sStatus unknownfor2 <m< 7.
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Reductions

e There is a rather simple reduction from PCP to MATRIX MORTALITY;
see, e.g., [Wo1l1].

PCP
e This shows that if we could solve MATRIX MORTALITY in
finite time, then we could solve PCP in finite time.
e |t'simpossible to solve PCP in finite time (because of
another reduction!)
e Hence, it’s impossible to solve MATRIX MORTALITY in
finite time. Y

MATRIX
MORTALITY,

e Note that these reductions only need to be finite in
length (not polynomial in length like before).

(-3 PRINCETON mm-
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Integer roots of polynomial equations

=Can you give me three positive integers x, y, z such that

sSyre: (3,4,5) (5, 12, 13) (8, 15, 17) (7, 24, 25)
(20,21,29) (12,35,37)  (9,40,41) (28, 45, 53)

And there are infinitely many more...

"How about  x3 4+ y3 = 237

sHow about x% + y4 = z4? tells us the
answer is NO to all these
"How about x> + y5 — 757 instances.
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Integer roots to polynomial equations

What about integer solutions to x> + y3 + z3 = 29?

YES: (3,1,1)

What about x® + y3 + z3 = 30?

Looped in MATLAB over all |x,y, z| less than 10 million=> no solution!

But answer is YES!! (—283059965, —2218888517, 2220422932)

What about x® + y3 + z3 = 33?

No one knows!

PRINCETON ma Source: [Po08] 26
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Integer roots of polynomial equations

="POLY INT

"Input: A polynomial p in n variables and of degree d.

*Question: Does it have an integer root?

RARY ZRONRS...
«DNTHOIAIL» N
ZAIBSHAA 2YCT =

41 QUOM SHYOTHE

e Hilbert’s 10" problem (1900): Is there an algorithm for POLY INT?

From
Logicomix

e Matiyasevich (1970) — building on earlier work by Dauvis,
Putnam, and Robinson:
No! The problem is undecidable.

e It'sundecidable even in fixed degree and dimension (e.g., d = 4,n = 58).

PRINCETON = 27
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Real/rational roots of polynomial equations

e Ifinstead of integer roots, we were testing existence of , then
the problem would become decidable.

Such finite-time algorithms were developed in the past century
(Tarski—Seidenberg )

e |finstead we were asking for existence of ,

We currently don’t know if it’s decidable!

e Nevertheless, both problems are . For example for

(.-l PRINCETON ——
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A set of equations of degree 2
A single equation of degree 4.

Proof on the next slide.
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A simple reduction

e We give a simple reduction from STABLE SET to
show that testing existence of a real (or
rational or integer) solution to a set of
quadratic equations is NP-hard.

e Contrast this to the case of linear equations

which isin P.
Jx st.
IStable P')‘L.,,,.--..[.')Lh:K
. — .=
sire K *i 415 ¢ i,aeE
} '}He{a, I}

PRINCETON BE e How would you go from here to a single equation of degree 4? 29
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Tiling the plane

Given a finite collection of tile
types, can you tile the 2-
dimenstional plane such that the
colors on all tile borders match.

Cannot rotate or flip the tiles.

The answer is YES, for the
instance presented.

But in general, the problem is
undecidable.

PRINCETON mm=
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Stability of matrix pairs

=\We say a matrix A is stable if all its eigenvalues are strictly inside the unit circle in the
complex plane.

=\We say a pair of matrices {A1, A2} is stable if all matrix products out of A1 and A2 are
stable.

=Given {A1,A2}, let a* be the largest scalar such that the pair {aA1,aA2} is stable for all
a<a*.

=Define r(A1,A2) to be 1/a*.

=For a single matrix A, r(A) is the same thing as the spectral radius and can be
computed in polynomial time.

=STABLE MATIRX PAIR: Given a pair of matrices A1,A2, decide if r(A1,A2)<=1"

=THM. STABLE MATRIX PAIR is undecidable already for 47x47 matrices.

(.-l PRINCETON ——
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All undecidability results are proven via reductions

abb | |b | |a | A - As -
1\ abb| | bb L o -1 r 2
( ) (Q.] (3) 3 0 -1 0 0 -1

X D4 4 K K
L (X & X g X DX

But what about the first undecidable problem?

x>+ y3 + 23 =337

PRINCETON ==y 32
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The halting problem
*HALTING

"Input: A file containing a computer program p and a file containing an
input x to the computer program.

=Question: Does p ever terminate (aka halt) when given input x?

An instance of HALTING:

] function gradient_descenc(:]

2

3 fgradient descent with exact line search for minimizing a guadra
4 $function

5 O=[& 0:0 17]):

[ b=[136;154];

7 Xvec=[];

8 while norm(Q*x-b,2)>10"-5

9 alpha=( (Q*x-b) '* (Q*x-b) ) / ( (Q*x-b) ' *Q* (Q*x-b) ) ;
10 X=x-alpha* (Q*x-b) ;

11 xvec=[xvec x]:

12 - end

& ?‘rog,mm P X=[3;63);

(.-l PRINCETON —
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The halting problem

\\

funcrtion gradient_descent(:]

1

2

3 tgradient descent with exact line search for minimizing a guadratic
4 Efuncrtion.

5 Q=[8 0:0 17]):

& b=[136:154):

7 xvec=[]:

8 while norm(Q*x-b,2)>10~-5

9 alpha=( (Q*x-b) "* (Q*x-b) )/ ((Q*x-b) "*Q0* (Q*x-b) ) ;
10 x=x—-alpha+* (Q*x-b) ;

11 xvec=[xvec x];

12 end

k ?Yo?wam P xX=[3563);

e Both the program p and the input x can be represented with a finite number of bits.

e (Can there be a program --- call it terminates(p,x) --- that takes p and x as input and
always outputs the correct yes/no answer to the question: does p halt on x?

e We’ll show that the answer is no!

e This will be a proof by contradiction.

(.-l PRINCETON '
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The halting problem is undecidable

Proof.

PRINCETON

UNIVERSITY

Suppose there was such a program terminates(p,x).

We’'ll use it to create a new program paradox(z):

function paradox(z)

1: if terminates(z,z)==1 goto line 1.

The input z to paradox is a computer program.

As a subroutine, paradox asks terminates to check whether a
given computer program z halts when given itself as input. (This
is perfectly legal as any program is just a finite number of bits.)

Note that paradox halts on z if and only if zdoes not halt when
given itself as input.

e What happens if we run paradox(paradox) ?!
— If paradox halts on itself, then paradox doesn’t halt on itself.
— If paradox doesn’t halt on itself, then paradox halts on itself.

— This is a contradiction=> terminates can’t exist.

1 1
1]
LN
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The halting problem (1936)

Alan Turing
S (1912-1954)



Self-reference — a simpler example

Russell’s paradox

AL AN
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The power of reductions (one last time)

A simple paradox/puzzle:

(lots of nontrivial mathematics,

including the formalization of the
notion of an “algorithm”)

A fundamental
algorithmic question:

=POLY INT

*Input: A polynomial p in n variables and degree d.

="Question: Does it have an integer root?
PRINCETON mm 38
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A remarkable implication of this...

=Consider the following long-standing open problems in mathematics (among numerous
others!):

s there an odd perfect number? (an odd number whose proper divisors add up to itself)

=|s every even integer larger than 2 the sum of two primes? (The Goldbach conjecture)

In each case, you can explicitly write down a polynomial of degree 4 in 58 variables,
such that if you could decide whether your polynomial has an integer root, then you
would be able to solve the open problem.

Proof.
1) Write a code that looks for a counterexample.

2) Code does not halt if and only if the conjecture is true (one instance of the halting
problem!)

3) Use the reduction to turn this into an instance of POLY INT.

PRINCETON == 39
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How to deal with undecidability?

=Well we have only one tool in this class:

Convex optimization!

(.-l PRINCETON —
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Stability of matrix pairs

=\We say a matrix A is stable if all its eigenvalues are strictly inside the unit circle on the
complex plane.

=\We say a pair of matrices {A1, A2} is stable if all matrix products out of A1 and A2 are
stable.

=Given {A1,A2}, let a* be the largest scalar such that the pair {aA1,aA2} is stable for all
a<a*.

=Define r(A1,A2) to be 1/a*.

=For a single matrix A, r(A) is the same thing as the spectral radius and can be
computed in polynomial time.

=STABLE MATIRX PAIR: Given a pair of matrices A1,A2, decide if r(A1,A2)<=1"

=THM. STABLE MATRIX PAIR is undecidable already for 47x47 matrices.

(.-l PRINCETON ——
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Common Lyapunov function

Lh+1 = Ay
./4 = {Alj...,Am} f—L_,;

If we can find a function V(:z:) -R*" - R

such that V(CE‘) > 0}
V(Az) <V(z), Vi=1,...,m

then, the matrix family is stable.

Such a function always exists! But may be extremely difficult to find!!

(W PRINCETON == 42
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Computationally-friendly common Lyapunov functions
Tipr1 = Az A = {Aq, .. A}

If we can find a function V([L’) -R" 5 R

such that V(x) > 0,
V(Aix) < V(x), Vi=1,...,m

then the matrix family is stable.

"Common quadratic Lyapunov function:
V(z) = z' Pz

P
H':PAV{ P 'll:],,-.,h,,

(.-l PRINCETON -
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SDP-based approximation algorithm!

V(z) =z' Px e
HTPAI% P 'l;:],,_.,m

=Exact if you have a single matrix (we proved this).

"For more than one matrix:

ﬂ* = law?csf p such that SDP feasible for
ﬂﬁ’:: iﬁA"""pn”}'
‘{(’."- /l: ( \./é,) = ._.!——

The. 8¢ ri) o
ey g yn 44
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Proof idea

Too Lot el 7))

n

=Upper bound:

= Existence of a quadratic Lyapunov function sufficient for stability

=Lower bound (due to Blondel and Nesterov):

= We know from converse Lyapunov theorems that there always exist a Lyapunov
function which is a norm

= We are approximating the (convex) sublevel sets of this norm by ellipsoids

= Apply John’s ellipsoid theorem (see Section 8.4 of Boyd&Vandenberghe)

S
ol
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How can we do better than this SDP?

=*Why look only for quadratic Lyapunov functions?

= ook for higher order polynomial Lyapunov functions and apply our the SOS
relaxation!

V(W)= QR x G X s e € Wyt *"""‘;o"‘q

(w.x.o.g. Take \ 1o be AOMO}C/JEOUS) \\x//
Re olm‘rc \/(x] 05 (aml V#e) % F&

V(n)-V (Fli,?t) 505 iz)—,m
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"Remarks:

Common SOS Lyapunov functions

V(')ﬂ: QK4 Cy X Xf.. e G X MyWg s - _..(;! -x;f

D(
Re quice V(g o5 (and Vi) %/w\\

V(%)-V (Ain) Sos izy—m

-~

(w.x.o-g. Take \V 1o be ham?(ﬁ&aui)

sSince the dynamics x,,1 = A;X) is homogeneousin x, we can parameterize our
polynomial V to be homogeneous.

= This is just like the quadratic case: we look for V(x) = xT Px, without linear or constant terms.

*Note that the condition V' (x) SOS implies that I/ is nonnegative. To make sure that it
is actually positive definite (i.e., V(x) > 0,Vx # 0), we can instead impose

V(x) — B(x? + -+ x2)? S0OS,

where [ is a small constant (say 0.01), and 2d is the degree of V.

This condition implies that V is positive on the unit sphere, which by homogeneity
implies that V is positive everywhere.

PRINCETON mm~
UNIVERSITY =

47



‘

SOS-based approximation algorithm!

= lw‘}fﬁ ﬁ sveh thaf the 09 Program feas.Lle

Jor
ﬂud' L= i(m..--- ;ﬁnm}-
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SOS-based approximation algorithm!

"For 2d=2, this exactly reduces to our previous SDP!
(SOS=nonnegativity for quadratics!)

=\We are approximating an undecidable quantity to arbitrary accuracy
in polynomial time!!

"|n the past couple of decades, approximation algorithms have been
actively studied for a multitude of NP-hard problems. There are
noticeably fewer studies on approximation algorithms for
undecidable problems.

"|n particular, the area of integer polynomial optimization seems to
be wide open.

(-3 PRINCETON mm-
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Main messages of the course

=Convex optimization is a very powerful tool in computational mathematics.
= |ts power goes much beyond LPs — we saw many examples and applications:
= |nfinance (minimum risk portfolio optimization)
* |n machine learning (maximum-margin support vector machines)
* |n combinatorial optimization (bounding NP-hard quantities, clique number, maxcut, vertec cover, etc.)
= |n dynamics and control (finding stabilizing controllers)
® |ninformation theory (bounding the zero-error capacity of a channel)
= |napproximation algorithms (relax, round, bound)

= Robust optimization (even robust LP)

*Family of tractable convex programs: LPcQP cQCQP cSOCP cSDP

= SDPs are the broadest in this class and the most powerful

=  We emphasized the power of SDPs in algorithm design over LPs

PRINCETON = 50
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Main messages of the course

="Which optimization problems are tractable?

Convexity is a good rule of thumb.

But there are nonconvex problems that are easy (SVD, S-lemma, etc.)

And convex problems that are hard (testing matrix copositivity or polynomial nonnegativity).
In fact, we showed that every optimization problem can be “written” as a convex problem.

Computational complexity theory is essential to answering this question!

mHardness results

Theory of NP-completeness: gives overwhelming evidence for intractability of many optimization

problems of interest (no polynomial-time algorithms)

Undecidability results rule out finite time algorithms unconditionally

=Dealing with intractable problems

(.-l PRINCETON
UNIVERSITY

Solving special cases exactly

Looking for bounds via convex relaxations

Approximation algorithms

(1]
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Main messages of the course

=Sum of squares optimization

A very broad and powerful technique that turns any semialgebraic problem into a sequence of
semidefinite programs

This includes all of NP! But much more

It needs absolutely no convexity assumptions!

You should think of it anytime you see the inequality sign: = Il

*Computation, computation, computation

PRINCETON
UNIVERSITY

Be friends with CVX, YALMIP, and alike.

Develop a computational taste in research

As Stephen Boyd calls it: Work on “actionable theory”, which means “theory which can be
implemented as algorithms” (or shows limitations of algorithms)

| | 1
||
LI\

52



The take-home assignment

sTentatively scheduled to go live on Wednesday, May 17, at 9AM.

sTentatively scheduled to be due on Monday, May 22, at 9 AM in the ORF 523 box in
Sherrerd 123.

=Georgina and | will hold office hours before the exam. Time TBA.

=No collaboration allowed.

=Can only use material from this course (notes, psets).

"Please use Piazza for clarification questions (and for clarification questions only)!
=No private questions on Piazza, no emails.

=More time than needed — please keep your answers brief and to the point.
=Please keep an electronic copy of your exam.

=|f you’ve been doing the problem sets and following lecture, you should be OK ©
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Some open problems that came up in this course

1) Compute the Shannon capacity of C7. More generally, give better SDP-based upper
bounds on the capacity than Lovasz.

B oo crem
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Some open problems that came up in this course

2) Is there a polynomial time algorithm for output feedback stabilization?

Gier matrives AR Bed™ CeR™ does the ars? o mabix XeR
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Some open problems that came up in this course

3) Can you find a local minimum of a quadratic program in polynomial time?
4) Construct a convex, nonnegative polynomial that is not a sum of squares.

5) Can you beat the GW 0.878 algorithm for MAXCUT?

Massachuserrs [l

8/8-CoH

Check your license plate, you never know!

Thank you!
AAA
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