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Optimization over nonnegative polynomials

Defn. A polynomial p(x) = p(x4, ..., x;,) is nonnegative if p(x) = 0, Vx € R".

Example: When is

p(xq,%,) = 1 x7 — 6x3x, — 4x3 + coxfx5 + 10x%2 + 12x,x5 + ¢35

nonnegative?
nonnegative over a given basic semialgebraic set?

Basic semialgebraicset: {x € R"| g;(x) = 0}

Ex: x3 — 2x.x5 =0
xi + 3xyx; — x5 >0
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Optimization over nonnegative polynomials

Isp(x) =2 00on{g;(x) =0,...,g,,(x) = 0}?

e Lower boundson e Fitting a polynomial to data e Stabilizing controllers
polynomial subject to shape constraints
optimization problems (e.g., convexity, or monotonicity)

max y

s.t. p(xy) -y =0,
Vx € {g;(x) = 0}

V(x) >0,
VX)) S B=2>TW)Tf(x) <0

— Implies that
op(x) > 0,Vx € B x| V(x) < £}
axj B is in the region of attraction
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How would you prove nonnegativity?

Ex. Decide if the following polynomial is nonnegative:

p(z) = z}— 67Ty + 223713 + Gx%xg + 9x1x2 6237073
—14z1 7972 + 4175 + 523 — Txixs + 1675

*Not so easy! (In fact, NP-hard for degree = 4)

=But what if | told you:

p(z) = (x7— 3z179 + 7173 + 2235)° + (2123 — T273)*
+(423 — 73)%.

e|s it any easier to test for a sum of squares (SOS) decomposition?
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SOS->SDP

Thm: A polynomial p(x) of degree 2d is sos if and only if there
exists a matrix Q such that

Q >0,
p(x) = z(x)" Qz(x),
where
< = [19 L1y L2y e ooy Ly L1L2y - vy xg]T

The set of such matrices Q forms the feasible set of a .
semidefinite program.

Example coming up in Antonis’ talk
"‘“NCETON HH Fully automated in YALMIP, SOSTOOLS, SPOTLESS, GloptiPoly, ...
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How to prove nonnegativity
over a basic semialgebraic set?

Certifies that

p(x) >0o0on{g;(x)=0,..,9n,(x) =0}

p(x) >0on{g:(x) =0,..,9m(x) = 0}

under Archimedean condition

p(x) = go(x) + X;0;(x)g;(x),
where g;,1 = 0, ..., m are sos

Search for g; is an SDP when we bound the degree.

[Lasserre, Parrilo]

All use sos polynomials...
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Dynamics and Control




Lyapunov theory with sum of squares (sos) techniques

Questionsabout | Theory '~ "o " : FEESREREES )G [BRSEOR R

. | .I Search for sign- ! 'l Polynomial i Semidefinite
ENISRRIE Syt o i definite functions i inequalities ~. programming

(e.g., stability, safety) , (e e s ek ! EEEEeEast) 0 (HEEEsteoa .

Ex. Lyapunov’s
stability theorem.

&= f(x) Lyapunov V' (z) : R" gVR
function V(:c) ( 7f( ))

V(x) sos V(a:') > 0
—V(x) sos =V (z) >0 = GAS

Qo 5 (similar local version) ¢
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Global stability
V(x) sos V(Q;)

Example.
7, = —0.15z] + 20028z, — 10.5z525 — 807Tx{zs + 14zixs + 600x x5 — 3.52,25 + 9]
7y = —9r] —3.52029 — 6002725 + 1dzixs + 807x5x5 — 10.5x1x5 — 2002125 — 0.152]
a4, ' ' ? p 2 : o
15+
1+
05}
xN 0Ff A
Couple lines of code in SOSTOOLS, YALMIP, o5l
SPOTLESS, etc. At
Output of SDP solver: A5}
2p :
) . . | = T - 05 1 15 2
Vo= 0.0227 4+ 0.015z x5 + l.?-"lB:}: — 0.106x° :1‘2 d 317‘}:1?‘2

+0.106x5 x5 + 1.743z7x5 [_].[_1153:1.1:;’+[_1.[_123:§.

¥ UNIVERSILY — mme



Theoretical limitations: converse implications may fail

e Testing asymptotic stability of cubic vector fields is strongly NP-hard. [AAA]
r = —xr+xy
y = Y
e Globally asymptotically stable.
e But no polynomial Lyapunov function of any degree! [AAA, Krstic, Parrilo]
T, = —x%x5+ 211y — 7} + dairs — 8z o + dxt — 375 + ATy 7h — A3y + 1073
Ty = —91‘-%:1‘2 -+ lU.‘]‘_‘E + 2;]':]_3:% — 8;1;1333 — 4z, — Tz’: + l:?“% — 4y

e V(x)=x%+ x5 proves GAS.

e SOS fails to find any quadratic Lyapunov
function.
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Converse statements possible in special cases

1. Asymptotically stable homogeneous polynomial vector field—> Rational
Lyapunov function with an SOS certificate.
[AAA, El Khadir]

2. Exponentially stable polynomial vector field on a compact set—> Polynomial
Lyapunov function.
[Peet, Papachristodoulou]

3. Asymptotically stable switched linear system—> Polynomial Lyapunov function
with an SOS certificate.
[Parrilo, Jadbabaie]

4. Asymptotically stable switched linear system—> Convex polynomial Lyapunov
function with an SOS certificate.
[AAA, Jungers]
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Local stability — SOS on the Acrobot

Swing-up:

-4 1

‘Balance: *

0.6

(4-state system)

Controller

designed by SOS
[Majumdar, AAA, Tedrake ]
"R‘NCETON | . (Best paper award - IEEE Conf. on Robotics and Automation) 12
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Statistics and Machine Learning
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Monotone regression: problem definition

Wi
W

25

ol
)
/,///

7k
% 4
Y,

o

SEAON AN * N data points:

\\;\—\ \\\\\\i&\\\\\\\ H n H
\\\;\\\\\ (xini) with X; € R , Vi € R, Nnoisy

\,‘1’

3 B\
AR

SR measurements of a monotone function
SRR

yi = f(x;) + €
* Feature domain: box B € R"

Monotonicity profile:
1 if f is monotonically increasing w.r.t. x;

p; =4 —1 if f is monotonically decreasing w.r.t. x;
0 if no monotonicity requirements on f w.r.t. x;
forj=1,..,n

Fit a polynomial to the data that has

monotonicity profile p over B.
PRINCETON mm 14
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NP-hardness and SOS relaxation

Theorem: Given a cubic polynomial p, a box B, and a monotonicity
profile p, it is NP-hard to test whether p has profile p over B.

[AAA, Curmei, Hall]
SOS relaxation:

ap(x)>OVXEB ap(x)

= Y ) X —_

0%; P = 6o (x) + X0y () (b — x)(x; — b))
where J . _

B = [b[,b}] X - X [b;, bi] where g;,i = 0, ..., n are sos polynomials

PRINCETON = 15
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Approximation theorem

Theorem: For any € > 0, and any C?! function f with monotonicity

profile p, there exists a polynomial p with the same profile p, such
that

max|f(x) —p(x)| <e.

Moreover, one can certify its monotonicity profile using SOS.

[AAA, Curmei, Hall]
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Numerical experiments

1.8 , .
eps=5
UPR test
1.6 | ——MCPR test
*MCPR train
.. L i = JPR train
TTT : 14} _
LU
257+ - 1)
=
o1 : 1.2 \ -
eps=4 i
1.5+ = original function 1F . E—
= = monotonic regression .
1r “+++* unconstrained regressions | - \
L A L k ] 0.8 1 1 | 1 [l
0.5 1 1.5 2 2 3 4 5 6 7 8
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Polynomial Optimization
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A meta-theorem for producing hierarchies

Theorem: Let K,’{,Zd be a sequence of sets of homogeneous polynomials in
n variables and of degree 2d. If:

(1) Kﬁ,Zd € Ppoq Vrand 3 s, 4 pdin K,?}Zd
(2) p>0=>3reNs.t.p € Ky ,q4 o
(3) Kipa S Kibhvr

(4) PEKpoqg > P+ E€Spaq €EKypg Ve €[0,1]

Then,
rT oo
Compactness maxy
POP min p(x) assumptions 14
XxERM _ 1
S.t. g; (X) =20,i=1,..,m opt. val. S.t. fy(Z) - ;Sn+m+3,4d (Z) € K;{+m+3,4d

2d = maximum degree of p, g;

where f, is a form which can be written down explicitly from p, g;.

Artin cones A}, ,4 = {p | p - q is sos for some sos g of degree 2r} 19



An optimization-free converging hierarchy

p(x) >0,Vxe{xeR"|g;(x) >20,i=1,.. m}

2d =maximum degree of p, g;
II Under compactness assumptions,

e, {x| g;(x) =0} < B(0,R)

3 1 € N such that

1 2\¢ 1 d r?
(F2 = w?) =2 (207 —w2)*) +5- (Bt +wh)") - (B0 + Ziw?)
has ,
where f is a form in n + m + 3 variables and of degree 4d, which can be
explicitly written from p, g; and R.
[AAA, Hall]

"R‘NCETON H (also leads to DSOS/SDSOS-based converging hierarchies for POP) 20
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Ongoing directions: large-scale/real-time verification

e 30 states, 14 control inputs,
cubic dynamics

e Done with SDSOS optimization
(see Georgina’s talk)

Two promising approaches:

1. LP and SOCP-based alternatives to SOS, Georgina’s talk
Less powerful than SOS (James’ talk), but good enough for some applications

2. Exploiting problem structure and designing customized algorithms

Antonis’ talk (next), and Pablo Parrilo’s plenary (Thu. 8:30am)

Wi EE Slides/references available at: 21



