# Exploiting Structure in SDPs with Chordal Sparsity

#### **Antonis Papachristodoulou**

Department of Engineering Science, University of Oxford

Joint work with Yang Zheng, Giovanni Fantuzzi, Paul Goulart and Andrew Wynn



CDC 2016 Pre-conference Workshop



# OUTLINE



#### 2 ADMM for Primal and Dual Sparse SDPs

**3 CDCS: Cone Decomposition Conic Solver** 



#### **Chordal Graphs**

A graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  is chordal if every cycle of length  $\geq$  4 has a chord.



Can recognise chordal graphs in  $O(|\mathcal{V}| + |\mathcal{E}|)$  time

#### **Chordal Graphs**

A graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  is chordal if every cycle of length  $\geq$  4 has a chord.



Can recognise chordal graphs in  $O(|\mathcal{V}| + |\mathcal{E}|)$  time

## **Maximal Cliques**

A maximal clique is a clique that is not a subset of another clique. e.g.  $C_1 = \{1, 2, 6\}$ .

Can find the maximal cliques of a chordal graph in  $O(|\mathcal{V}|+|\mathcal{E}|)$  time.



# Examples of Chordal Graphs



# $\mathbb{S}^n_{\scriptscriptstyle +}(\mathcal{E},0) = \{ Z \in \mathbb{S}^n(\mathcal{E},0) \, | \, Z \succeq 0 \}$

# $Z \in \mathbb{S}^{n}(\mathcal{E}, 0) = \left\{ Z \in \mathbb{S}^{n} \mid Z_{ij} = 0, \forall (i, j) \notin \mathcal{E} \right\}$



#### Agler's Theorem

Theorem: Let  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  be a chordal graph with set of maximal cliques  $\mathcal{C} = \{\mathcal{C}_1, \mathcal{C}_2, ..., \mathcal{C}_p\}$ . Suppose that  $Z \in \mathbb{S}^n(\mathcal{E}, 0)$ . Then  $Z \in \mathbb{S}^n_+(\mathcal{E}, 0)$  if and only if there exists a set of matrices  $\{Z^1, Z^2, ..., Z^p\}$  such that  $Z = \sum_{k=1}^p Z^k$ ,  $Z^k \succeq 0$ ,  $Z_{ij}^k = 0$  if  $(i, j) \notin \mathcal{E}_k \times \mathcal{E}_k$ .









# $Z \succeq 0 \iff \exists A, B, C, D$ such that $A + B + C + D = Z, A, B, C, D \succeq 0$



# $Z \succeq 0 \iff \exists A, B, C, D$ such that $A + B + C + D = Z, A, B, C, D \succeq 0$



# $Z \succeq 0 \iff \exists A, B, C, D \text{ such that}$ $A + B + C + D = Z, A, B, C, D \succeq 0$



# $Z \succeq 0 \iff \exists A, B, C, D$ such that $A + B + C + D = Z, A, B, C, D \succeq 0$



#### SDPs with Chordal Sparsity



- Applications: control theory, fluid mechanics, machine learning, polynomial optimization, combinatorics, operations research, finance, etc.
- Second-order solvers : SeDuMi, SDPA, SDPT3
- Large-scale cases: exploit the inherent structure of the instances (De Klerk, 2010):
  - Low Rank and Algebraic Symmetry.
  - Chordal Sparsity:
    - ✓ Second-order methods: Fukuda et al., 2001; Nakata et al., 2003; Andersen et al., 2010;
    - ✓ First-order methods: Madani *et al.*, 2015; Sun *et al.*, 2014.

#### **Decomposing Sparse SDPs**



#### SDPs with Chordal Sparsity

$$\mathbb{S}^{n}(\mathcal{E},0) = \left\{ X \in \mathbb{S}^{n} \mid X_{ij} = 0, \forall (i,j) \notin \mathcal{E} \right\}$$
$$\mathbb{S}^{n}_{+}(\mathcal{E},0) = \left\{ X \in \mathbb{S}^{n}(\mathcal{E},0) \mid X \succeq 0 \right\}$$



 $\mathbb{S}^{n}(\mathcal{E},?) = n \times n \text{ partial symmetric matrices with entries defined on } \mathcal{E}$  $\mathbb{S}^{n}_{+}(\mathcal{E},?) = \{X \in \mathbb{S}^{n}(\mathcal{E},?) \mid \exists M \ge 0, M_{ij} = X_{ij}, \forall (i,j) \in \mathcal{E}\}$ 

 $\mathbb{S}^{n}_{+}(\mathcal{E},?)$  and  $\mathbb{S}^{n}_{+}(\mathcal{E},0)$  are dual cones of each other

#### Grone's theorem

Consider a choral graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  with a set of maximal cliques  $\mathcal{C}_1, \ldots, \mathcal{C}_p$ .

## **Grone's Theorem:**

 $X \in \mathbb{S}^{n}_{+}(\mathcal{E},?)$  if and only if  $X(\mathcal{C}_{k}) \succeq 0, k = 1,...,p$ .



#### **Cone Decomposition of Primal and Dual SDPs**





# OUTLINE



#### 2 ADMM for Primal and Dual Sparse SDPs

**3 CDCS: Cone Decomposition Conic Solver** 



An operator splitting method for a problem of the form

 $\min f(x) + g(z)$ 

s.t. 
$$x = z$$

f, g may be nonsmooth.

Lagrangian:

Lagrangian:  

$$\mathcal{L} = f(x) + g(z) + \frac{\rho}{2} \left\| x - z + \frac{1}{\rho} \lambda \right\|_{2}^{2}$$
ADMM:  

$$x^{n+1} = \operatorname{argmin}_{x} \left( f(x) + \frac{\rho}{2} \left\| x - z^{n} + \frac{1}{\rho} \lambda^{n} \right\|_{2}^{2} \right)$$

$$z^{n+1} = \operatorname{argmin}_{z} \left( g(z) + \frac{\rho}{2} \left\| x^{n+1} - z + \frac{1}{\rho} \lambda^{n} \right\|_{2}^{2} \right)$$

$$\lambda^{n+1} = \lambda^{n} + \rho(x^{n+1} - z^{n+1})$$

## Reformulation and decomposition of the PSD constraint

$$\min_{X} \langle C, X \rangle$$
  
s.t.  $\mathcal{A}(X) = b$   
 $X_{k} = E_{C_{k}} X E_{C_{k}}^{T}, k = 1, ..., p$   
 $X_{k} \in \mathbb{S}_{+}^{|C_{k}|}, k = 1, ..., p$ 

$$\min_{\substack{x, x_1, \dots, x_p}} c^{\mathsf{T}} x$$
  
s.t.  $Ax = b$   
 $x_k = H_k x, \ k = 1, \dots, p$   
 $x_k \in \mathcal{S}_k, \ k = 1, \dots, p$ 

Using indicator functions

$$\min_{x,x_1,\dots,x_p} c^{\mathsf{T}} x + \delta_0 (Ax - b) + \sum_{k=1}^p \delta_{s_k} (x_k)$$
  
s.t.  $x_k = H_k x, \ k = 1,\dots,p$ 

Augmented Lagrangian

$$\mathcal{L} = c^{T} x + \delta_{0} (Ax - b) + \sum_{k=1}^{p} \left[ \delta_{S_{k}} (x_{k}) + \frac{\rho}{2} \left\| x_{k} - H_{k} x + \frac{1}{\rho} \lambda_{k} \right\|^{2} \right]$$

• Regroup the variables

$$\mathcal{X} \triangleq \{\mathbf{x}\}; \quad \mathcal{Y} \triangleq \{\mathbf{x}_1, \dots, \mathbf{x}_p\}; \quad \mathcal{Z} \triangleq \{\lambda_1, \dots, \lambda_p\}$$

#### **ADMM for Primal SDPs**

$$\mathcal{L} = \mathbf{c}^{\mathsf{T}} \mathbf{x} + \delta_0 (\mathbf{A}\mathbf{x} - \mathbf{b}) + \sum_{k=1}^{p} \left[ \delta_{s_k} (\mathbf{x}_k) + \frac{\rho}{2} \left\| \mathbf{x}_k - \mathbf{H}_k \mathbf{x} + \frac{1}{\rho} \lambda_k \right\|^2 \right]$$
$$\mathcal{X} \triangleq \{\mathbf{x}\}; \quad \mathcal{Y} \triangleq \{\mathbf{x}_1, \dots, \mathbf{x}_p\}; \quad \mathcal{Z} \triangleq \{\lambda_1, \dots, \lambda_p\}$$

1) Minimization over  ${\cal X}$ 

$$\min_{x} c^{T} x + \frac{\rho}{2} \sum_{k=1}^{p} \left\| x_{k}^{(n)} - H_{k} x + \frac{1}{\rho} \lambda_{k}^{(n)} \right\|^{2}$$

s.t. 
$$Ax = b$$

2) Minimization over  $\mathcal{Y}$   $\min_{x_{k}} \left\| x_{k} - H_{k} x^{(n+1)} + \frac{1}{\rho} \lambda_{k}^{(n)} \right\|^{2}$ s.t.  $x_{k} \in \mathcal{S}_{k}$ 3) Update multipliers  $\lambda_{k}^{(n+1)} = \lambda_{k}^{(n)} + \rho \left( x_{k}^{(n+1)} - H_{k} x^{(n+1)} \right)$  QP with linear constraint

 ✓ the KKT system matrix only depends on the problem data.

#### **Projections in parallel**

#### ADMM for Primal and Dual SDPs



The duality between the primal and dual SDP is inherited by the decomposed problems by virtue of the duality between Grone's and Agler's theorems.

#### ADMM for the Homogeneous self-dual embedding

$$\begin{split} \min_{x,x_{k}} & c^{T}x & \min_{y,z_{k}} & -b^{T}y \\ \text{s.t.} & Ax = b & \\ & x_{k} = H_{k}x & \text{s.t.} & A^{T}y + \sum_{k=1}^{p} H_{k}^{T}v_{k} = c \\ & x_{k} \in \mathcal{S}_{k}, \ k = 1, \dots, p & z_{k} \in \mathcal{S}_{k}, \ k = 1, \dots, p \\ \end{split}$$
  $\bullet \text{ Notational simplicity} & s \triangleq \begin{bmatrix} x_{1} \\ \vdots \\ x_{p} \end{bmatrix}, \ z \triangleq \begin{bmatrix} z_{1} \\ \vdots \\ z_{p} \end{bmatrix}, \ v \triangleq \begin{bmatrix} v_{1} \\ \vdots \\ v_{p} \end{bmatrix}, \ H \triangleq \begin{bmatrix} H_{1} \\ \vdots \\ H_{p} \end{bmatrix}$ 

KKT conditions
 Primal feasible

Dual feasible

Zero-duality gap

$$Ax^{*} - r^{*} = b, \quad r^{*} = 0,$$
  

$$s^{*} + w^{*} = Hx^{*}, \quad w^{*} = 0, \quad s^{*} \in S$$
  

$$A^{T}y^{*} + H^{T}v^{*} + h^{*} = c, \quad h^{*} = 0,$$
  

$$z^{*} - v^{*} = 0, \quad z^{*} \in S$$
  

$$c^{T}x^{*} - b^{T}y^{*} = 0$$

### ADMM for the Homogeneous self-dual embedding

$$\begin{bmatrix} h \\ z \\ r \\ w \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & 0 & -A^{\mathsf{T}} & -H^{\mathsf{T}} & c \\ 0 & 0 & 0 & I & 0 \\ A & 0 & 0 & 0 & -b \\ H & -I & 0 & 0 & 0 \\ -c^{\mathsf{T}} & 0 & b^{\mathsf{T}} & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ s \\ y \\ v \\ \tau \end{bmatrix}$$

 $au, \kappa$  are two non-negative and complementary variables

Notational simplicity

$$v \triangleq \begin{bmatrix} h \\ z \\ r \\ w \\ \kappa \end{bmatrix}, \ u \triangleq \begin{bmatrix} x \\ s \\ y \\ v \\ \tau \end{bmatrix}, \ Q \triangleq \begin{bmatrix} 0 & 0 & -A^{T} & -H^{T} & c \\ 0 & 0 & 0 & I & 0 \\ A & 0 & 0 & 0 & -b \\ H & -I & 0 & 0 & 0 \\ -c^{T} & 0 & b^{T} & 0 & 0 \end{bmatrix}, \ \mathcal{K} = \mathbb{R}^{n^{2}} \times \mathcal{S} \times \mathbb{R}^{m} \times \mathbb{R}^{n_{d}} \times \mathbb{R}_{+}$$

• Feasibility problem

find 
$$(u,v)$$
  
s.t.  $v = Qu$   
 $(u,v) \in \mathcal{K} \times \mathcal{K}^*$ 

#### ADMM for the Homogeneous self-dual embedding

find 
$$(u,v)$$
  
s.t.  $v = Qu$ ,  $(u,v) \in \mathcal{K} \times \mathcal{K}^*$ 

• ADMM steps (similar to solver SCS [1])

 $\hat{u}^{k+1} = (I+Q)^{-1}(u^{k}+v^{k}) \longrightarrow \text{Projection to a subspace}$  $u^{k+1} = \mathsf{P}_{\kappa}(\hat{u}^{k+1}-v^{k}) \longrightarrow \text{Projection to cones}$  $V^{k+1} = V^k - \hat{U}^{k+1} + U^{k+1}$ Q is highly structured and sparse  $Q \triangleq \begin{bmatrix} 0 & 0 & -A^{T} & -H^{T} & c \\ 0 & 0 & 0 & I & 0 \\ A & 0 & 0 & 0 & -b \\ H & -I & 0 & 0 & 0 \\ -c^{T} & 0 & b^{T} & 0 & 0 \end{bmatrix} \checkmark \text{Block elimination can be applied}$ here to speed up the projection;  $\checkmark \text{ Then, the per-iteration cost is the same as applying a splitting method to the primal or dual alone}$ to the primal or dual alone.

[1] O'Donoghue, B., Chu, E., Parikh, N. and Boyd, S. (2016). Conic optimization via operator splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applications, 169(3), 1042–1068

# OUTLINE



#### 2 ADMM for Primal and Dual Sparse SDPs

**3 CDCS: Cone Decomposition Conic Solver** 



- An open source MATLAB solver for partially decomposable conic programs;
- CDCS supports constraints on the following cones:
  - ✓ Free variables
  - ✓ non-negative orthant
  - $\checkmark$  second-order cone
  - $\checkmark$  the positive semidefinite cone.
- Input-output format is aligned with SeDuMi;
- Works with latest YALMIP release.

Syntax:

[x,y,z,info] = cdcs(At,b,c,K,opts);

Download from https://github.com/OxfordControl/CDCS

## **Random SDPs with block-arrow pattern**

- Block size: *d*
- Number of Blocks: /
- Arrow head: h
- Number of constraints: m



Numerical Comparison

- SeDuMi
- sparseCoLO+SeDuMi
- SCS
- sparseCoLO+SCS

CDCS and SCS  $\epsilon_{tol} = 10^{-3}$ 

Numerical Result  $10^{4}$  $10^{4}$  $10^{4}$  $10^{3}$  $10^{3}$ 103 (s) 10<sup>2</sup> 10<sup>1</sup>  $10^{1}$  $10^{1}$  $10^{0}$  $10^{0}$ 10 600 1000 1500 2000 2500 2050 100 150 200 10 3500 10 2030 40400Number of constraints, mSize of each block, dNumber of blocks, l

 $\square$  SeDuMi + SparseCoLo+SeDuMi  $\bigcirc$  SCS  $\triangle$  SparseCoLo+SCS  $\diamondsuit$  CDCS (primal)  $\nabla$  CDCS (dual)

CPU time for SDPs with block-arrow patterns. Left to right: varying number of constraints; varying number of blocks; varying block size.

## **Benchmark problems in SDPLIB**

Three sets of benchmark problems in SDPLIB (Borchers, 1999):

- 1) Four small and medium-sized SDPs (theta1, theta2, qap5 and qap9);
- 2) Four large-scale sparse SDPs (maxG11, maxG32, qpG11 and qpG51);
- 3) Two infeasible SDPs (infp1 and infd1).

|                         | Small and medium-size $(n \leq 100)$ |        |      | Large-scale and sparse $(n \ge 800)$ |        |        |           | Infeasible |       |       |
|-------------------------|--------------------------------------|--------|------|--------------------------------------|--------|--------|-----------|------------|-------|-------|
|                         | theta1                               | theta2 | qap5 | qap9                                 | maxG11 | maxG32 | qpG11     | qpG51      | infp1 | infd1 |
| Original cone size, $n$ | 50                                   | 100    | 26   | 82                                   | 800    | 2000   | 1600      | 2000       | 30    | 30    |
| Affine constraints, $m$ | 104                                  | 498    | 136  | 748                                  | 800    | 2000   | 800       | 1000       | 10    | 10    |
| Number of cliques, $p$  | 1                                    | 1      | 1    | 1                                    | 598    | 1499   | 1405      | 1675       | 1     | 1     |
| Maximum clique size     | 50                                   | 100    | 26   | 82                                   | 24     | 60     | <b>24</b> | 304        | 30    | 30    |
| Minimum clique size     | 50                                   | 100    | 26   | 82                                   | 5      | 5      | 1         | 1          | 30    | 30    |

Table 1. Details of the SDPLIB problems considered in this work.

#### Result: small and medium-sized instances

|        |                                                            | SeDuMi                                     | SparseCoLO+<br>SeDuMi                          | SCS                                                                      | CDCS (primal)                                                                                              | $\begin{array}{c} \mathrm{CDCS} \\ \mathrm{(dual)} \end{array}$                                            | Self-dual                                                                |
|--------|------------------------------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| theta1 | Total time (s)<br>Pre- time (s)<br>Iterations<br>Objective | 0.262<br>0<br>14<br>$2.300 \times 10^{1}$  | $0.279 \\ 0.005 \\ 14 \\ 2.300 \times 10^{1}$  | $\begin{array}{c} 0.145 \\ 0.011 \\ 240 \\ 2.300 	imes 10^1 \end{array}$ | $\begin{array}{c} 0.751 \\ 0.013 \\ 317 \\ 2.299 	imes 10^1 \end{array}$                                   | $\begin{array}{c} 0.707 \\ 0.010 \\ 320 \\ 2.299 \times 10^1 \end{array}$                                  | $0.534 \\ 0.012 \\ 230 \\ 2.303 \times 10^{1}$                           |
| theta2 | Total time (s)<br>Pre- time (s)<br>Iterations<br>Objective | 1.45<br>0<br>15<br>$3.288 \times 10^{1}$   | 1.55<br>0.014<br>15<br>$3.288 \times 10^{1}$   | 0.92<br>0.018<br>500<br>$3.288 \times 10^{1}$                            | $     \begin{array}{r}       1.45 \\       0.046 \\       287 \\       3.288 \times 10^1     \end{array} $ | $     \begin{array}{r}       1.30 \\       0.036 \\       277 \\       3.288 \times 10^1     \end{array} $ | $\begin{array}{r} 0.60 \\ 0.031 \\ 110 \\ 3.287 \times 10^1 \end{array}$ |
| qap5   | Total time (s)<br>Pre- time (s)<br>Iterations<br>Objective | 0.365<br>0<br>12<br>-4.360×10 <sup>2</sup> | 0.386<br>0.006<br>12<br>$-4.360 \times 10^{2}$ | 0.412<br>0.026<br>320<br>$-4.359 \times 10^{2}$                          | $0.879 \\ 0.011 \\ 334 \\ -4.360 \times 10^2$                                                              | 0.748<br>0.009<br>332<br>$-4.364 \times 10^{2}$                                                            | $1.465 \\ 0.009 \\ 783 \\ -4.362 \times 10^2$                            |
| qap9   | Total time (s)<br>Pre- time (s)<br>Iterations<br>Objective | 6.291<br>0<br>25<br>-1.410×10 <sup>3</sup> | $6.751 \\ 0.012 \\ 25 \\ -1.410 \times 10^3$   | 3.261<br>0.010<br>2000<br>-1.409×10 <sup>3</sup>                         | 7.520<br>0.064<br>2000<br>$-1.407 \times 10^{3}$                                                           | 7.397<br>0.036<br>2000<br>-1.409×10 <sup>3</sup>                                                           | $1.173 \\ 0.032 \\ 261 \\ -1.410 \times 10^3$                            |

Table 2. Results for some small and medium-sized SDPs in SDPLIB.

#### Result: large-sparse instances

|        |                                                            | SeDuMi                                                                                   | SparseCoLO+<br>SeDuMi                        | SCS                                                                                        | CDCS<br>(primal)                                                                           | $\begin{array}{c} \mathrm{CDCS} \\ \mathrm{(dual)} \end{array}$                            | Self-dual                                                               |
|--------|------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| maxG11 | Total time (s)<br>Pre- time (s)<br>Iterations<br>Objective | 92.0<br>0<br>13<br>$6.292 \times 10^2$                                                   | 9.83<br>2.39<br>15<br>$6.292 \times 10^2$    | $160.5 \\ 0.07 \\ 1860 \\ 6.292 \times 10^2$                                               | $\begin{array}{c} 126.6 \\ 3.33 \\ 1317 \\ 6.292 \times 10^2 \end{array}$                  | $114.1 \\ 4.28 \\ 1306 \\ 6.292 \times 10^2$                                               | 23.9<br>2.45<br>279<br>$6.295 \times 10^2$                              |
| maxG32 | Total time (s)<br>Pre- time (s)<br>Iterations<br>Objective | $\begin{array}{c} 1.385 \times 10^{3} \\ 0 \\ 14 \\ 1.568 \times 10^{3} \end{array}$     | 577.4<br>7.63<br>15<br>1.568×10 <sup>3</sup> | $\begin{array}{r} 2.487 \times 10^{3} \\ 0.589 \\ 2000 \\ 1.568 \times 10^{3} \end{array}$ | 520.0<br>53.9<br>1796<br>1.568×10 <sup>3</sup>                                             | 273.8<br>55.6<br>943<br>$1.568 	imes 10^3$                                                 | $\begin{array}{r} 87.4 \\ 30.5 \\ 272 \\ 1.568 \times 10^3 \end{array}$ |
| qpG11  | Total time (s)<br>Pre- time (s)<br>Iterations<br>Objective | $\begin{array}{r} 675.3 \\ 0 \\ 14 \\ 2.449 \times 10^3 \end{array}$                     | 27.3<br>11.2<br>15<br>$2.449 \times 10^{3}$  | $\begin{array}{r} 1.115 \times 10^{3} \\ 0.57 \\ 2000 \\ 2.449 \times 10^{3} \end{array}$  | 273.6<br>6.26<br>1355<br>2.449×10 <sup>3</sup>                                             | 92.5<br>6.26<br>656<br>2.449×10 <sup>3</sup>                                               | $\begin{array}{r} 32.1 \\ 3.85 \\ 304 \\ 2.450 \times 10^3 \end{array}$ |
| qpG51  | Total time (s)<br>Pre- time (s)<br>Iterations<br>Objective | $\begin{array}{c} 1.984\!\times\!10^{3} \\ 0 \\ 22 \\ 1.182\!\times\!10^{3} \end{array}$ | -<br>-<br>-                                  | $2.290 \times 10^{3}$<br>0.90<br>2000<br>$1.288 \times 10^{3}$                             | $\begin{array}{c} 1.627{\times}10^{3} \\ 10.82 \\ 2000 \\ 1.183{\times}10^{3} \end{array}$ | $\begin{array}{r} 1.635\!\times\!10^3 \\ 12.77 \\ 2000 \\ 1.186\!\times\!10^3 \end{array}$ | 538.1<br>7.89<br>716<br>1.181×10 <sup>3</sup>                           |

Table 3. Results for some large-scale sparse SDPs in SDPLIB.

#### Result: Infeasible instances

|        |                | SeDuMi     | SparseCoLO+<br>SeDuMi | SCS        | $\begin{array}{c} \mathrm{CDCS} \\ \mathrm{(primal)} \end{array}$ | $\begin{array}{c} \mathrm{CDCS} \\ \mathrm{(dual)} \end{array}$ | Self-dual  |
|--------|----------------|------------|-----------------------|------------|-------------------------------------------------------------------|-----------------------------------------------------------------|------------|
|        | Total time (s) | 0.063      | 0.083                 | 0.062      | *                                                                 | *                                                               | 0.18       |
| info 1 | Pre- time (s)  | 0          | 0.010                 | 0.016      | *                                                                 | *                                                               | 0.010      |
| inipi  | Iterations     | 2          | 2                     | 20         | *                                                                 | *                                                               | 104        |
|        | Status         | Infeasible | Infeasible            | Infeasible | *                                                                 | *                                                               | Infeasible |
|        | Total time (s) | 0.125      | 0.140                 | 0.050      | *                                                                 | *                                                               | 0.144      |
| infd1  | Pre- time (s)  | 0          | 0.009                 | 0.013      | *                                                                 | *                                                               | 0.009      |
|        | Iterations     | 4          | 4                     | 40         | *                                                                 | *                                                               | 90         |
|        | Status         | Infeasible | Infeasible            | Infeasible | *                                                                 | *                                                               | Infeasible |

Table 4. Results for two infeasible SDPs in SDPLIB.

#### Result: CPU time per iteration

Table 5. CPU time per iteration (s) for some SDPs in SDPLIB

|                                    | SCS                                                                                        | CDCS<br>(primal)                                                                             | $\begin{array}{c} \mathrm{CDCS} \\ \mathrm{(dual)} \end{array}$                              | Self-dual                                                                                    |  |
|------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| theta1<br>theta2<br>qap5<br>qap9   | $6 \times 10^{-4}$<br>$1.8 \times 10^{-3}$<br>$1.2 \times 10^{-3}$<br>$1.5 \times 10^{-3}$ | $2.3 \times 10^{-3}$<br>$5.1 \times 10^{-3}$<br>$2.6 \times 10^{-3}$<br>$3.6 \times 10^{-3}$ | $2.2 \times 10^{-3}$<br>$4.7 \times 10^{-3}$<br>$2.2 \times 10^{-3}$<br>$3.7 \times 10^{-3}$ | $2.3 \times 10^{-3}$<br>$5.5 \times 10^{-3}$<br>$1.9 \times 10^{-3}$<br>$4.2 \times 10^{-3}$ |  |
| maxG11<br>maxG32<br>qpG11<br>qpG51 | $\begin{array}{c} 0.086 \\ 1.243 \\ 0.557 \\ 1.144 \end{array}$                            | $0.094 \\ 0.260 \\ 0.198 \\ 0.808$                                                           | $\begin{array}{c} 0.084 \\ 0.231 \\ 0.132 \\ 0.811 \end{array}$                              | $\begin{array}{c} 0.077 \\ 0.209 \\ 0.093 \\ 0.741 \end{array}$                              |  |

✓ Our codes are currently written in MATLAB✓ SCS is implemented in C.

## Conclusion



- Introduced a conversion framework for sparse SDPs
- Developed efficient ADMM algorithms

 $\checkmark$  Primal and dual standard form;

✓ The homogeneous self-dual embedding;

suitable for firstorder methods

# Ongoing work

- Develop ADMM algorithms for sparse SDPs arising in SOS.
- Applications in networked systems and power systems

# Thank you for your attention!

 CDCS: Download from https://github.com/OxfordControl/CDCS

- Zheng, Y., Fantuzzi G., Papachristodoulou A., Goulart, P., and Wynn, A. (2016) Fast ADMM for Semidefinite Programs with Chordal Sparsity. *arXiv preprint arXiv:1609.06068*
- Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2016) Fast ADMM for homogeneous self-dual embeddings of sparse SDPs. *arXiv preprint arXiv:1611.01828*