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1. Please write your name on the first page of your solutions. Next to it, please write out

and sign the following pledge: “I pledge my honor that I have not violated the Honor

Code or the rules specified by the instructor during this examination.”

2. The exam is not to be discussed with anyone except possibly the instructor and the

AIs. You can only ask clarification questions, and only as public (and preferably non-

anonymous) questions on Ed Discussion. No emails.

3. You are allowed to consult the lecture notes, your own notes, the reference books of

the course as indicated on the syllabus, the problem sets and their solutions (yours and

ours), the midterm and its solutions (yours and ours), the practice midterm and final

exams and their solutions, all Ed Discussion posts, but nothing else. You can only use

the Internet in case you run into problems related to software.

4. You may refer to facts proven in the notes or problem sets without reproving them.

5. For computational problems, include your code. The output you present should come

from your code. Report requested numerical values to 4 digits after the decimal point.

6. You have 48 hours from the time of download to submit this exam on Gradescope as

a single PDF file. The latest submission time is Thursday (December 19, 2024) at

11:59PM EST. You are free to write your solutions on paper or on a tablet, or to type

them up. Only the latest version submitted before your deadline will be graded.

7. Each question has 25 points. You need to justify your answers to receive full credit.



Problem 1: Lazy Newton

On his lazy days, Newton considers modifying his algorithm for minimizing a twice contin-

uously differentiable function f : Rn → R as follows: Instead of inverting the full Hessian

matrix at each iteration, he inverts the diagonal matrix consisting of the diagonal entries of

the Hessian. This leads to the following iterative method:

xk+1 = xk − αD−1(xk)∇f(xk). (1)

Here, xk ∈ Rn is the k-th iterate of the algorithm, α > 0 is a fixed stepsize, ∇f(xk) denotes

the gradient of f at xk, and D(xk) is the diagonal matrix whose diagonal entries are the

same as those of the Hessian matrix at xk, i.e. ∇2f(xk). In other words, Dii(xk) =
∂2f
∂x2

i
(xk)

for i = 1, . . . , n. In this problem, we analyze the global convergence of this algorithm on a

particular quadratic function (the results can be generalized to any quadratic function but

this is not required for the problem).

Consider the function f : R3 → R defined as f(x) = 1
2
xTQx, with

Q =

5 2 1

2 6 3

1 3 4

 .
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(a) Show that f has a unique minimizer at x∗ = 0.

(b) Show that if α ∈ (0, 1], the lazy Newton method for minimizing the function f given

above is globally convergent ; i.e., for any initial iterate x0 ∈ R3, the sequence of vectors

{xk} produced by the lazy Newton method in (1) converges to x∗.

Hint: Consider the function f itself as a Lyapunov function. If needed, you may use the

following fact without proof: If A is a symmetric n× n matrix with smallest eigenvalue

λmin, then xTAx ≥ λmin||x||2 for all x ∈ Rn.

(c) Generate and report a random initial condition x0 ∈ R3 (using randn(3,1) in MATLAB

or numpy.random.randn(3) in Python). With step size α = 1, run both the lazy

Newton method and the steepest descent method (i.e., the same iterations as (1) but

with D−1(xk) replaced with the identity matrix) for 10 iterations. Report the function

value after 10 iterations (i.e., f(x10)) for both methods. Briefly comment on what you

observe.
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Problem 2: You can’t stop someone who knows where they are going

You love the image of Michael Jordan that you see here and want to set it as your desktop

background. However, you think the text makes the message too obvious, and you would

rather keep it more subtle. Therefore, you wish to restore the image to its original, text-free

version. The image is grayscale and is given by the file MJ.mat.1 You can load this file to

MATLAB by running

load(’MJ.mat’)

V = double(MJ)

or to Python by running

from scipy.io import loadmat

V = loadmat("MJ.mat")["MJ"]

The matrix V ∈ Rm×n, with m = 790, n = 500, has entries in [0, 1], where 0 representing

1Download at https://www.princeton.edu/~aaa/Public/Teaching/ORF363_COS323/F24/MJ.mat
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pure black, 1 representing pure white, and numbers in between representing different shades

of gray. The text pixels are the only pixels in pure white. To automatically remove the text,

consider solving the following optimization problem:

min
X∈Rm×n

f(X) :=
m−1∑
i=1

n−1∑
j=1

∥∥∥∥∥
[
Xi+1,j −Xij

Xi,j+1 −Xij

]∥∥∥∥∥
1

s.t. Xij = Vij if Vij ̸= 1,

(2)

where ∥ · ∥1 denotes the 1-norm. The constraints ensure that we leave the pixels that are

not related to text unchanged. The objective is to minimize the deviation of the remaining

pixel values (i.e., the ones corresponding to text) from their neighbors.

(a) Show that problem (2) is a convex optimization problem.

(b) Solve problem (2), report the optimal value, and display your optimal matrix. Assuming

your decision matrix is called X, you can display your image in MATLAB using the

command imshow(X), and in Python by running import matplotlib.pyplot as plt

and plt.imshow(X.value, cmap=’gray’).

Implementation hint: For an efficient implementation of this problem, code up the objective

function in the following equivalent form

f(X) = g(X2:m,1:n−1 −X1:m−1,1:n−1) + g(X1:m−1,2:n −X1:m−1,1:n−1).

Here, the notation X2:m,1:n for example refers to a submatrix of X which has rows 2 through

m and columns 1 through n of X (both ends inclusive). For a general matrix variable A,

the function g is defined as g(A) :=
∑

i

∑
j |Aij| and can be implemented in MATLAB as

sum(sum(abs(A))) and in Python as cp.sum(cp.abs(A)).

To efficiently implement the constraints of (2), consider defining an m× n indicator matrix

which has (i, j)th element equal to 1 if Vij ̸= 1 and zero otherwise. Then consider entrywise

multiplying this matrix with V and with your decision matrix.

4



Problem 3: For your own safety, please do not play to my forehand

In blackbox optimization, we would like to solve an optimization problem without having

an explicit representation of the objective function. Instead, we can evaluate the objective

function at specific points, though each function evaluation is typically expensive. In the

model-based approach to blackbox optimization, one fits a model to a current set of points

and function values and picks the optimal solution to this model as the next point at which

to evaluate the function. The model is then updated based on how close the new function

evaluation is to the prediction of the model.

In this question, we apply the first step of this approach to the problem of customizing

a tennis racket with the goal of improving the forehand shot of a particular player. The

variables under our control are the weight of the racket (which we change by adding lead

tape to a specific spot) and the tension of the racket string. We would like to find the

combination of weight/tension that maximizes the so-called “Power-Accuracy Composite

Score (PACS)”. For any weight/tension combination, this metric is recorded by asking the

player to hit 100 forehands towards a specific target and measuring the average speed of the

shots divided by the average distance to the target. Note that each evaluation of PACS is

expensive, as it requires changing the lead tape, restringing the racket, and asking the player
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to hit 100 shots under similar conditions. In the table below, we show ten evaluations of

PACS as a function of racket weight and string tension for a particular player.

Index i Weight wi (g) Tension ti (lbs) PACS yi

1 309 61 72

2 329 62 85

3 304 53 70

4 315 54 88

5 300 45 56

6 317 55 91

7 327 53 77

8 328 49 62

9 325 64 86

10 329 61 85

Consider the task of fitting a quadratic function fc : R2 → R parameterized as

fc(w, t) = c1w
2 + c2t

2 + c3wt+ c4w + c5t+ c6

to the data points in the table by solving the optimization problem

min
c∈R6

∑10
i=1(fc(wi, ti)− yi)

2
. (3)

The optimal solution to this problem will be used as a model for the PACS function.

(a) Argue that an optimal solution to (3) exists and is unique.

(b) Solve problem (3) and report the optimal coefficients (c∗1, . . . , c
∗
6). Denote the optimal

quadratic function by fc∗(w, t). Does this function have any of the following properties:

convexity, strict convexity, concavity, or strict concavity? Justify.

(c) To find the optimal weight and tension for the racket, consider the following optimization

problem (where the constraints encode realistic ranges for the racket weight and string

tension):

max
w,t∈R

fc∗(w, t)

s.t. w ∈ [300, 330]

t ∈ [45, 65].

(4)

Argue that an optimal solution to this problem exists and is unique. Solve this opti-

mization problem and report the optimal racket weight, string tension, and the PACS

predicted by the model fc∗ .
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Problem 4: Bitcoin is at $100,000 and the fever is back!

Decentralized exchanges (DEXs) enable users to trade cryptocurrencies without relying on

a central authority. We consider a DEX which offers exchanges of n assets. Let Rn
+ denote

the set of entrywise nonnegative vectors in Rn. The DEX has a reserve vector r ∈ Rn
+,

where entry ri denotes the quantity of asset i in the reserves. A proposed trade by a user

consists of two vectors x ∈ Rn
+, y ∈ Rn

+, where xi denotes the quantity of asset i that the

trader proposes to give to the DEX, and yi denotes the quantity of asset i that the trader

proposes to receive from the DEX. The DEX has a trading function T : Rn
+ → R that needs

to remain constant through every exchange. More specifically, the DEX accepts a proposed

trade (x, y) by a user if and only if

T (r + γx− y) = T (r),

where γ ∈ (0, 1) accounts for a small trading fee. The user wants to find a trade (x, y) that

is accepted by the DEX and maximizes their utility function U : Rn → R. This can be

achieved by solving the following optimization problem:

max
x,y∈Rn

U(y − x)

s.t. T (r + γx− y) = T (r)

r + γx− y ≥ 0

0 ≤ xi ≤ xmax, i = 1, . . . , n

0 ≤ yi ≤ ymax, i = 1, . . . , n.

(5)
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Here, the scalars xmax and ymax denote bounds on the quantity of assets that the DEX is

willing to receive and give out. In practice, the trading function T and the utility function

U are both concave. Nevertheless, optimization problem (5) is generally nonconvex due to

the equality constraint. Thus, we consider the following convex relaxation of (5):

max
x,y∈Rn

U(y − x)

s.t. T (r + γx− y) ≥ T (r)

r + γx− y ≥ 0

0 ≤ xi ≤ xmax, i = 1, . . . , n

0 ≤ yi ≤ ymax, i = 1, . . . , n.

(6)

(a) Show that problem (6) is indeed a convex optimization problem.

(b) We say a function f : Ω → R, where Ω is a subset of Rn, is non-decreasing if for all

vectors u, v ∈ Ω, u ≤ v entrywise implies f(u) ≤ f(v). A non-decreasing function f is

increasing if whenever u ≤ v entrywise and ui < vi for some i ∈ {1, . . . , n}, we have

f(u) < f(v). Suppose the functions U and T are both continuous, with T being non-

decreasing and U being increasing. Show that the set of optimal solutions to (5) is the

same as the set of optimal solutions to (6).

(c) Consider the setting of exchanging two assets, i.e., when n = 2. Let the utility function

U : R2 → R be given as U(z) = cT z, where c ∈ R2 is a given vector with positive entries.

Let the trading function T : R2
+ → R be defined as T (z) =

√
z1z2. Show that in this

setting, the set of optimal solutions to (5) is the same as the set of optimal solutions to

the following semidefinite program:

max
x,y∈R2

U(y − x)

s.t.

[
r1 + γx1 − y1 T (r)

T (r) r2 + γx2 − y2

]
⪰ 0

0 ≤ x1 ≤ xmax, 0 ≤ x2 ≤ xmax

0 ≤ y1 ≤ ymax, 0 ≤ y2 ≤ ymax.

(7)

(d) In the setting of part (c), let γ = 0.9, r = (1, 2)T , xmax = ymax = 1, and c = (2t, 1)T ,

where t is a parameter. Take t = 0.5, 0.6, 0.7, . . . , 2.0 and for each value of t solve the

optimization problem (7). For i = 1, 2, plot the net change yi − xi of the optimal trade

versus t. Briefly comment on what you observe.
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