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Abstract—A common assumption behind most of the recent re-
search on network utility maximization is that traffic flows are
elastic, which implies that their utility functions are concave and
there are no hard limits on the rate allocated to each flow. These
critical assumptions lead to tractability of the analytic models of
utility maximization, but also limits applicability of the resulting
rate allocation protocols. This paper focuses oninelastic flows
and removes these restrictive and often invalid assumptions. We
present several optimization frameworks, optimality conditions,
and optimal algorithms.

First, we consider nonconcave utility functions, which turn util-
ity maximization into nonconvex, constrained optimization prob-
lems that are well-known to be difficult. We present conditions un-
der which the current standard price-based distributed algorithm
can still converge to the globally optimal rate allocation despite
nonconcavity of utility functions. In particular, continuity of price-
based rate allocation at all the optimal prices is a sufficient condi-
tion for global convergence of rate allocation by the standard al-
gorithm, and continuity at at least one optimal price is a necessary
condition. In the second part of the paper, we provide a general
problem formulation of rate allocation among time-sensitive flows
from real-time and streaming applications, as well as a decompo-
sition into subproblems coordinated by pricing. After simplify-
ing the subproblems by leveraging the optimization structures, we
highlight the difficult issues of causality and time-scale, and pro-
pose an effective price-based heuristics for admission control and
an optimal algorithm for a special case formulation.

Keywords: Optimization, Congestion control, Network control by
pricing, Resource allocation, Network utility maximization.

I. INTRODUCTION AND REVIEW

A. Overview

In the seminal paper published a decade ago, Shenker [13]
discussed Internet service models to support applications be-
yond best-effort, in the framework of network utility models for
four types of traffic. In particular, two major characteristics of
‘elastic traffic’ were highlighted: “These applications are rather
elastic in nature, in that they tolerate packet delays and packet
losses rather gracefully... Moreover, because of this elasticity,
they can decrease their transmission rate in the presence of con-
gestion.” Utility functions for elastic traffic were modelled as
smooth, concave functions of data rates, which lead to the con-
clusion in [13] that network utility is always maximized when
no users are denied access. Maximization of concave utility
functions and distributed rate allocation for elastic traffic have

gained extensive attention over the last decade. Elegant analytic
results and rigorous mathematical frameworks for a ‘canonical’
price-based distributed algorithm become possible because of
the concavity assumption on utility functions and the elasticity
assumption on application traffic.

However, it may appear that the other classes of inelastictraf-
fic in [13] are not amenable to the utility maximization frame-
work of rate allocation. In addition to real-time traffic, delay-
adaptive traffic, and rate-adaptive traffic briefly described in
[13], streaming applications have also become a major traffic
class on the Internet. Utility functions for these four types of in-
elastic flows are nonconcave or non-smooth, and they can only
tolerate a limited amount of packet delay or fluctuations in rate
allocation transients. Furthermore, when there is a mixture of
these inelastic flows with the elastic data flows, network utility
may be maximized only with the help of admission control.

While inelastic flows represent important applications, their
rate allocation methods scarcely have any mathematical foun-
dation because of the intrinsic intractability in the utility maxi-
mization framework. This paper shows how some of the techni-
cal difficulties may be tackled, and presents a series of results on
new optimization frameworks, optimality conditions, and opti-
mal algorithms for utility maximization of inelastic traffic.

In the first part of this paper, consisting of section II and
the appendices, we tackle the issue of nonconcavity of utility
functions. Complementary to the recent approach of propos-
ing suboptimal distributed heuristics [9] and that of calculating
optimal solution by centralized computation [7], we answer the
question: “Can the canonical distributed algorithm converge to
the globally optimal rate allocation even if source utility func-
tions are nonconcave?” Surprisingly, the answer is positive, and
several conditions for global convergence are proved and illus-
trated.

In the second part of this paper, consisting of sections III and
IV, we tackle the issue of time-sensitivity of the flows. After
presenting an optimization formulation and problem decompo-
sition, we highlight several technical difficulties that hinder the
development of distributed solutions. Despite these difficulties,
for some special cases of the general formulation, we develop
a price-based admission control heuristics and evaluate its per-
formance, and present a globally optimal algorithm for rate al-



location among groups of flows with different elasticities.
Some of the results in this paper are applicable to general

nonconvex optimization with a separable objective function and
linear constraints. However, this paper does not treat the mod-
eling aspect of constructing utility functions (concave or other-
wise) from empirical data of user experience. The theory and
algorithms developed here focus on equilibrium behaviors at
fluid level, but not stochastic stability or behaviors at packet
level.

In the rest of this section, we briefly review the current frame-
work of concave network utility maximization. The difficul-
ties associated with nonconcave utility maximization and time-
sensitive flow modeling are then discussed.

B. Concave network utility maximization

Since the publication of the seminal paper [8] by Kelly,
Maulloo, and Tan in 1998, the framework of Network Utility
Maximization (NUM) has found many applications in network
rate allocation algorithms, Internet congestion control proto-
cols, user behavior models, and network efficiency-fairness
characterization. Consider a communication network with L
links, each with a fixed capacity of cl bps, and S sources, each
transmitting at a source rate of xs bps. Each source emits one
flow, using a fixed set L(s) of links in its path, and has a util-
ity function Us(xs). The basic version of NUM is the prob-
lem of maximizing the total network utility

∑
s Us(xs), over

the source rates x, subject to linear flow feasibility constraints∑
s:l∈L(s) xs ≤ cl for all links l:

maximize
∑

s Us(xs)
subject to

∑
s:l∈L(s) xs ≤ cl, ∀l,

x � 0
(1)

where the variables are x. Among many of its applications, this
optimization problem has been extensively studied as a model
for distributed rate allocation (e.g., [8]) and TCP congestion
control (e.g., [10]). In this paper, we are primarily concerned
with extensions of the basic NUM problem (1) for nonconcave
or discontinuous utility functions {Us}.

The following basic assumption on utility functions will still
be maintained in this paper: Assumption 1. utilities are func-
tions of the allowed rates (rate-dependency), network utility is
the sum of source utilities (additivity), and each source utility is
an increasing (monotonicity) and local function of its own rate
(locality).

Assuming that Us(xs) becomes concave for large enough xs

is reasonable, because the law of diminishing marginal utility
eventually will be effective. However, Us may not be concave
throughout its domain. Despite deficiency in the concavity as-
sumption, almost all papers in the NUM literature for Internet
rate allocation assume that utility functions are concave. Part of
the reason is that the concavity assumption significantly simpli-
fies the structure of the basic NUM problem (1) and leads to a
distributed rate allocation algorithm.

C. Dual problem and canonical distributed algorithm

Assuming utility functions are concave, (1) is maximizing a
concave function over linear constraints, which is a special case
of convex optimization (minimizing a convex objective function
over convex constraints) [3] called monotropic programming
[11]. Thus a local optimum is also a global optimum, and the
duality gap is zero. 1 Zero duality gap means that the minimized
objective value of the Lagrange dual problem is equal to the
maximized total utility in the primal problem (1).

The Lagrange dual problem is readily derived. We first form
the Lagrangian of (1):

L(x,λ) =
∑

s

Us(xs) +
∑

l

λl


cl −

∑
s:l∈L(s)

xs




where λl ≥ 0 is the Lagrange multiplier (i.e., link price) associ-
ated with the linear flow constraint on link l. Additivity of total
utility and linearity of flow constraints lead to a Lagrangian dual
decomposition into individual source terms:

L(x,λ) =
∑

s


Us(xs) −


 ∑

l∈L(s)

λl


xs


 +

∑
l

clλl

=
∑

s

Ls(xs, λ
s) +

∑
l

clλl

where λs =
∑

l∈L(s) λl. For each source s, Ls(xs, λ
s) =

Us(xs)−λsxs only depends on local rate xs and the path price
λs (i.e., sum of λl on links used by source s).

The Lagrange dual function g(λ) is defined as the maximized
L(x,λ) over x for a given λ. This ‘net utility’ maximization
2 obviously can be conducted distributively by the each source,
as long as the aggregate link price λs is feedback to source s,
where source s maximizes Ls(xs, λ

s) over xs for a given λs:

x∗s(λ
s) = argmax [Us(xs) − λsxs] , ∀s. (2)

Such Lagrangian maximizer x∗(λ) will be referred to as price-
based rate allocation (for a given price λ). When the concavity
assumption on utility functions is removed, there can be mul-
tiple x∗(λ). In such cases, when we say that a property (e.g.,
continuity) holds for x∗(λ), it means that it holds no matter
which one of the multiple possible values is chosen.

The Lagrange dual problem of (1) is

minimize g(λ) = L(x∗(λ),λ)
subject to λ � 0 (3)

where the optimization variable is λ. Since g(λ) is the point-
wise supremum of a family of affine functions in λ, it is convex
and (3) is a convex minimization problem (even if the primal
problem (1) is not a concave maximization problem).

1Duality gap is the difference between the optimized dual objective value and
the optimized primal objective value.

2Equivalently, computation of the conjugate function of utility function.



Since g(λ) may be non-differentiable, an iterative subgradi-
entmethod can be used to update the dual variables λ to solve
the dual problem (3):

λl(t + 1) =


λl(t) − α(t)


cl −

∑
s:l∈L(s)

xs(λs(t))







+

, ∀l

(4)
where cl −

∑
s:l∈L(s) xs(λs(t)) is the lth component of a sub-

gradient vector of g(λ), t is the iteration number, and α(t) > 0
are step sizes. Certain choices of step sizes, such as α(t) =
β/t, β > 0, guarantee that the sequence of dual variables λ(t)
converges to the dual optimal λ∗ as t → ∞. It can be shown
that the primal variable x∗(λ(t)) also converges to the primal
optimal variable x∗. For a primal problem that is a convex op-
timization, the convergence is towards a global optimum.

The following assumption will be made: Assumption 2.
Rates xs are implicitly assumed to be upper bounded by finite
numbers. Therefore, the global optimum can be attained since
(1) is maximizing a continuous function over a compact set.

The sequence of source and link algorithms (2,4) forms a
canonical distributed algorithmthat globally solves NUM (1)
and the dual problem (3), and computes an optimal rate vector
x∗ and optimal link price vector λ∗.

D. Nonconcave network utility maximization
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Fig. 1. Some examples of utility functions Us(xs): it can be concave or
sigmoidal as shown in the graph, or any general nonconcave function. If the
bottleneck link capacity used by the source is small enough, i.e., if the dot-
ted vertical line is pushed to the left, a sigmoidal utility function effectively
becomes a convex utility function.

Suppose we remove the critical assumption that {Us} are
concave functions, and allow them to be any nonlinear func-
tions satisfying Assumption 1. 3 The resulting NUM becomes
nonconvex optimization and significantly harder to be analyzed
and solved, even by centralized computational methods. In par-
ticular, a local optimum may not be a global optimum and the
duality gap can be strictly positive. The standard distributive
algorithms that solve the dual problem may produce infeasible

3Sometimes a nonconcave function can be easily turned into a concave one by
a simple transformation, for example in the case of the “pseudo-nonconvexity”
in the power control problems in [5], [6]. Here we are concerned with noncon-
cave functions that cannot be readily turned into concave ones.

or suboptimal rate allocation. Global maximization of noncon-
cave functions is an intrinsically difficult problem of noncon-
vex optimization. Indeed, over the last two decades, it has been
widely recognized that “in fact the great watershed in optimiza-
tion isn’t between linearity and nonlinearity, but convexity and
nonconvexity” (Quote from Rockafellar [12]).

It may appear that the canonical distributed algorithm will
not converge or will converge to an infeasible or locally opti-
mal rate allocation if some source utilities are nonconcave, be-
cause it is based on dual descent and the duality gap can be
strictly positive for a nonconvex optimization problem. How-
ever, we show in section II that, even when all source utilities
are nonconcave functions, the canonical distributed algorithm
may still converge to a globally optimal rate allocation, dual-
ity gap may still be zero, and it is continuity of price-based
rate allocation at all the optimal prices, rather than zero duality
gap alone, that provides a sufficient condition for global con-
vergence. For strictly convex (and possibly non-differentiable)
g(λ), this continuity is proved to be equivalent to the conver-
gence of the canonical distributed algorithm.

E. Rate allocation for time sensitive flows

Most work on NUM-based rate allocation algorithms focus
only on the equilibrium properties. However, some inelastic
flows cannot tolerate arbitrary transients of rate allocation. For
example, real-time IP applications or Constant Bit Rate (CBR)
ATM flows must maintain a certain constant rate, which allows
them to achieve a constant utility. Utility functions become dis-
continuous for such flows. Another example is streaming appli-
cations, where slight fluctuations of data rate may be acceptable
if there is enough buffered packets in the playback buffer at the
receiving end host. This type of traffic is more elastic than con-
stant rate flows, but certainly not fully elastic since the playback
buffer will be depleted after a long enough period of low data
rate. In general, a flow’s utility depends not just on the equilib-
rium rate x∗

i , but the entire vector of rate {xi(t)} over time.
In section III, we present a comprehensive formulation of an

optimization framework, together with an appropriate duality-
based decomposition, to capture the above issues of rate allo-
cation among time-sensitive flows. A heuristics of price-based
admission control is then investigated in section IV. We also
present an optimal algorithm to solve a special case of the gen-
eral formulation.

II. NONCONCAVE UTILITY FLOWS: OPTIMALITY

CONDITIONS

With nonconcave utility functions, the canonical distributed
algorithm may fail to converge to the primal optimal solution
x∗. One reason is that solving the dual problem (3) is no longer
equivalent to solving the primal problem (1). In the case of
allocating rates through NUM, it is the primal problem that we
care about. The canonical distributed algorithm may even fail to
converge to a feasible rate allocation, as shown by Lee, Mazum-
dar, and Shroff [9], where they focus on the special case of sig-
moidal utility functions, and show that the canonical distributed



algorithm may cause link congestion as well as produce subop-
timal rate allocation. A ‘self-regulating’ heuristics is proposed,
and is shown to avoid link congestion caused by sigmoidal util-
ities but does not attain the optimal rate allocation x∗ (except in
the asymptotic case when the proportion of sources with non-
concave utilities vanishes). The proof techniques used in [9]
depend on the assumption that a sigmoidal utility function has
only one inflexion point.

In this section, we study the general case where {Us} are
nonconcave functions. The goal of our study is to prove suffi-
cient and necessary conditions under which the canonical dis-
tributed algorithm still converges to the globally optimal rate
allocation, i.e., the primal optimizer x∗.

In general, these conditions do not hold for nonconcave
NUM. In such cases, a centralized computational method based
on the sum-of-squares approach has recently been studied [7]
and is empirically found to compute the globally optimal rate
allocation very efficiently.

These three different approaches: proposing distributed but
suboptimal heuristics (for sigmoidal utilities) in [9], determin-
ing optimality conditions for the canonical distributed algo-
rithm to converge globally (for all nonlinear utilities) in this
section, and proposing efficient but centralized method to com-
pute the global optimum (for a wide class of utilities that can be
transformed into polynomial utilities) in [7], are complemen-
tary in the study of distributed rate allocation by nonconcave
NUM, a difficult class of nonlinear optimization.

A. When will canonical distributed algorithm work?

Is it true that the canonical distributed algorithm only con-
verges to a globally optimal rate allocation for concave util-
ity maximization? The following counter-example answers the
question in the negative.

Example 1. There are three flows over three links as
shown in Figure 2. The small number of flows and links
allow exhaustive search to compute the global optimum and
check against distributed algorithm’s solution. All three util-

ity functions are nonconcave: Us(xs) =
(
1 − 2Q

√
2xs

)βs

where Q is the complementary cumulative distribution of
standard Gaussian variable and βs are positive parameters.
The link capacity vector is varied within the set C =
{c(θ) = θ[5, 10, 6] + (1 − θ)[8, 6, 7]} , θ ∈ [0, 1]. Each ca-
pacity vector gives one realization of a nonconcave NUM. The
canonical distributed algorithm is executed for this problem and
the resulting rate allocation is indeed found to be globally opti-
mal for all c ∈ C. As shown in Figure 3 for some of the choices
of c, the maximized network utility through the canonical dis-
tributed algorithm matches precisely with that from exhaustive
search.

A natural question thus arises: under what conditions will the
canonical distributed algorithm converge to the globally optimal
rate allocation for nonconcave NUM? In short, when will the
canonical distributed algorithm ‘work’ for inelastic flow rate
allocation? A sufficient condition is provided in the following
theorem, proved in Appendix A.
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Fig. 2. Network topology for Example 1.
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Fig. 3. Canonical distributed algorithm still converges to globally optimal rate
allocation despite nonconcavity of Us(xs).

Let U∗ be the (globally) optimal primal objective value and
x∗ a maximizer, i.e., U ∗ =

∑
s Us(x∗s), and D∗ be the (glob-

ally) optimal dual objective value and λ∗ a minimizer, i.e.,
D∗ = g(λ∗). The duality gap for (1) is η = D∗ − U∗ ≥ 0.

Theorem 1. The canonical distributed algorithm (2,4) con-
verges to the globally optimal rate allocation if the following
two conditions are satisfied: i) duality gap η is zero, and ii) the
price-based rate allocation x∗(λ) = argmaxL(x,λ), as a func-
tion of λ, is continuous at λ∗.

In the next two subsections, we will further explore sufficient
conditions for these two conditions in Theorem 1: zero duality
gap and continuity of price-based rate allocation.

B. Zero duality gap

While concavity of all utility functions {Us(xs)} is a suffi-
cient condition to guarantee zero duality gap in (1), it is not a
necessary condition. Duality gap can be zero even for noncon-
vex optimization problems. However, proving zero duality gap
in these cases can be much more difficult and requires argu-
ments beyond the standard ones in convex optimization [3]. In
this subsection, we provide a more general sufficient condition
for duality gap to be zero, which includes the concavity condi-
tion of utility functions as a special case, but also shows that
duality gap can be zero even for nonconcave utilities.

Consider the optimized total utility U ∗ =
∑

s Us(x∗s) as a
function of link capacities: U ∗(c). This is a completely dif-
ferent function from the utility functions {Us(xs)}, which are
functions of source rates. As long as U ∗(c) is a concave func-
tion, the duality gap of (1) is zero under mild technical con-



ditions. There is a subtle but significant difference between
concavity of Us(xs), i.e., concavity of each user’s utility as a
function of rate, and the more general concavity of U ∗(c), i.e.,
concavity of the optimized total utility as a function of link ca-
pacities. The former implies the latter, but not vice versa. 4

This condition is stated formally as follows. For each c in a
set C of possible link capacity vectors, there is a set of feasible
x for (1), which defines a set of achievable values of total util-
ity U(c). Assume the following technical condition holds: for
every sequence of {ck} with ck → c, there exists a sequence of
some feasible U k satisfying lim supk→∞ Uk ≤ U∗. The fol-
lowing fact from nonlinear optimization theory can be proved
as shown in Appendix B.

Fact 1. If U ∗(c) is a concave function, duality gap η =
D∗ − U∗ for (1) is zero.

C. Continuity of price-based rate allocation

It is in general difficult to test for continuity of price-based
rate allocation for nonconcave utility maximization. In particu-
lar, zero duality gap does not imply this continuity property, as
shown through a counter-example in Appendix C.

On the other hand, for many types of nonconcave utility func-
tions, it is easy to characterize the set of λ at which x∗(λ) is
discontinuous. For example, for a sigmoidal utility function,
the slope of the tangent of a straight line from the origin with
the utility curve is the only λs at which x∗

s(λs) is discontinuous
[9]. Therefore, if we can bound the range of λ ∗ and verify that
the ranges exclude these points of discontinuity, we will have
guaranteed continuity of price-based rate allocation.

For example, one way to generate such bounds on λ ∗ is to use
the following inequality for minimization of a strongly convex
function f(y) [3]:

‖y − y∗‖2 ≤ 2
m
‖∇f(y)‖2, ∀y

where m is the strong convexity constant.
Consequently, we provide the following method, through

centralized computation, to bound λ∗:

• Evaluate the Hessian matrix ∇2g(λ) of the dual function
g(λ). Compute m > 0 such that ∇2g(λ) � mI where I
is an identity matrix.

• For a given λ � 0, compute ‖∇g(λ)‖2 =
∑

l(cl −∑
s:l∈L(s) xs)2. Compute K(λ) = 2

m‖∇g(λ)‖2.
• Each λ∗

l is (lower and upper) bounded by |λ∗
l − λl| ≤√

K(λ) for the given λ. This pair of bounds in turn lead
to upper and lower bounds on λs for sources with noncon-
cave utilities. 5

By picking different λ, the above bounds can be tightened. If
the upper bound is smaller than, or the lower bound larger than,
the λs at which x∗

s(λs) is discontinuous, then the condition for
continuity of price-based rate allocation holds.

4In Example 1, through exhaustive search it can be verified that U∗(c) is
concave for c ∈ C.

5Bounding λs for sources with concave utilities is unnecessary, since their
rates are always continuous in λ.

D. Another sufficient condition and a necessary condition

In this subsection, we provide a stronger sufficient condition
for the canonical distributed algorithm to converge in rate allo-
cation. It turns out that one of the two conditions in Theorem 1,
the zero duality gap condition, is not needed if the other condi-
tion, the continuity condition, is satisfied.

Theorem 2. Continuity of price-based rate allocation x∗(λ)
at the optimal prices λ∗ implies that the canonical distributed
algorithm converges to a globally optimal rate allocation.

This Theorem, as proved in Appendix D, states that continu-
ity property aloneis a sufficient condition for the canonical dis-
tributed algorithm to ‘work’. Theorems 1 and 2 together show
that continuity implies zero duality gap.

Example 2. An illustrative example is summarized below
for a simple topology: two flows sharing a link with capacity c.
One flow is elastic data traffic, with logarithmic concave utility
function, and the other is inelastic traffic, with sigmoidal utility
function shown in Figure 4. The critical dual variable λ0 is the
slope of the tangent of the straight line from the origin with the
sigmoidal curve. In this example, following similar develop-
ment in Appendix C, we can show that the canonical distributed
algorithm converges to a globally optimal rate allocation for a
large enough link capacity, i.e., when c ≥ cmin.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

source rate (Mbps)

ut
ili

ty

sigmoidal utility curve

x0=4.3 

λ0=0.47 

Fig. 4. Sigmoidal utility function for one of the two sources in Example 2.

4 4.5 5 5.5 6 6.5 7 7.5 8
0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

link capacity

op
tim

al
 d

ua
l p

ric
e 

optimal dual price vs. capacity

λ0=0.47 

Fig. 5. The dual optimal λ∗ as a function of the link capacity c.

As shown in Figures 5 and 6, respectively, as link capacity
becomes larger than the threshold cmin = 5.38, the optimal
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Fig. 6. Duality gap η as a function of the link capacity c.

dual variable is smaller than λ0, thus ensuring continuity of
price-based rate allocation, and duality gap becomes zero. It
can be verified that the canonical distributed algorithm indeed
converges to the globally optimal rate allocation for c ≥ cmin.

If x∗(λ) is discontinuous at all optimal prices λ∗, the canon-
ical distributed algorithm certainly cannot converge. If the dual
objective function g(λ) is strictly convex (and it is certainly al-
ways convex), even if it is non-differentiable, there is a unique
optimal price. Therefore, the next Theorem and Corollary fol-
low:

Theorem 3. Continuity of x∗(λ) at at least one of the op-
timal prices λ∗ is a necessary condition for the canonical dis-
tributed algorithm to converge to a globally optimal rate alloca-
tion.

Corollary 1. If g(λ) is strictly convex, continuity of x∗(λ)
at λ∗ is a necessary and sufficient condition for the canonical
distributed algorithm to converge to the globally optimal rate
allocation.

In concluding this section, we mention that there is an al-
ternative link price update method by sequential bisection. In
Appendix E, we show that the bisection method is never better
than the canonical distributed algorithm.

III. TIME SENSITIVE FLOWS: OPTIMIZATION

FRAMEWORK

We turn to a different modeling approach for inelastic flows
in this and the next section. Instead of using nonconcave utility
functions, we explicitly model different types of inelastic flows,
and incorporate the models into the constraints and objective
functions of NUM.

A. Traffic models

We consider three types of time sensitive flows in this section.
The assumptions on discrete time slots and continuous flow in-
tensity remain. Time slots are uniformly spaced, each assumed,
without loss of generality, to have a duration of 1 time unit.

First is the type of flows from real-time IP applications or
CBR ATM traffic. This type of flows requires constant playback

rate, and playback is started at the requested starting time. We
denote by R the set of Real-time flows, and use r to index these
sources.

• Required starting time is tsr. Total file size is lr. Playback
rate is required to be a constant of vr bits per time unit.
These are constant parameters.

• For each source, an admission decision ar is made. Util-
ity obtained is a constant Ūr if the flow is admitted and 0
otherwise.

• The optimization variables are ar ∈ {0, 1}. It is an admis-
sion control problem for R-type flows.

Second is the type of flows from streaming applications. Like
real-time flows, they also require constant playback rates. But a
playback buffer at the receiving end host can absorb fluctuations
of the source rate to some extent. We denote by B the set of
Buffered streaming flows, and use b to index these sources.

• Requested starting time is tsb, and the file size is lb. Each
flow b has a playback buffer of size fb at the receiving end
host, with a constant playback rate of vb between the actual
playback start time and the end of the playback. These are
constant parameters.

• The optimization variables are wb ≥ tsb , the actual time
for playback to start, and xb(t), the rate allocation over
time. Note that source rate xb(t) must satisfy xb(t) = 0
for t < tsb. It is a joint problem of scheduling and rate
allocation over time slots for B-type flows.

• To guarantee that during the playback period, the buffer
is neither depleted nor overflown, we have the constraint
0 ≤ ∑t0

t=ts
b
xb(t) − (t0 − wb)vb ≤ fb for all t0 ∈

[wb, wb + lb/vb]. In particular, if t0 = wb, this condition
guarantees that there is no playback buffer overflow dur-
ing the preloading phase between the requested and actual
playback start times.

• The utility is Ub(wb) where Ub is a nonincreasing (and
concave) function, since users would like to start the play-
back as early as possible.

Third is the type of general delay-sensitive traffic, where
source utility depends on the transient behavior of rate alloca-
tion. We denote by D the set of Delay-sensitive flows, and use
d to index these sources.

• Requested starting time is tsd. File size is ld. These are
constant parameters.

• The optimization variables are xd(t), constrained by
xd(t) = 0 if t < tsd, and

∑∞
t=ts

d
xd(t) = ld. It is a rate

allocation problem over all time slots for D-type flows.
• The utility associated with data rate time series {xd(t)} is
Ud({xd(t)}), i.e., the utility function maps from the vec-
tor of source rates over all time slots to a real number.
We will make a restrictive assumption in this paper that
the utility is additive and memoryless: Ud,t({xd(t)}) =∑

t Ud(xd(t)), where {Ud,t} are concave and increasing.



B. NUM formulation

For notational simplicity, we focus on the single link case in
this subsection. The formulations and decomposition method
can be readily generalized to arbitrary network topologies. Sup-
pose all three types of traffic share a single link with a fixed
link capacity c. The problem of rate allocation (together with
admission control and scheduling) among the flows can thus be
expressed as the following NUM problem over the variables of
xd(t), ar, xb(t), wb, ∀t, d, r, b. The first constraint is due to the
limited link capacity, and the other constraints are due to the
traffic models described in the last subsection. Notice that this
is a constrained nonlinear optimization problem with two inte-
ger constraints.

maximize
∑

d

∑∞
t=0 Ud,t(xd(t)) +

∑
r arŪr +

∑
b Ub(wb)

subject to
∑

d xd(t) +
∑

r:ts
r≤t≤ts

r+lr/vr
arvr +

∑
b xb(t)

≤ c, ∀t,
xd(t) = 0, ∀t < tsd, ∀d ∈ D,∑∞

t=ts
d
xd(t) = ld, ∀d ∈ D,

ar ∈ {0, 1}, ∀r ∈ R,
xb(t) = 0, ∀t < tsb, ∀b ∈ B,∑∞

t=wb
xb(t) = lb, ∀b ∈ B,

0 ≤ ∑t0
t=ts

b
xb(t) − (t0 − wb)vb ≤ fb,

∀t0 ∈ [wb, wb + lb/vb], ∀b ∈ B,
wb ≥ tsb, wb ∈ Z+ ∀b ∈ B,
xd(t) ≥ 0, xb(t) ≥ 0, ∀d ∈ D, b ∈ B, ∀t.

(5)
We now make the following simplification of the models and

relax one of the integer constraints:

• Assume that each receiver playback buffer is infinitely
large. It may be depleted but not overflown.

• Assume that all three types of flows have infinite backlog.
• Assume that all the requested flow starting time are time 0,

and the rate allocation problem exists only for t ∈ [0, T ].
• Relax the integer constraint on wb. For short time slots,

this relaxation introduces only small errors.

We then obtain the following simplified version of NUM
for rate allocation among three types of inelastic flows on a
single link. The first constraint avoids exceeding the lim-
ited link capacity and the second constraint avoids depletion
of receiver playback buffers. The optimization variables are
xd(t), ar, xb(t), wb.

maximize
∑

d

∑T
t=0 Ud,t(xd(t)) +

∑
r arŪr +

∑
b Ub(wb)

subject to
∑

d xd(t) +
∑

r arvr +
∑

b xb(t) ≤ c, ∀t,∑t0
t=0 xb(t) ≥ (t0 − wb)vb, ∀t0 > wb, ∀b,

xd(t) ≥ 0, xb(t) ≥ 0, ∀d ∈ D, b ∈ B ∀t,
ar ∈ {0, 1}, ∀r ∈ R,
wb ∈ [0, T ] ∀b ∈ B.

(6)

C. Decomposition

Similar to the dual decomposition that leads to the canonical
distributed algorithm for elastic traffic, we would like to decom-

pose the problem (6) into individual source problems and link
problems. Such a decomposition is indeed possible. Further-
more, it turns out that ar should be either 0 or 1, and the integer
constraints on ar do not introduce technical difficulties. The
problem of having the number of constraints depend on the op-
timization variable wb in the second type of constraints in (6)
also turns out not to introduce optimization-theoretic difficul-
ties.

Theorem 4.Utility maximization for time sensitive flows (6)
can be decomposed into the following individual source prob-
lems and a network problem:

The D-type source problem, one for each source d and each
time t:

maximize Ud,t(xd(t)) − λ(t)xd(t)
subject to xd(t) ≥ 0 (7)

Solution of each of the D-type source problem is x∗
d(t) =

U
′−1
d,t (λ(t)), and the maximized utility is Ud,t(U

′−1
d,t (λ(t))) −

λ(t)U
′−1
d,t (λ(t)).

The R-type source problem, one for each source r:

maximize (Ūr − λT vr)ar

subject to ar ∈ {0, 1} (8)

where λT =
∑T

t=0 λt. Solution of each of the R-type source
problem is ar = 1 if Ūr ≥ λT vr and ar = 0 otherwise, and the
maximized utility is (Ūr − λT vr)1{Ūr ≥ λT vr}.

The B-type source problem, one for each source b:

maximize Ub(wb) −
∑T

t=0 λ(t)xb(t)
subject to xb(t) ≥ 0, ∀t,

wb ∈ [0, T ],∑t0
t=0 xb(t) ≥ (t0 − wb)vb, ∀t0

(9)

There is in general no analytic solution to this linearly con-
strained concave maximization, but numerical solutions can be
computed locally and efficiently to obtain U ∗

b = Ub(w∗
b ) −∑T

t=0 λ(t)x∗b (t) where (w∗
b , x

∗
b (t)) is a solution to (9).

The network problem is to maximize the optimized values of
the three types of source problems, i.e., for all t, maximize over
λt ≥ 0 the following:

Ud,t(U
′−1
d,t (λ(t))) − λ(t)U

′−1
d,t (λ(t))

+(Ūr − λT vr)1{Ūr ≥ λT vr} + U∗
b + λT c.

Solution to the master problem can be obtained by a dis-
tributed subgradient method iteratively within each time slot t,
where the iteration number is denoted by k:

λt(k + 1) =
[
λt(k) − α(k)ht(k)

]+
,

where a subgradient is

ht(k) = c−
∑
d∈D

x∗t
d (k) −

∑
r∈R

a∗t
r vr −

∑
b∈B

x∗t
b (k),

and step sizes α(k) can be chosen to ensure convergence of this
algorithm based on dual decomposition.



While the above problem decomposition can be proved, there
are two significant new algorithmic challenges. First, we now
need to generate congestion prices for every time slot along the
temporal dimension, instead of for every link along the spatial
dimension (and in the case of time sensitive traffic on general
networks, prices need to be generated along both dimensions).
This creates a time scale problem. In order to obtain the correct
price per time slot t, iterations indexed by k need to be carried
out before reaching close to the equilibrium. Furthermore, λ ∗

t

depends on λ∗
t′ , t

′ �= t. Thus the optimal admission decision,
playback time decision, and rate allocation cannot be made until
the entire period t = 0, . . . , T is over. These two issues of time-
scaleand causalityare the two bottlenecks in distributive and
iterative rate allocation for time-sensitive flows.

IV. TIME SENSITIVE FLOWS: ADMISSION CONTROL

HEURISTICS AND OPTIMAL ALGORITHM

In this section, we investigate two special cases by consid-
ering only one type of time sensitive flows, real-time flows in-
dexed by r, sharing bandwidth with elastic TCP data flows in-
dexed by i, in a network with multiple links indexed by l. Prob-
lem (6) reduces to

maximize
∑

i Ui(xi) +
∑

r arŪr

subjec to
∑

i:l∈L(i) xi +
∑

r:l∈L(r) arvr ≤ cl, ∀l,
xi ≥ 0, ∀i,
ar ∈ {0, 1}, ∀r,

(10)

where the optimization variables are xi and ar.
A development similar to Theorem 4 shows that to globally

solve (10), the canonical distributed algorithm can be used for
price update and elastic source rate adjustment, but the real-time
flows should be admitted based on the equilibrium price λ∗. A
real-time flow r is admitted if and only if λr∗ ≤ Ūr

vr
. Therefore,

to arrive at the correct admission decision, one must wait for
the equilibrium to be achieved. When real-time flows may be
rejected but waiting for the optimal admission decision is unde-
sirable, a price-based admission control heuristics in subsection
V.A can be used. Alternatively, if one assumes that all real-time
flows are admitted, an optimal algorithm in subsection V.B can
be used to ensure a fair share of bandwidth to the elastic flows.

A. Pricing-based admission control

Algorithm 1: Admission control heuristics. This heuristic
is conducted locally at the edge by each source, following the
end-to-end principle and assuming cooperative end users. It is
parameterized by nonnegative integers m and n. If a price seen
by source r is smaller than Ūr

vr
for m time slots, it is tentatively

admitted, and a message is passed to reserve vr amount of band-
width along the path it uses. This tentative admission phase is
the resource reservation phase. If the price λr continues to be
smaller than Ūr

vr
for n more time slots, the flow is formally ad-

mitted and transmission can start, otherwise the flow is rejected
and has to wait for another window of m times slots, during
which the price is sufficiently low, before entering the resource

reservation phase again. As is typical with other price-based
heuristics (e.g., [9]), larger waiting parameters (m,n) enhance
the probability that the correct admission decision is made but
also increase the latency incurred.

flow 1
flow 3

flow 4

link 1 flow 2

link 3

link 2

Fig. 7. Network topology for Example 3.

Example 3.The admission control heuristic is tested on vari-
ous networks. Typical results are summarized below for the net-
work shown in Figure 7 with three links and four flows. Link ca-
pacities are 30, 20, and 40 units respectively. Flows 1 and 2 are
elastic data flows, with utility functions Ui = log(1 + xi), i =
1, 2, while flows 3 and 4 are inelastic real-time flows with
Ū3 = 1, Ū4 = 0.2, and playback rates of v3 = 5, v4 = 7. If
both flows 3 and 4 use (m,n) = (8, 8) in the admission control
heuristic, Figure 8 shows the resulting rate allocation iterations
and convergence to the optimal solution. In this example, flow
3 is admitted in the first try, and flow 4 only enters the resource
reservation phase once, during which it is rejected. The opti-
mal solution for this utility maximization problem is indeed to
admit flow 3 and reject flow 4.
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Fig. 8. Rate allocation based on the admission control heuristic.

Extensive simulations are conducted on the same topology
for other (m,n) pairs. A variety of rate allocation scenarios
are observed and classified into correct or incorrect final admis-
sion decisions by comparing against the global optimum com-
puted through exhaustive search. The region in the (m,n) plane
where correct decisions are made is the shaded region (and the
rest of the 2D plane upwards and to the right) in Figure 10. This
connected region illustrates the following desirable and intu-
itive properties of the heuristic:

• When either m or n is larger than a threshold m0 or n0,
the other parameter can be as small as zero. If both m and
n are nonzero, they can be smaller than m0 or n0 and still
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Fig. 9. Price update based on the admission control heuristic.

remain in the correct decision region.
• The Pareto optimal tradeoff curve is the boundary line be-

tween the shaded region and the unshaded region. If the
total latency before formal admission needs to be mini-
mized, it is best to operate at the point (m = 7, n = 0) for
the network in Figure 7.

• In practice, it is unlikely that the best (m,n) will be used.
Thus it is useful to observe that the latency associated
with any point on the Pareto optimal tradeoff curve in the
(m,n) plane is only a fraction of about 20% of the time
it takes for all the flows to converge. This shows the ef-
fectiveness of this heuristic in reducing the time it takes to
make the right admission decision.

0 5 10 15
0

5

10

15

m

n

Fig. 10. The correct decision region in the (m, n) plane is shaded.

There are several variations on the admission control heuris-
tics, some requiring explicit feedback from the links and coor-
dination among the sources. A simple one that does not require
any extra communication overhead is to adapt the choices of
(m,n) parameters. Each inelastic flow picks large (m,n) ini-
tially, since the gradient based iterations have just started. If the
flow is rejected after being tentatively accepted, thus having to
wait for the next round, smaller (m,n) are picked because the
iterations have reduced the distance between the rate allocation
at that time and the optimal rate allocation.

B. Rate allocation among different groups of flows

Sometimes, when link capacities are expected to be large
enough to accommodate all the real-time flows, we may admit

all real-time flows and ensure that their rates are never smaller
than the necessary threshold vr. Modeling the situation where
rates higher than vr may lead to improvements in user percep-
tion of the real-time applications, we also allow the utility func-
tions to grow beyond Ūr, following a concave utility Ur(xr)
with Ur(vr) = Ūr. We refer to these flows as enhanced real-
time flows. However, to ensure that the group of elastic traffic
can still be allocated at least a certain share of the bandwidth,
we put an upper bound on the fraction θ l of total link capacity
that can be given to the group of enhanced real-time flows. This
results in the following NUM problem:

maximize
∑

i Ui(xi) +
∑

r Ur(xr)
subjec to

∑
i:l∈L(i) xi +

∑
r:l∈L(r) xr ≤ cl, ∀l,∑

r:l∈L(r) xr ≤ θlcl, ∀l,
xr ≥ vr, ∀r,
x � 0.

(11)

The above problem can be solved by Algorithm 2: Rate al-
location among groups. This algorithm is the canonical dis-
tributed algorithm together with two modifications. First, at
each iteration, the allocated rate to a source in the enhanced
real-time group is projected onto the interval [vr,minl∈L(r) cl],
i.e., if xr(k) < vr at some iteration k, set xr(k) = vr. Two, we
update another link price vector σ, distributively on each link:

σl(k + 1) =


σl(k) − α(k)


θlcl −

∑
r:l∈L(r)

x∗r(k)







+

.

Each source in the enhanced real-time group uses the total price
λr plusσr =

∑
l∈L(r) σl. Each source in the elastic group uses

onlyprice λr.
Theorem 5. Algorithm 2 converges to the globally optimal

rate allocation of (11).

link 1 link 2

flow 1 flow 2

flow 3

flow 4

Fig. 11. Network topology for Example 4.

Example 4. A typical simulation for Algorithm 2 is shown
for the network in Figure 11, where link capacities are 30 and
20 units, respectively. Flows 3 and 4 are the enhanced real-time
flows with utility functions U3 = 0.871x0.1

3 , U4 = 4.1808x0.9
4

and playback rate v3 = 5, v4 = 4 units. Flows 1 and 2 are elas-
tic data flows with utility functions Ui = log(1 + x1), i = 1, 2.
Figures 12 and 13 show the source rate and total path price iter-
ations. It is observed that both enhanced real-time flows never
have their source rates dropped below the minimum thresh-
olds, and, at the same time, they do not occupy more than
θ1 = 30%, θ2 = 50% of link capacities. The equilibrium rate
allocation for flow 4 at global optimality is 6 units, more than
the minimum threshold v4 required by this enhanced real time
flow.
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Fig. 12. Source rate allocation among four sources in two groups.
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Fig. 13. Total path price iteration for four sources in two groups.

V. CONCLUDING REMARKS

The difficult problem of distributed rate allocation for inelas-
tic flows is tackled in this paper from two angles:

• When the concavity assumption for utility functions
breaks down, we prove several sufficient conditions (e.g.,
continuity of price-based rate allocation) and a necessary
condition for the canonical distributed algorithm to con-
verge to a globally optimal rate allocation.

• When time sensitivity is modeled in the utility maximiza-
tion problem, a dual decomposition is presented. We pro-
pose a simple yet effective admission control heuristic to
allocate rates between elastic TCP flows and inelastic real-
time flows. When link capacities are large enough that ad-
mission control becomes unnecessary, we provide an opti-
mal algorithm to allocate rates among traffic groups with
different elasticities.

This paper tackles NUM beyond the widespread yet often in-
valid assumption of elastic flow. Many open issues remain to
be resolved in this area, including noncausality of optimal ad-
mission control, transient behavior of the canonical distributed
algorithm, and fairness and smoothness of rate allocation to in-
elastic flows.

The results in section II apply to other applications of linearly
constrained nonconvex optimization with a separable objective
function, such as spectrum management in OFDM communica-

tion systems. It will also be interesting to investigate the case
when the linear flow constraints become nonlinear, for applica-
tions in wireless network power control.

APPENDIX A: PROOF OF THEOREM 1

Proof: Price update through subgradient descent with
diminishing step sizes makes the dual variables converge to a
global minimizer of the dual function g(λ). Since g(λ) is a
convex function, it is also continuous, thus converging to D ∗ as
λ converges to λ∗. Since the price-based rate allocation x∗(λ)
is continuous at λ∗, x∗(λ) converges to x∗(λ∗) as λ converges
to λ∗.

It is known [3] that zero duality gap implies complementary
slackness and that a primal maximizer (i.e., a globally optimal
rate allocation in this case) must also be a Lagrangian max-
imizer (i.e., price-based rate allocation) at λ∗. We can also
show that continuity and monotonicity of x∗(λ) at λ∗ imply
its uniqueness. Thus x∗(λ∗) is primal feasible and optimal.
After the guaranteed convergence of price-base rate allocation
to a feasible solution, the resulting rate allocation is globally
optimal.

APPENDIX B: PROOF OF FACT 1

Proof: We will use the ‘min common max crossing du-
ality’ established in [2]. A similar technique has recently been
used for spectrum management in DSL [14].
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Fig. 14. Concavity of U∗(c) implies zero duality gap.

First, we rewrite NUM (1) as

maximize
∑

s Us(xs)
subject to cl −

∑
s:l∈L(s) xs ≥ 0, ∀l. (12)

We also consider a perturbed utility optimization problem,
where the link capacities become cl + c′l, ∀l. Notice that con-
cavity of U ∗(c) is equivalent to concavity of U ∗(c′).

Define M (shaded region in Figure 14) to be the set of two-
tuples of link capacity perturbation and resulting feasible total



utility:

M =


(c′, U)|∃xs.t.cl −

∑
s:l∈L(s)

xs ≥ −c′l, U ≤
∑

s

Us(xs)


 .

Utility maximization (12) can now be equivalently written as
optimizing over a scalar variable U :

maximize U
subject to (0, U) ∈ M

The optimal network utility U ∗ = sup(0,U)∈M U is thus the
‘min common’ point defined in [2].

Consider the maximized total utility U ∗(c′) as a function of
link capacity perturbation c′, the tangent of U ∗(c′) at a point c′0
along the direction λ � 0, and the intersection of this tangent
with the y-axis, as shown in Figure 14. The y-coordinate at the
intersection is

y(λ) = U∗(c′0) + λT (0− c′0)
= U∗(c′0) − λT c′0

= max
c′

[
U − λT c′

]

where the last equality can be readily verified either geometri-
cally or by differentiation. Since λ � 0 and c ′ is lower bounded
by

∑
s:l∈L(s) xs − cl, we have

y(λ) = max
x


U(x) +

∑
l

λl


cl −

∑
s:l∈L(s)

xs







= max
x

L(x,λ) = g(λ).

Therefore, the y-coordinate of the intersection is the Lagrange
dual function evaluated at λ. We would like to find the mini-
mum y(λ) by varying over λ � 0, i.e., the lowest intersection
as the angle of the tangent varies. That would equal the dual op-
timal value D∗ by definition. We have thus established that the
‘min common’ point equals U ∗ and the ‘max crossing’ point
equals D∗.

A function f(x) is concave if and only if its hypograph, the
set {(x, t)|t ≤ f(x)}, is a convex set. Set M is the hypograph
of U∗(c′), since M contains all the feasible two-tuples of c′ and
U . If U ∗(c′) is concave, M is a convex set, and by the result in
[2], min common point equals max crossing point. Therefore
U∗ = D∗.

APPENDIX C: ZERO DUALITY GAP AND CONTINUITY

This appendix shows that zero duality gap does not imply
continuity. Consider the following problem with two variables
x1, x2 and one constraint:

maximize U1(x1) + U2(x2)
subject to x1 + x2 ≤ c

where U1 is a concave function and U2 is a sigmoidal function.
We will show that for a given U2 function, we can construct a

U1 function such that there is zero duality gap and yet x2(λ) is
discontinuous at the optimal dual variable λ∗.

For any given curveU2(x2), construct a straight line from the
origin to be tangent to the curve, and denote the x-coordinate
and slope of the tangent point by x0

2 and λ0, respectively.
It is easy to verify that x0

2 = x∗2(λ
0), i.e., x0

2 maximizes
U2(x2) − λ0x2. Furthermore, x∗

2(λ) is discontinuous at λ0.
We would like to construct U1 so that λ0 is the dual optimal λ∗.
Since the dual problem is an unconstrained convex minimiza-
tion problem, any stationary point is globally optimal. There-
fore, λ0 is the dual optimal λ∗ if the subgradient vanishes at
λ0, i.e., x∗

1(λ
0) + x∗2(λ

0) = c. We need U1 be such that
x1(λ0) = c − x∗2(λ

0) = c − x0
2, which, by concavity of U1,

is equivalent to U
′−1
1 (λ0) = c − x0

2. It is always possible
to construct U1 such that U

′−1
1 passes through a given point

(λ0, c− x0
2), which makes x∗

2(λ) discontinuous at λ0.
With the above construction of U1 to make λ0 the dual

optimal variable, we can also show that duality gap is zero.
On the one hand, by the definition of dual optimality, D ∗ =
g(λ∗), which is in turn equal to g(λ0) = L(x∗(λ0), λ0) =
U1(x∗1(λ

0)) + U1(x∗1(λ
0)) + 0. Thus, by weak duality, D∗ =

U1(x∗1(λ
0)) + U1(x∗1(λ

0)) ≥ U∗. On the other hand, by def-
inition of primal optimality, U ∗ ≥ U1(x1) + U2(x2) for all x.
Therefore, U ∗ = D∗.

APPENDIX D: PROOF OF THEOREM 2

Proof: Continuity of price-based rate allocation x∗(λ) at
the optimal price λ∗ implies that x∗(λ∗) and λ∗ satisfy com-
plementary slackness: λ∗

l (
∑

s:l∈L(s) x
∗
s(λ

s∗) − cl) = 0, ∀l. To
see this, consider the case where λ∗

l > 0, we can then find
λmin

l = λ∗
l −δ and λmax

l = λ∗
l +δ, for sufficiently small δ > 0,

in the neighborhood of λ∗
l . The price-based rate allocation eval-

uated at λmin
l must sum up to ≥ cl, because the subgradient at

λmin
l is strictly positive due to λ∗

l > λmin
l , and that evaluated

at λmax
l must sum up to ≤ cl, because the subgradient at λmax

l

is strictly negative due to λ∗
l < λmax

l . By continuity of x∗(λ)
at λ∗,

∑
s:l∈L(s) x

∗
s(λ

s∗) = cl.
By a similar argument, but applied only to λmax

l , we can
show that if λ∗

l = 0, then the price-based rate allocation
evaluated at λmax

l must sum up to ≤ cl. By continuity,∑
s:l∈L(s) x

∗
s(λ

s∗) ≤ cl in this case. In summary, continuity
of x∗(λ) at λ∗ implies primal feasibility of x∗(λ∗)

Therefore, we know D∗ ≤ U∗ as shown below:

D∗ (a)
= g(λ∗)
(b)
= max

x
L(x(λ∗),λ∗)

(c)
=

∑
s

Us(x∗s(λ
s∗)) +

∑
l

λ∗
l


cl −

∑
s:l∈L(s)

x∗s(λ
s∗)




(d)
=

∑
s

Us(x∗s(λ
s∗))

(e)
≤ U∗



where (a) follows from the definition of dual optimal value, (b)
from the definition of Lagrange dual function, (c) from the def-
inition of Lagrangian, (d) from complementary slackness, and
(e) from the definition of primal optimal value. Of course, by
weak duality, D∗ ≥ U∗. Thus D∗ = U∗, i.e., inequality (e)
must be an equality. Therefore, the the canonical distributed
algorithm converges to the globally optimal rate allocation.

APPENDIX E: COMMENTS ON BISECTION ALGORITHM

Consider the following price update by a bisection method
executed sequentiallyover the links (see also the recent result
for DSL spectrum management [4]):

1) Each link maintains an upper bound λmax
l and a lower

bound λmin
l , sets its price λl = λmax

l +λmin
l

2 , and passes
{λl′}l′=1,2,...,l to the next link l+1, for l = 1, 2, . . . , L−
1.

2) Based on the total path price λs, each source solves the
local net utility maximization: maxxs [Us(xs) − λsxs].

3) At each link, if
∑

s:l∈L(s) xs > cl, then λmin
l = λl, oth-

erwise λmax
l = λl. Repeat 1).

Theorem 6. If the above bisection price update algorithm
converges, the canonical distributed algorithm converges to the
globally optimal rate allocation.

Proof: First, we show that continuity of price-based rate
allocation implies convergence of the bisection algorithm. The
key idea is that after link prices λl for links l in a set L converge,
the resulting rate allocation is the globally optimal solution of
the following partially constrained utility maximization [4]:

maximize
∑

s Us(xs)
subject to cl −

∑
s:l∈L(s) xs ≥ 0, ∀l ∈ L. (13)

To see this, first notice that, as can be readily veri-
fied,

∑
s:l∈L(s) xs(λl) is a decreasing function of λl (un-

less some xs is infinity, which is ruled out by Assump-
tion 2). Now consider the two possible cases for each
link l ∈ L:

∑
s:l∈L(s) xs(λmin

l ) > cl at λmin
l = 0

and
∑

s:l∈L(s) xs(λmin
l ) ≤ cl at λmin

l = 0. In the first
case, since the initial condition must satisfy the constraint∑

s:l∈L(s) xs(λmax
l ) ≤ cl, throughout the iterations, we must

have
∑

s:l∈L(s) xs(λmax
l ) ≤ cl and

∑
s:l∈L(s) xs(λmin

l ) > cl.

As λmin
l and λmax

l both converge to a fixed value with λ l

sandwiched in between, λl also converges to a point λ̃l. If∑
s:l∈L(s) xs(λl) is continuous at λ̃l, it converges to cl. In the

second case, it is easy to verify that λl converges to λ̃l = 0.
Therefore, after convergence to λ̃ (which we have not yet
shown is the dual optimal variable λ∗) and the associated rate
allocation, we have either λ̃l = 0 or

∑
s:l∈L(s) xs(λ̃l) = cl or

both, which is the complementary slackness condition of the
partially constrained utility maximization problem (13). To-
gether with the global search at each source in Step 2, the rate
allocation after the link prices λl, l ∈ L, converge maximizes
the Lagrangian of (13) and also globally solves (13).

By induction, after all the link prices converge and L contains
all the links in the network, problem (13) becomes (1), and the
resulting rate allocation solves (1) globally.

Now by a similar development as in Appendix D, we can
show that global convergence of bisection method implies zero
duality gap, which further implies that λ̃ = λ∗. Since global
convergence of bisection method implies continuity at λ∗, by
Theorem 2, the canonical distributed algorithm also converges.

Unlike the canonical distributed algorithm based on simul-
taneous subgradient update, the above bisection algorithm is
based on sequential price update (i.e., when one link changes its
price, the other links do not change their prices), which is ex-
ponential time complexity in the number of links and has much
slower convergence. Together with Theorem 6, the conclusion
is that bisection method is never preferred to the canonical dis-
tributed algorithm.
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