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Abstract

We develop the necessary methodology to conduct principal component analysis at high frequency.

We construct estimators of realized eigenvalues, eigenvectors, and principal components and provide the

asymptotic distribution of these estimators. Empirically, we study the high frequency covariance structure

of the constituents of the S&P 100 Index using as little as one week of high frequency data at a time.

The explanatory power of the high frequency principal components varies over time. During the recent

financial crisis, the first principal component becomes increasingly dominant, explaining up to 60% of the

variation on its own, while the second principal component drives the common variation of financial sector

stocks.
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1 Introduction

Principal component analysis (PCA) is one of the most popular techniques in multivariate statistics, providing

a window into any latent common structure in a large dataset. The central idea of PCA is to identify a small

number of common or principal components which effectively summarize a large part of the variation of the

data, and serve to reduce the dimensionality of the problem and achieve parsimony.

Classical PCA originated in Pearson (1901) and Hotelling (1933) and is widely used in macroeconomics

and finance among many other fields. One example is Litterman and Scheinkman (1991), who document a
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three-factor structure of the term structure of yields using PCA. PCA has also been applied to analyze the

dimension of volatility dynamics, e.g., Egloff, Leippold, and Wu (2010), suggesting a two-factor model of

volatility, capturing the long and short-term fluctuations of the volatility term structure. Another example

is the development of economic activity and inflation indices by Stock and Watson (1999) using PCA and a

factor model. A sentiment measure, reflecting the optimistic or pessimistic view of investors, was created by

Baker and Wurgler (2006) using the first principal component of a number of sentiment proxies, while a policy

uncertainty index was created by Baker, Bloom, and Davis (2013).

The estimation of the eigenvalues of the sample covariance matrix is the key step towards PCA. Classical

asymptotic results, starting with Anderson (1958) and Anderson (1963), show that eigenvalues of the sample

covariance matrix are consistent and asymptotically normal estimators of the population eigenvalues, at least

when the data follow a multivariate normal distribution. Even under normality, the asymptotic distribution

becomes rather involved when repeated eigenvalues are present. Waternaux (1976) showed that a similar

central limit result holds for simple eigenvalues as long as the distribution of the data has finite fourth moment,

while Tyler (1981) obtains the asymptotic distribution of eigenvectors under more general assumptions; see

also discussions in the books by Jolliffe (2002) and Jackson (2003).

The classical PCA approach to statistical inference of eigenvalues suffers from three main drawbacks. First

is the curse of dimensionality. For instance, it is well known that even the largest eigenvalue is no longer

consistently estimated when the cross-sectional dimension grows at the same rate as the sample size along

the time domain. Second, the asymptotic theory is essentially dependent on frequency domain analysis under

stationarity (and often additional) assumptions, see, e.g., Brillinger (2001). Third, the principal components

are linear combinations of the data, which fail to capture potentially nonlinear patterns therein.

These three drawbacks create difficulties when PCA is employed on asset returns data. A typical portfolio

may consist of dozens of stocks. For instance, a portfolio with 30 stocks has 465 parameters in their covariance

matrix, if no additional structure is imposed, while one with 100 stocks contain 5,050 parameters. As a

result, years of time series data are required for estimation, raising issues of survivorship bias, potential non-

stationarity and parameter constancy. Moreover, asset returns are known to exhibit time-varying volatility

and heavy tails, leading to deviations from the assumptions required by the classical PCA asymptotic theory.

In addition, prices of derivatives, e.g., options, are often nonlinear functions of the underlying asset’s price

and volatility. Ruling out nonlinear combinations disconnects their principal components from the underlying

factors that drive derivative returns.

These issues motivate the development in this paper of the tools necessary to conduct PCA for continuous-

time stochastic processes using high frequency data and high frequency or “in-fill” asymptotics, whereby the

number of observations grows within a fixed time window. This approach not only adds the important method

of PCA to the high frequency toolkit, but it addresses the three drawbacks mentioned above. First, the large

amount of intraday time series data vastly improve the time series vs. cross-sectional dimensionality trade-off.

And these are not redundant observations for the problem at hand. Unlike for expected returns, it is well

established theoretically that increasing the sampling frequency improves variance and covariance estimation,

at least until market microstructure concerns start biting. Yet market microstructure noise is not a serious

concern at the one minute sampling frequency we will employ empirically, for liquid stocks which typically

trade on infra-second time scales. As a result of the large increase in the time series dimension, it is plausible

to expect high frequency asymptotic analysis with the cross-sectional dimension fixed to serve as accurate

approximations.1 In fact, we will show both in simulations and empirically that PCA works quite well at high

1At low frequency, in the case of large dimensional data, Geman (1980) and Bai, Silverstein, and Yin (1988) investigated

the strong law of the largest eigenvalue, when the cross-sectional dimension of the data grows at the same rate as the sample

size. Johnstone (2001) further analyzed the distribution of the largest eigenvalue using random matrix theory. These analyses
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frequency for a portfolio of 100 stocks using as little as one week of one-minute returns data. Second, the

high frequency asymptotic framework enables nonparametric analysis of general stochastic processes, thereby

allowing strong dependence, non-stationarity, and heteroscedasticity due to stochastic volatility and jumps,

and freeing the analysis from the strong parametric assumptions that are required in a low frequency setting. In

effect, the existence of population moments becomes irrelevant and PCA becomes applicable at high frequency

for general Itô semimartingales. Third, our principal components are built upon instantaneous (or locally)

linear combinations of the stochastic processes, which thereby capture general nonlinear relationships by virtue

of Itô’s lemma.

Within a continuous-time framework, we first develop the concept of “realized” or high-frequency PCA for

data sampled from a stochastic process within a fixed time window. Realized PCA depends on realizations

of eigenvalues, which are stochastic processes, evolving over time. Our implementation of realized PCA is

designed to extend classical PCA from its low frequency setting into the high frequency one as seamlessly

as possible. Therefore, we start by estimating realized eigenvalues from the realized covariance matrix. One

technical challenge we must overcome is the fact that when an eigenvalue is simple, it is a smooth function

of the instantaneous covariance matrix. On the other hand, when it comes to a repeated eigenvalue, this

function is not differentiable, which hinders statistical inference, as the asymptotic theory requires at least

second-order differentiability. To tackle the issue of non-smoothness of repeated eigenvalues, we propose

an estimator constructed by averaging all repeated eigenvalues. Using the theory of spectral functions, we

show how to obtain differentiability of the proposed estimators, and the required derivatives. We therefore

construct an estimator of realized spectral functions, and develop the high frequency asymptotic theory for

this estimator. Estimation of eigenvalues, principal components and eigenvectors then arise as special cases of

this estimator, by selecting a specific spectral function. Aggregating local estimates results in an asymptotic

bias, due to the nonlinearity of the spectral functions. The bias is fortunately of higher order, which enables us

to construct a bias-corrected estimator, and show that the latter is consistent and achieves stable convergence

in law to a mixed normal distribution.

As far as asymptotic theory is concerned, our estimators are constructed by aggregating functions of in-

stantaneous covariance estimates. Other examples of this general type arise in other high frequency contexts.

Jacod and Rosenbaum (2013) analyze such estimators with an application of integrated quarticity estimation.

Li and Xiu (2014) develop inference theory based on the generalized method of moments to investigate struc-

tural economic models which include the instantaneous volatility as an explanatory variable. Kalnina and

Xiu (2013) discuss estimation of the leverage effect measured by the integrated correlation with an additional

volatility instrument. Li, Todorov, and Tauchen (2013) discuss inference theory for volatility functional de-

pendencies. An alternative inference theory in Mykland and Zhang (2009) is designed for a class of estimators

based on an aggregation of local estimates using a finite number of blocks.

Also related to the problem we study is the rank inference developed in Jacod, Lejay, and Talay (2008)

confirmed that the largest eigenvalue is no longer consistently estimated. Moreover, Johnstone and Lu (2009) prove that, for a

single factor model, the estimated eigenvector corresponding to the largest eigenvalue is also inconsistent unless the sample size

grows at a rate faster than the one at which the cross-sectional dimension increases. To resolve the inconsistency of the PCA

in this setting, different estimators of the covariance matrix have been proposed, using banding (Bickel and Levina (2008b)),

tapering (Cai and Zhou (2012)), and thresholding (Bickel and Levina (2008a)) methods, or imposing additional assumptions such

as sparsity. However, the sparsity requirement of the covariance matrix does not hold empirically or a large cross-section of stock

returns, see, e.g., Fan, Furger, and Xiu (2015). Alternatively, there is a new literature on methods that “sparsify” the PCA

directly, i.e., imposing the sparsity on eigenvectors, see, e.g., Jolliffe, Trendafilov, and Uddin (2003), Zou, Hastie, and Tibshirani

(2006), d’Aspremont, Ghaoui, Jordan, and Lanckriet (2007), Johnstone and Lu (2009), and Amini and Wainwright (2009). None

of these methods are currently applicable to dependent data nor are central limit theorems available for these estimators in a

large dimensional setting.
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and Jacod and Podolskij (2013), where the cross-sectional dimension is also fixed and the processes follow

continuous Itô semimartingales. Allowing for an increasing dimension but with an additional sparsity structure,

Wang and Zou (2010) consider the estimation of integrated covariance matrix with high-dimensional and high

frequency data in the presence of measurement errors. Tao, Wang, and Zhou (2013) investigate the minimax

rate of convergence for covariance matrix estimation in the same setting; see also Tao, Wang, and Chen (2013)

and Tao, Wang, Yao, and Zou (2011) for related work. Zheng and Li (2011) establish a Marcenko-Pastur type

theorem forstudy the spectral distribution of the integrated covariance matrix for a special class of diffusion

processes. In a similar setting, Heinrich and Podolskij (2014) study the spectral distribution of empirical

covariation matrices of Brownian integrals.

Since it is about PCA, this paper shares all the natural pros and cons of PCA, especially relative to factor

models. There is a large low frequency literature in economics and finance on factor analysis. While factor

analysis in the classical setting of low frequency and fixed dimension is a very useful tool, as in Ross (1976) for

instance, Chamberlain and Rothschild (1983) point out that when the dimension grows with the sample size,

PCA may be preferred due to its simplicity, and the fact that it may be employed under weaker assumptions,

such as a factor structure that is only approximate. In fact, PCA has been used extensively at low frequency

for analyzing factor models, to determine the number of factors, e.g. Bai and Ng (2002), or to construct and

use factors for forecasting, e.g. Stock and Watson (2002), with the asymptotic theory developed by Connor

and Korajczyk (1988), Stock and Watson (1998), and Bai (2003). The above factor models are static, as

opposed to the dynamic factor models discussed in Forni, Hallin, Lippi, and Reichlin (2000), Forni and Lippi

(2001), and Forni, Hallin, Lippi, and Reichlin (2004), in which discrete-time lagged values of the unobserved

factors may also affect the observed dependent variables. By contrast, this paper develops the theory for

high frequency PCA in a continuous-time setting. Our model consists of Itô semimartingales, and is fully

nonparametric without any assumptions on the existence of a factor structure. That said, similar techniques

as those developed here can in principle be developed in the future to estimate continuous-time models with

a factor structure but this is a distinct problem from PCA (just as it is in a low frequency setting).

The paper is organized as follows. Section 2 sets up the notation and the model. Section 3 provides the

estimators and the main asymptotic theory. Section 4 reports the results of Monte Carlo simulations. We

then implement the method to analyze by PCA the covariance structure of the S&P 100 stocks in Section

5, where we ask whether at high frequency cross-sectional patterns in stock returns are compatible with the

well-established low frequency evidence of a low-dimensional common factor structure (e.g., Fama and French

(1993)). We find that, excluding jump variation, three Brownian factors explain between 50 and 60% of

continuous variation of the stock returns, that their explanatory power varies over time and that during the

recent financial crisis, the first principal component becomes increasingly dominant, explaining up to over

60% of the variation on its own, capturing market-wide, systemic, risk. Despite the differences in methods,

time periods, and length of observation, these empirical findings at high frequency are surprisingly consistent

with the well-established low frequency Fama-French results of three common factors. Of course, the design

limitation of PCA is that it does lend itself easily to an identification of what the principal components are

in terms of economic factors. Nevertheless, we find evidence that the first principal component shares time

series characteristics with the overall market return, and, using biplots, we find that at the height of the crisis

the second principal component drives the common variation of financial sector stocks. Section 6 concludes.

Proofs are in the appendix.
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2 The Setup

2.1 Standard Notations and Definitions

In what follows, Rd denotes the d-dimensional Euclidean space, and its subset R+
d contains non-negative real

vectors. Let ek be the unit vector in R+
d , with the kth entry equal to 1, 1 =

∑d
k=1 e

k, and I be the identity

matrix. Md denotes the Euclidean space of all d × d real-valued symmetric matrices. M+
d is a subset of

Md, which includes all positive-semidefinite matrices. We use M++
d to denote the set of all positive-definite

matrices. The Euclidean spaceMd is equipped with an inner product 〈A,B〉 = Tr(AB). We use ‖·‖ to denote

the Euclidean norm for vectors or matrices, and the superscript “+” to denote the Moore-Penrose inverse of

a real-matrix, see e.g., Magnus and Neudecker (1999).

All vectors are column vectors. The transpose of any matrix A is denoted by Aᵀ. The ith row of A is written

as Ai,·, and the jth column of A is A·,j . Aij denotes the (i, j)th entry of A. The operator diag : Md → Rd
is defined as diag(A) = (A11, A22, . . . , Add)

ᵀ. In addition, we define its inverse operator Diag, which maps a

vector x to a diagonal matrix.

Let f be a function from R+
d to R. The gradient of f is written as ∂f , and its Hessian matrix is denoted

as ∂2f . The derivative of a matrix function F :M+
d → R is denoted by ∂F ∈Md, with each element written

as ∂ijF , for 1 ≤ i, j ≤ d. Note that the derivative is defined in the usual sense, so that for any A ∈ M+
d ,

∂ijA = Jij , where Jij is a single-entry matrix with the (i, j)th entry equal to 1. The Hessian matrix of F is

written as ∂2F , with each entry referred to as ∂2
jk,lmF , for 1 ≤ j, k, l,m ≤ d. We use ∂k to denote kth order

derivatives and δi,j to denote the Kronecker’s delta function giving 1 if i = j or 0 otherwise. A function f is

Lipchitz if there exists a constant K such that |f(x+ h)− f(x)| ≤ K ‖h‖ . In the proof, K is a generic constant

which may vary from line to line. A function with kth continuous derivatives is denoted a Ck function.

Data are sampled discretely every ∆n units of time. All limits are taken as ∆n → 0. “
u.c.p.
=⇒ ” denotes

uniformly on compacts in probability, and “
p−→” denotes convergence in probability. We use “

L−s−→” to denote

stable convergence in law. We write an � bn if for some c ≥ 1, bn/c ≤ an ≤ cbn for all n. Finally, [·, ·] denotes

the quadratic covariation between Itô semimartingales, and [·, ·]c the continuous part thereof.

2.2 Eigenvalues and Eigenvectors

We now collect some preliminary results about eigenvalues and eigenvectors. For any vector x ∈ R+
d , x̄ denotes

the vector with the same entries as x, ordered in a non-increasing order. We use R̄+
d to denote the subset of

R+
d containing vectors x satisfying x1 ≥ x2 ≥ . . . ≥ xd ≥ 0.

By convention, for any x ∈ R̄+
d , we can write:

x1 = . . . = xg1
> xg1+1 = . . . = xg2

> . . . xgr−1
> xgr−1+1 = . . . = xgr ≥ 0, (1)

where gr = d, and r is the number of distinct element. {g1, g2, . . . , gr} depends on x. We then define a

corresponding partition of indices as Ij = {gj−1 + 1, gj−1 + 2, . . . , gj}, for j = 1, 2, . . . , r.

For any A ∈ M+
d , λ(A) = (λ1(A), λ2(A), . . . , λd(A))ᵀ is the vector of its eigenvalues in a non-increasing

order. This notation also permits us to consider λ as a mapping from M+
d to R̄+

d . An important result

establishing the continuity of λ is, see, e.g., Tao (2012):

Lemma 1. λ :M+
d → R̄+

d is Lipchitz.

Associated with any eigenvalue λg of A ∈M+
d , we denote its eigenvector as γg, which satisfies Aγg = λgγg,

and γᵀgγg = 1. The eigenvector, apart from its sign, is uniquely defined when λg is simple. In such a case,

without loss of generality we require the first non-zero element of the eigenvector to be positive. In the presence
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of repeated eigenvalues, the eigenvector is determined up to an orthogonal transformation. In any case, we

can choose eigenvectors such that for any g 6= h, γᵀgγh = 0, see, e.g., Anderson (1958).

When λg is a simple root, we regard γg as another vector-valued function of A. It turns out in this case,

both λg(·) and γg(·) are infinitely smooth at A, see, e.g., Magnus and Neudecker (1999).

Lemma 2. Suppose λg is a simple root of A ∈ M+
d , then λg :M+

d → R̄+ and γg :M+
d → Rd are C∞ at A.

Moreover, we have

∂jkλg(A) = γgj(A)γgk(A), and ∂jkγg(A) = (λgI−A)+
·,jγgk(A),

where γgk is the kth entry of γg. If in addition all the eigenvalues of A are simple, with (γ1, γ2, . . . , γd) being

the corresponding eigenvectors, then

∂2
jk,lmγgh =−

∑
p 6=g

1

(λg − λp)2

(
γglγgmγphγpjγgk − γplγpmγphγpjγgk

)
+
∑
p 6=g

∑
q 6=p

1

(λg − λp)(λp − λq)
γqlγpmγqhγpjγgk

+
∑
p 6=g

∑
q 6=p

1

(λg − λp)(λp − λq)
γqlγpmγqjγphγgk

+
∑
p 6=g

∑
q 6=g

1

(λg − λp)(λg − λq)
γqkγqlγgmγphγpj .

In general, while the eigenvalue is always a continuous function, the eigenvector associated with a repeated

root is not necessarily continuous. In what follows, we only consider estimation of an eigenvector when it is

associated with a simple eigenvalue.

2.3 Dynamics of the Variable

The process we analyze is a general d-dimensional Itô semimartingale, defined on a filtered probability space

(Ω,F , (Ft)t≥0,P) with the following Grigelionis representation:

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σsdWs + (δ1‖δ‖≤1) ∗ (µ− ν)t + (δ1{‖δ‖>1}) ∗ µt, (2)

where W is a d-dimensional Brownian motion, µ is a Poisson random measure on R+×Rd with the compensator

ν(dt, dx) = dt ⊗ ν̄(dx), and ν̄ is a σ-finite measure. More details on high frequency models and asymptotics

can be found in the book Aı̈t-Sahalia and Jacod (2014).

The volatility process σs is càdlàg, cs = (σσᵀ)s ∈ M+
d , for any 0 ≤ s ≤ t. We denote d non-negative

eigenvalues of cs by λ1,s ≥ λ2,s ≥ . . . ≥ λd,s, summarized in a vector λs. As is discussed above, we sometimes

write λs = λ(cs), regarding λ(·) as a function of cs. By Lemma 1, λ(·) is a continuous function so that λ(cs)

is càdlàg.

2.4 Principal Component Analysis at High Frequency

Similar to the classical PCA, the PCA procedure in this setting consists in searching repeatedly for instanta-

neous linear combinations of X, namely principal components, which maximize certain measure of variation,

while being orthogonal to the principal components already constructed, at any time between 0 and t. In

contrast to the classical setting, where one maximizes the variance of the combination (see, e.g., Anderson

(1958)), the criterion here is the continuous part of the quadratic variation.
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Lemma 3. Suppose that X is a d-dimensional vector-valued process described in (2). Then there exists a

sequence of {λg,s, γg,s}1≤g≤d,0≤s≤t, such that

csγg,s = λg,sγg,s, γᵀg,sγg,s = 1, and γᵀh,scsγg,s = 0,

where λ1,s ≥ λ2,s ≥ . . . ≥ λd,s ≥ 0. Moreover, for any càdlàg and vector-valued adapted process γs, such that

γᵀsγs = 1, and γᵀscsγh,s = 0, 1 ≤ h ≤ g − 1,∫ u

0

λg,sds ≥
[∫ u

0

γᵀs−dXs,

∫ u

0

γᵀs−dXs

]c
, for any 0 ≤ u ≤ t.

When λg,s is a simple root of cs between 0 and t, then γg,s is an adapted càdlàg process, due to the

continuity of γg(·) by Lemma 2, so that we can construct its corresponding principal component
∫ t

0
γᵀg,s−dXs.

Given Lemma 3, we can define our parameters of interest: the realized eigenvalue, i.e.
∫ t

0
λsds; the realized

principal components associated with some simple root λg, i.e.
∫ t

0
γᵀg,s−dXs. It may also be worth investigating

the average loading on the principal component, i.e. the realized eigenvector, which is
∫ t

0
γg,sds. Since the

definitions of these quantities all rely on integrals, we call them integrated eigenvalues, integrated principal

components, and integrated eigenvectors.

The above analysis naturally leads us to consider inference for
∫ t

0
λ(cs)ds, for which the differentiability

of λ(·) is critical: we start with the convergence of an estimator ĉs to cs, from which we need in a delta

method sense to infer the convergence of the integrated eigenvalues estimator. A simple eigenvalue is C∞-

differentiable, but for repeated eigenvalues this is not necessarily the case. For this reason, in order to fully

address the estimation problem, we need to introduce spectral functions.

2.5 Spectral Functions

A real-valued function F defined on a subset ofM+
d is called a spectral function (see, e.g., Friedland (1981)) if

for any orthogonal matrix O inMd and X inM+
d , F (X) = F (OᵀXO). We describe sets in R+

d and functions

from R+
d to R+ as symmetric if they are invariant under coordinate permutations. That is, for any symmetric

function f with an open symmetric domain in R+
d , we have f(x) = f(Px) for any permutation matrix P ∈Md.

Associated with any spectral function F , we define a function f on R+
d , so that f(x) = F (Diag(x)). Since

permutation matrices are orthogonal, f is symmetric, and f ◦ λ = F , where ◦ denotes function composition.

We will need to differentiate the spectral function F . We introduce a matrix function associated with the

corresponding symmetric function f of F , which, for any x ∈ R̄+
d in the form of (1), is given by

Afp,q(x) =


0 if p = q;

∂2
ppf(x)− ∂2

qqf(x) if p 6= q, and p, q ∈ Il;
(∂pf(x)− ∂qf(x))/(xp − xq) otherwise.

for some l = {1, 2, . . . , r}.
The following lemma collects some known and useful results regarding the continuous differentiability and

convexity of spectral functions, which we will use below:

Lemma 4. The symmetric function f is twice continuously differentiable at a point λ(A) ∈ R̄+
d if and only

if the spectral function F = f ◦ λ is twice continuously differentiable at the point A ∈ M+
d . The gradient and

the Hessian matrix are given below:

∂jk(f ◦ λ)(A) =

d∑
p=1

Opj∂pf(λ(A))Opk,
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∂2
jk,lm(f ◦ λ)(A) =

d∑
p,q=1

∂2
pqf(λ(A))OplOpmOqjOqk +

d∑
p,q=1

Afpq(λ(A))OplOpjOqkOqm,

where O is any orthogonal matrix that satisfies A = OᵀDiag (λ(A))O. More generally, f is a Ck function at

λ(A) if and only if F is Ck at A, for any k = 0, 1, . . . ,∞. In addition, f is a convex function if and only if

F is convex.

Next, we note that both simple and repeated eigenvalues can be viewed as special cases of spectral functions.

Example 1 (A Simple Eigenvalue). Suppose the kth eigenvalue of A ∈ M+
d is simple, that is, λk−1(A) >

λk(A) > λk+1(A). Define for any x ∈ R+
d ,

f(x) = the kth largest entry in x = x̄k.

Apparently, f is a symmetric function, and it is C∞ at any point y ∈ R̄+
d , with yk−1 > yk > yk+1. Indeed,

∂f(y) = ek, and ∂lf(y) = 0 for l ≥ 2. By Lemma 4, λk(A) = (f ◦ λ)(A) is C∞ at A.

Example 2 (Non-Simple Eigenvalues). Suppose the eigenvalues of A ∈M+
d satisfy:

λgl−1
(A) > λgl−1+1(A) ≥ . . . ≥ λgl(A) > λgl+1

(A),

for some 1 ≤ gl−1 < gl ≤ d. By convention, when gl = d, the last “ >” above is not used. Consider the

following function f , evaluated at x ∈ R+
d , which is given by

f(x) =
1

gl − gl−1

gl∑
j=gl−1+1

x̄j .

It is easy to verify that f is symmetric, and C∞ at any point y ∈ R̄+
d that satisfies ygl−1

> ygl−1+1 ≥ . . . ≥
ygl > ygl+1

. Moreover, ∂f(y) = 1
gl−gl−1

∑gl
k=gl−1+1 e

k, and ∂lf(y) = 0, for any l ≥ 2. As a result of Lemma

4, the corresponding spectral function,

F (A) = (f ◦ λ)(A) =
1

gl − gl−1

gl∑
j=gl−1+1

λj(A),

is C∞ at A. In the special case where

λgl−1
(A) > λgl−1+1(A) = . . . = λgl(A) > λgl+1

(A),

i.e., there is a repeated eigenvalue, and F (A) = λgl−1+1(A) = . . . = λgl(A). By contrast, λj(A) is not

differentiable, for any gl−1 + 1 ≤ j ≤ gl.

Example 3 (Trace and Determinant). For any x ∈ R+
d , define

f1(x) =

d∑
j=1

xj , and f2(x) =

d∏
j=1

xj .

Both f1 and f2 are symmetric and C∞. Therefore, for any A ∈ M+
d , Tr(A) = (f1 ◦ λ)(A) and det(A) =

(f2 ◦ λ)(A) are C∞ at A.

The previous examples make it clear that the objects of interest, eigenvalues, are special cases of spectral

functions, whether they are simple or repeated. (We are also able to estimate the trace and determinant “for
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free”.) Lemma 4 links the differentiability of a spectral function F, which is needed for statistical inference,

to that of its associated symmetric function f . The key advantage is that differentiability of f is easier to

establish.

Before turning to inference, we prove a useful result that characterizes the topology of the set of matrices

with special eigenvalue structures. The domain of spectral functions we consider will be confined to this set

in which these spectral functions are smooth.

Lemma 5. For any 1 ≤ g1 < g2 < . . . < gr ≤ d, the set

M(g1, g2, . . . , gr) =
{
A ∈M++

d | λgl(A) > λgl+1(A), for any l = 1, 2, . . . , r − 1
}

(3)

is dense and open in M++
d . In particular, the set of positive-definite matrices with distinct eigenvalues, i.e.,

M(1, 2, . . . , d), is dense and open in M++
d .

We conclude this section with some additional notations. First, we introduce a symmetric open subset of

R̄+/{0}, the image of M(g1, g2, . . . , gr) under λ(·):

D(g1, g2, . . . , gr) =
{
x ∈ R+

d /{0} | x̄gl > x̄gl+1, for any l = 1, 2, . . . , r − 1
}
. (4)

We also introduce a subset of M(g1, g2, . . . , gr), in which our spot covariance matrix ct will take values.

M∗(g1, g2, . . . , gr) =
{
A ∈M++

d |

λ1(A) = . . . = λg1(A) > λg1+1(A) = . . . = λg2(A) > . . . λgr−1(A) > λgr−1+1(A) = . . . = λgr (A)
}
.

Finally, we introduce the following set, which becomes relevant if we are only interested in a simple eigenvalue

λg:

M(g) =
{
A ∈M++

d | λg−1(A) > λg(A) > λg+1(A)
}
, and D(g) = λ(M(g)).

By convention, we ignore the first (resp. second) inequality in the definition ofM(g) when g = 1 (resp. g = d).

3 Estimators and Asymptotic Theory

3.1 Assumptions

We start with the standard assumption on the process X:2

Assumption 1. The drift terms bt is progressively measurable and locally bounded. The spot covariance matrix

ct = (σσᵀ)t is an Itô semimartingale. Moreover, for any γ ∈ [0, 1), there is a sequence of stopping times (τn)

increasing to ∞, and a deterministic function δ̄n such that
∫
Rd δ̄n (x)

γ
ν̄ (dx) <∞ and that ‖δ(ω, t, x)‖ ∧ 1 ≤

δ̄n(x), for all (ω, t, x) with t ≤ τn(ω).

In view of the previous examples, our main theory is tailored to the statistical inference on
∫ t

0
F (cs)ds.

Thanks to Lemma 4, we can make assumptions directly on f instead of F , which are much easier to verify.

Assumption 2. Suppose F is a vector-valued spectral function, and f is the corresponding vector-valued

symmetric function such that F = f ◦ λ. f is a continuous function, and satisfies ‖f(x)‖ ≤ K(1 + ‖x‖ζ), for

some ζ > 0.

2Using the notation on Page 583 of Jacod and Protter (2011), Assumption 1 states that the process X satisfies Assumption

(H-1) and that ct satisfies Assumption (H-2).
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In all the examples of Section 2.5, this assumption holds. By Lemma 1 and Assumption 2, F (cs) is càdlàg,

and the integral
∫ t

0
F (cs)ds is well-defined.

The above assumptions are sufficient to ensure the desired consistency of estimators we will propose.

Additional assumptions are required to establish their asymptotic distribution.

Assumption 3. There exists some open and convex set C, such that its closure C̄ ⊂ M(g1, g2, . . . , gr), where

1 ≤ g1 < g2 < . . . < gr ≤ d, and that for any 0 ≤ s ≤ t, cs ∈ C ∩M∗(g1, g2, . . . , gr). Moreover, f is C3 on

D(g1, g2, . . . , gr).

Assumption 3, in particular, cs ∈M∗(g1, g2, . . . , gr), guarantees that different groups of eigenvalues do not

cross over within [0, t]. This condition is mainly used to deliver the joint central limit theorem for spectral

functions that depend on all eigenvalues, although it may not be necessary for some special cases, such as

det(·) and Tr(·), which are smooth everywhere. The convexity condition on C is in principle not difficult to

satisfy, given thatM(g1, g2, . . . , gr) can be embedded into some Euclidean space of real vectors. This condition

is imposed to ensure that the domain of the spectral function can be restricted to certain neighborhood of

{cs}0≤s≤t, in which the function is smooth and the mean-value theorem can be applied. This assumption is

not needed if ct is continuous.

It is also worth mentioning that all eigenvalues of ct being distinct is a special case, which is perhaps

the most relevant scenario in practice, as is clear from Lemma 5. Even in this scenario, Assumption 3 is

required (with g1, g2, . . . , gr being chosen as 1, 2, . . . , d), because the eigenvalue function λ(·) is not everywhere

differentiable.

Assumption 3 resembles the spacial localization assumption in Li, Todorov, and Tauchen (2014) and Li

and Xiu (2014), which is different from the polynomial growth conditions proposed by Jacod and Rosenbaum

(2013). The growth conditions are not satisfied in our setting, when the difference between two groups of

repeated eigenvalues approaches zero.

If we are only interested in the spectral function that depends on one simple eigenvalue, e.g., the largest

and simple integrated eigenvalue,
∫ t

0
λ1(cs)ds, then it is only necessary to ensure that λ1(cs) > λ2(cs), for

0 ≤ s ≤ t, regardless of whether the remaining eigenvalues are simple or not. We thereby introduce the

following assumption for this scenario, which is much weaker than Assumption 3.

Assumption 4. There exists some open and convex set C, such that C̄ ⊂ M(g), for some g = 1, 2, . . . , d, and

that for any 0 ≤ s ≤ t, cs ∈ C. Moreover, f is C3 on D(g).

3.2 Realized Spectral Functions

We now turn to the construction of the estimators. To estimate the integrated spectral function, we start with

estimation of the spot covariance matrix. Suppose we have equidistant observations on X over the interval

[0, t], separated by a time interval ∆n. We form non-overlapping blocks of length kn∆n. At each ikn∆n, we

estimate cikn∆n
by

ĉikn∆n
=

1

kn∆n

kn∑
j=1

(
∆n
ikn+jX

) (
∆n
ikn+jX

)ᵀ
1{‖∆n

ikn+jX‖≤un}, (5)

where un = α∆$
n , and ∆n

l X = Xl∆n
−X(l−1)∆n

. Choices of α and $ are standard in the literature (see, e.g.,

Aı̈t-Sahalia and Jacod (2014)) and are discussed below when implemented in simulations.

We then estimate eigenvalues of ĉikn∆n by solving for the roots of |ĉikn∆n − λI| = 0. Using the notation

in Lemma 1, we have λ(ĉikn∆n) = λ̂ikn∆n . Almost surely, the eigenvalues stacked in λ̂ikn∆n are distinct (see,

10



e.g., Okamoto (1973)) so that we have λ̂1,ikn∆n > λ̂2,ikn∆n > . . . > λ̂d,ikn∆n . Our proposed estimator of the

integrated spectral function is then given by3

V (∆n, X;F ) = kn∆n

[t/(kn∆n)]∑
i=0

f
(
λ̂ikn∆n

)
. (6)

We start by establishing consistency of this estimator:

Theorem 1. Suppose Assumptions 1 and 2 hold. Also, either ζ ≤ 1, or ζ > 1 with $ ∈ [ ζ−1)
2ζ−γ ,

1
2 ) holds. Then

the estimator (6) is consistent. As kn →∞ and kn∆n → 0,

V (∆n, X;F )
u.c.p.
=⇒

∫ t

0

F (cs)ds. (7)

Next, obtaining a central limit theorem for the estimator is more involved, as there is a second-order

asymptotic bias associated with the estimator (6), a complication that is also encountered in other situations

such as the quarticity estimator in Jacod and Rosenbaum (2013), the GMM estimator in Li and Xiu (2014),

or the leverage effect estimator by Kalnina and Xiu (2013). The bias here is characterized as follows:

Proposition 1. Suppose Assumptions 1, 2, and 3 hold. In addition, kn � ∆−ςn and un � ∆$
n for some

ς ∈ (γ2 ,
1
2 ) and $ ∈ [ 1−ς

2−γ ,
1
2 ). As ∆n → 0, we have

kn

(
V (∆n, X;F )−

∫ t

0

F (cs)ds

)
p−→ 1

2

d∑
j,k,l,m=1

∫ t

0

∂2
jk,lmF (cs) (cjl,sckm,s + cjm,sckl,s) ds. (8)

The characterization of the bias in (8) suggests a bias-corrected estimator as follows:

Ṽ (∆n, X;F ) = kn∆n

[t/(kn∆n)]∑
i=0

{
F (ĉikn∆n

) (9)

− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmF (ĉikn∆n

) (ĉjl,ikn∆n
ĉkm,ikn∆n

+ ĉjm,ikn∆n
ĉkl,ikn∆n

)
}
.

We then derive the asymptotic distribution of the bias-corrected estimator:

Theorem 2. Suppose Assumptions 1, 2, and 3 hold. In addition, kn � ∆−ςn and un � ∆$
n for some ς ∈ (γ2 ,

1
2 )

and $ ∈ [ 1−ς
2−r ,

1
2 ). As ∆n → 0, we have

1√
∆n

(
Ṽ (∆n, X;F )−

∫ t

0

F (cs)ds

)
L−s−→Wt, (10)

where W is a continuous process defined on an extension of the original probability space, which conditionally

on F , is continuous centered Gaussian martingale with its covariance given by

E(Wp,tWq,t|F) =

∫ t

0

d∑
j,k,l,m=1

∂jkFp(cs)∂lmFq(cs) (cjl,sckm,s + cjm,sckl,s) ds. (11)

Remark 1. As previously noted, in the case when the spectral function F only depends on a simple eigenvalue

λg, the same result holds under the weaker Assumption 4 instead of 3.

3We prefer this estimator to the alternative one using overlapping windows, because the overlapping implementation runs

much slower. In a finite sample, both estimators have a decent performance.
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A feasible implementation of this distribution requires an estimator of the asymptotic variance, which we

construct as follows:

Proposition 2. The asymptotic variance of Ṽ (∆n, X;F ) can be estimated consistently by:

kn∆n

[t/(kn∆n)]∑
i=0

d∑
j,k,l,m=1

∂jkFp(ĉikn∆n
)∂lmFq(ĉikn∆n

) (ĉjl,ikn∆n
ĉkm,ikn∆n

+ ĉjm,ikn∆n
ĉkl,ikn∆n

)

p−→
∫ t

0

d∑
j,k,l,m=1

∂jkFp(cs)∂lmFq(cs) (cjl,sckm,s + cjm,sckl,s) ds. (12)

3.3 Realized Eigenvalues

We next specialize the previous theorem to obtain a central limit theorem for the realized eigenvalue estimators.

With the structure of eigenvalues in mind, we use a particular vector-valued spectral function Fλ, tailor-made

to deliver the asymptotic theory we need for realized eigenvalues:

Fλ(·) =

 1

g1

g1∑
j=1

λj(·),
1

g2 − g1

g2∑
j=g1+1

λj(·), . . . ,
1

gr − gr−1

gr∑
j=gr−1+1

λj(·)

ᵀ

. (13)

Apparently, if a group contains only one λj , then the corresponding entry of Fλ is equal to this single

eigenvalue; if within certain group, all eigenvalues are identical, then the corresponding entry of Fλ yields the

common eigenvalue of the group.

Corollary 1. Suppose kn � ∆−ςn and un � ∆$
n for some ς ∈ (γ2 ,

1
2 ) and $ ∈ [ 1−ς

2−r ,
1
2 ).

(i) Under Assumption 1, the estimator of integrated eigenvalue vector given by

V (∆n, X;λ) = kn∆n

[t/(kn∆n)]∑
i=0

λ(ĉikn∆n
) (14)

is consistent.

(ii) If Assumption 3 further holds, the estimator corresponding to the pth entry of Fλ given by (9) can be

written explicitly as:

Ṽ (∆n, X;Fλp ) =
kn∆n

gp − gp−1

[t/(kn∆n)]∑
i=0

gp∑
h=gp−1+1

{
λ̂h,ikn∆n

− 1

kn
Tr
(

(λ̂h,ikn∆n
I− ĉikn∆n

)+ĉikn∆n

)
λ̂h,ikn∆n

}
.

The joint central limit theorem for Ṽ (∆n, X;Fλ) =
(
Ṽ (∆n, X;Fλ1 ), . . . , Ṽ (∆n, X;Fλr )

)ᵀ
is given by

1√
∆n

(
Ṽ (∆n, X;Fλ)−

∫ t

0

Fλ(cs)ds

)
L−s−→Wλ

t , (15)

where Wλ is a continuous process defined on an extension of the original probability space, which conditionally

on F , is continuous centered Gaussian martingale with a diagonal covariance matrix given by

E(Wλ
t (Wλ

t )ᵀ|F) =


2
g1

∫ t
0
λ2
g1,sds

2
g2−g1

∫ t
0
λ2
g2,sds

. . .
2

gr−gr−1

∫ t
0
λ2
gr,sds

 , (16)
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where Fλ(cs) = (λg1,s, λg2,s, . . . , λgr,s)
ᵀ.

(iii) Under Assumptions 1 and 4, our estimator with respect to the gth simple eigenvalue λg(·), is given by

Ṽ (∆n, X;λg) = kn∆n

[t/(kn∆n)]∑
i=0

{
λ̂g,ikn∆n

− 1

kn
Tr
(

(λ̂g,ikn∆n
− ĉikn∆n

)+ĉikn∆n

)
λ̂g,ikn∆n

}
, (17)

which satisfies:
1√
∆n

(
Ṽ (∆n, X;λg)−

∫ t

0

Fλ(cs)ds

)
L−s−→Wλg

t , (18)

whereWλg is a continuous process defined on an extension of the original probability space, which conditionally

on F , is a continuous centered Gaussian martingale with its variance
∫ t

0
λ2
g,sds.

Remark 2. Corollary 1 is the analogue in our context to the classical results on asymptotic theory for PCA

by Anderson (1963), who showed that

√
n(λ̂− λ)

d→ N
(
0, 2Diag

(
λ2

1, λ
2
2, . . . , λ

2
d

))
. (19)

where λ̂ and λ are the vectors of eigenvalues of the sample and population covariance matrices and λ is simple.

Note the similarity between (19) and (16) in the special case where the eigenvalues are simple (in which case

gi = i) and are constant instead of being stochastic. The classical setting requires the strong assumption that

the covariance matrix follows a Wishart Distribution. By contrast, our results are fully nonparametric, relying

instead on high frequency asymptotics.

Remark 3. If there are eigenvalues of cs that are equal to 0 for any 0 ≤ s ≤ t, then our estimator is super-

consistent. This is an interesting case as the rank of the covariance matrix is determined by the number of

non-zero eigenvalues, see, e.g., the rank inference in Jacod, Lejay, and Talay (2008) and Jacod and Podolskij

(2013).

3.4 Realized Principal Components

As we have remarked before, when eigenvalues are simple, the corresponding eigenvectors are uniquely deter-

mined. Therefore, we can estimate the instantaneous eigenvectors together with eigenvalues, which eventually

leads us to construct the corresponding principal component:

Proposition 3. Suppose Assumptions 1 and 4 hold. In addition, γg,s is a vector-valued function that corre-

sponds to the eigenvector of cs with respect to a simple root λg,s. Suppose kn � ∆−ςn and un � ∆$
n for some

ς ∈ (γ2 ,
1
2 ) and $ ∈ [ 1−ς

2−r ,
1
2 ). Then we have as ∆n → 0

[t/(kn∆n)]−1∑
i=1

γ̂ᵀg,(i−1)kn∆n
(X(i+1)kn∆n

−Xikn∆n
)

u.c.p
=⇒

∫ t

0

γᵀg,s−dXs.

3.5 Realized Eigenvectors

So far we have constructed the principal components and estimated integrated eigenvalues. It remains to figure

out the loading of each entry of X on each principal component, i.e., the eigenvector. As the eigenvector is

stochastic, we estimate the integrated eigenvector. Apart from its sign, an eigenvector is uniquely identified if

its associated eigenvalue is simple. We determine the sign hence identify the eigenvector, by requiring a priori

certain entry of the eigenvector to be positive, e.g., the first non-zero entry.
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Corollary 2. Suppose Assumptions 1 and 4 hold. In addition, γg,s is a vector-valued function that corresponds

to the eigenvector of cs with respect to a simple root λg,s, for each s ∈ [0, t]. Then we have as ∆n → 0

1√
∆n

kn∆n

[t/(kn∆n)]∑
i=0

γ̂g,ikn∆n
+

1

2kn

∑
p 6=g

λ̂g,ikn∆n
λ̂p,ikn∆n

(λ̂g,ikn∆n
− λ̂p,ikn∆n

)2
γ̂g,ikn∆n

− ∫ t

0

γg,sds

 L−s−→Wγ
t ,

where Wγ is a continuous process defined on an extension of the original probability space, which conditionally

on F , is a continuous centered Gaussian martingale with its covariance matrix given by

E(Wγ
t (Wγ

t )ᵀ|F) =

∫ t

0

λg,s(λg,sI− cs)+cs(λg,sI− cs)+ds.

3.6 “PCA” on the Integrated Covariance Matrix

One may wonder why we chose to estimate the integrated eigenvalues of the spot covariance matrix rather

than the eigenvalues of the integrated covariance matrix. Because eigenvalues are complicated functionals of

the covariance matrix, the two quantities are not much related, and it turns out that the latter procedure is

less informative than the former. For instance, the rank of the instantaneous covariance matrix is determined

by the number of non-zero instantaneous eigenvalues. The eigenstructure of the integrated covariance matrix

is rather opaque due to the aggregation of instantaneous covariances. Nevertheless, it is possible to construct

a “PCA” procedure on the integrated covariance matrix, with the following results:

Proposition 4. Suppose the eigenvalues of the integrated covariance matrix
∫ t

0
csds are given by

λ1 = . . . = λg1
> λg1+1 = . . . = λg2

> . . . λgr−1
> λgr−1+1 = . . . = λgr > 0, for 1 ≤ r ≤ d.

Then, we have, for $ ∈ [1/(4− 2γ), 1/2),

1√
∆n

Fλ
[t/∆n]∑

i=0

(∆n
i X)(∆n

i X)ᵀ1{‖∆n
i X‖≤α∆$

n }

− Fλ(∫ t

0

csds

) L−s−→ W̄λ
t ,

where W̄λ is a continuous process defined on an extension of the original probability space, which conditionally

on F , is a continuous centered Gaussian martingale with its covariance matrix given by

E(W̄λ
i,tW̄λ

j,t|F) =

d∑
u,v,k,l=1

∂uvF
λ
i

(∫ t

0

csds

)(∫ t

0

(cuk,scvl,s + cul,scvk,s)ds

)
∂klF

λ
j

(∫ t

0

csds

)
,

∂uvF
λ
i (A) =

1

gi − gi−1

gi∑
k=gi−1+1

OkuOkv.

where O is any orthogonal matrix that satisfies A = OᵀDiag (λ(A))O.

Similarly, we have:

Proposition 5. Suppose $ ∈ [1/(4−2γ), 1/2). For the eigenvector γg corresponding to some simple eigenvalue

λg of
∫ t

0
csds,

1√
∆n

γg
[t/∆n]∑

i=0

(∆n
i X)(∆n

i X)ᵀ1{‖∆n
i X‖≤α∆$

n }

− γg (∫ t

0

csds

) L−s−→ W̄γ
t ,
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where W̄γ is a continuous process defined on an extension of the original probability space, which conditionally

on F , is a continuous centered Gaussian martingale with its covariance matrix given by

E(W̄γ
i,t(W̄

γ
j,t)

ᵀ|F) =

d∑
u,v,k,l=1

∂uvγgi

(∫ t

0

csds

)(∫ t

0

(cuk,scvl,s + cul,scvk,s)ds

)
∂klγgj

(∫ t

0

csds

)
,

∂klγgi (A) = (λg(A)I−A)
+
ik γgl(A).

The corresponding principal component is then defined as γᵀg(Xt −X0). However, this eigenvalue and the

principal component do not satisfy the fundamental relationship between the eigenvalue and the variance of

the principal component:

λg

(∫ t

0

csds

)
6=
[
γᵀg(Xt −X0), γᵀg(Xt −X0)

]c
, (20)

which is a desired property of any sensible PCA procedure. This fact alone makes this second procedure much

less useful than the one we proposed above, based on integrated eigenvalues of the spot covariance. Another

feature that distinguishes this second “PCA” procedure with both the classical one and our realized PCA is

that the asymptotic covariance matrix of eigenvalues of
∫ t

0
csds is no longer diagonal.

An analogy of the relationship between the two PCA procedures is that between integrated quarticity

t
∫ t

0
σ4
sds and the squared integrated volatility (

∫ t
0
σ2
sds)

2. If the covariance matrix is constant, the two

procedures are equivalent but not in general.

4 Simulation Evidence

We now investigate the small sample performance of the estimators in conditions that approximate the em-

pirical setting of PCA for large stock portfolios. In order to generate data with a common factor structure,

we simulate a factor model in which a vector of log-stock prices X follows the continuous-time dynamics

dXt = βtdFt + dZt, (21)

where F is a collection of unknown factors, β is the matrix of factor loadings, and Z is a vector of idiosyncratic

components, which is orthogonal to F . This model is a special case of the general semimartingale model (2).

By construction, the continuous part of the quadratic variation has the following local structure:

[dX, dX]ct = βt[dF, dF ]ctβ
ᵀ
t + [dZ, dZ]ct .

When the idiosyncratic components have smaller magnitude, the dominating eigenvalues of X are close to

the non-zero eigenvalues of βt[dF, dF ]ctβ
ᵀ
t , by Weyl’s inequality. As a result, we should be able to detect the

number of common factors in F from observations on X. That said, our goal here is to conduct nonparametric

PCA rather than to estimate a parametric factor model, for which we need to resort to a large panel of X,

whose dimension increases with the sample size, see, e.g., Bai and Ng (2002), and so (21) is only employed

as the data-generating process on which PCA is employed without any knowledge of the underlying factor

structure.

Specifically, we simulate

dXi,t =

r∑
j=1

βij,tdFj,t + dZi,t, dFj,t = µjdt+ σj,tdWj,t + dJFj,t, dZi,t = γtdBi,t + dJZi,t,
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where i = 1, 2, . . . , d, and j = 1, 2, . . . , r. In the simulations, one of the F s plays the role of the market

factor, so that its associated βs are positive. The correlation matrix of dW is denoted as ρF . We allow for

time-varying σj,t, γt, and βij,t, which evolve according to the following system of equations:

dσ2
j,t = κj(θj − σ2

j,t)dt+ ηjσj,tdW̃j,t + dJσ
2

j,t , dγ2
t = κ(θ − γ2

t )dt+ ηγtdB̄t,

dβij,t =

κ̃j(θ̃ij − βij,t)dt+ ξ̃j
√
βij,tdB̃ij,t if the jth factor is the “market”,

κ̃j(θ̃ij − βij,t)dt+ ξ̃jdB̃ij,t otherwise.
,

where the correlation between dWj,· and dW̃j,· is ρj , {JFj }1≤j≤r and {JZi }1≤i≤d are driven by two Poisson

Processes with arrival rates λF and λZ , respectively. Their jump sizes follow double exponential distributions

with means denoted by µF+, µF−, µZ+, and µZ−, respectively. {Jσ2

j }1≤j≤r co-jumps with JF , and their jump sizes

follow exponential distributions with the mean equal to µσ
2

. All the model parameters are given in Table 1.

They are chosen to be realistic given the empirical characteristics of the cross-section of stock returns and

their volatilities.

Anticipating our empirical application to the S&P 100 Index constituents, we simulate intraday returns

of d = 100 stocks at various frequencies and with horizons T spanning 1 week to 1 month. When r = 3, the

model implies 3 distinct eigenvalues reflecting the local factor structure of the simulated data. The remaining

population eigenvalues are identical, due to idiosyncratic variations. Throughout, we fix kn to be the closest

divisors of [t/∆n] to θ∆
−1/2
n

√
log(d), with θ = 0.5 and d is the dimension of X. Our choice of

√
log(d)

is motivated from the literature on high-dimensional covariance matrix estimation, although our asymptotic

design does not take into account an increasing dimensionality. Other choices of θ, e.g., 0.05 - 0.5, or functions

of d, e.g.,
√
d log d, deliver the same results. To truncate off jumps from spot covariance estimates, we adopt

the usual procedure in the literature, i.e., choosing ui,n = 3(
∫ t

0
cii,sds/t)

0.5∆0.47
n , for 1 ≤ i ≤ d, where

∫ t
0
cii,sds

can be estimated by, for instance, bipower variations.

We then apply the realized PCA procedure. We first examine the curse of dimensionality – how increasing

number of stocks affects the estimation – and how the sampling frequency affects the estimation. In light

of Corollary 1, we estimate 3 simple integrated eigenvalues as well as the average of the remaining identical

eigenvalues, denoted as
∫ t

0
λisds, i = 1, 2, 3, and 4. We report the mean and standard errors of the estimates

as well as the root-mean-square errors of the standardized estimates with d = 5, 10, 15, 20, 30, 50, and 100

stocks, respectively, using returns sampled every ∆n = 5 seconds, 1 minute and 5 minutes over one week and

one month horizons. The results, as shown from Tables 2 - 5, suggest that, as expected, the estimation is more

difficult as the dimensionality increases, but the large amount of high frequency data and in-fill asymptotic

techniques deliver very satisfactory finite sample approximations. The eigenvalues are accurately recovered.

The repeated eigenvalues are estimated with smaller biases and standard errors, due to the extra averaging

taken at the estimation stage. In Tables 6 - 7, we provide estimates for the first eigenvectors. Similar to the

estimation for eigenvalues, the estimates are very accurate, even with 100 stocks.

To further verify the accuracy of the asymptotic distribution in small samples as the sample size increases,

we provide in Figure 1 histograms of the standard estimates of integrated eigenvalues using 30 stocks with

5-second returns. Finally, we examine the finite sample accuracy of the integrated simple eigenvalues, in the

more challenging scenario with 100 stocks sampled every minute, which matches the setup of the empirical

analysis we will conduct below. To verify that the detection of 3 eigenvalues is not an artifact, we vary the

number of common factors in the data generating process from r = 2 to 4, by removing the third factor or

adding another factor that shares the same parameters as the third factor. The histograms are provided in

Figure 2. The results collectively show that the finite sample performance of the method is quite good even

for a 100-stock portfolio with one-minute returns and one-week horizon.
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5 High-Frequency Principal Components in the S&P 100 Stocks

Given the encouraging Monte Carlo results, we now conduct PCA on intraday returns of S&P 100 Index

(OEX) constituents. We collect stock prices over the 2003 - 2012 period from the Trade and Quote (TAQ)

database of the New York Stock Exchange (NYSE).4 Due to entry and exit from the index, there are in total

158 tickers over this 10-year period. We conduct PCA on a weekly basis. One of the key advantages of the

large amount of high frequency data is that we are effectively able to create a ten-year long time series of

eigenvalues and principal components at the weekly frequency by collating the results obtained over each week

in the sample.

After removing those weeks during which the index constituents are switching, we are left with 482 weeks.

To clean the data, for each ticker on each trading day, we only keep the intraday prices from the single

exchange which has the largest number of transaction records. We provide in Figure 3 the quantiles of the

number of transactions between 9:35 a.m. EST and 3:55 p.m. EST, across 100 stocks each day. These stocks

have excellent liquidity over the sampling period. We thereby employ 1-minute subsamples for the most liquid

90 stocks in the index (for simplicity, we still refer to this 90-stock subsample as the S&P 100) in order to

address any potential concerns regarding microstructure noise and asynchronous trading.5 These stocks trade

multiple times per sampling interval and we compute returns using the latest prices recorded within each

sampling interval. Overnight returns are removed so that there is no concern of price changes due to dividend

distributions or stock splits. The 158 time series of cumulative returns are plotted in Figure 4.

5.1 Scree Plot

We report the time series average of the eigenvalue estimates against their order in Figure 5, a plot known in

classical PCA analysis as the “scree plot” (see e.g. Jolliffe (2002)). This plot classically constitutes the main

graphical aid employed to determine the appropriate number of components in empirical applications. The

graph reveals that there are a handful of eigenvalue estimates, three, which are separated from the rest. The

fact that three factors on average explain the cross-sectional variation of stock returns is surprisingly consistent

with the well-established low frequency Fama-French common factor analysis, despite the large differences in

methods, time periods, sample frequencies and length of observation.

We also plot the estimates of the percentage variation explained by the first three integrated eigenvalues in

Figure 6, along with the average variation explained by the remaining eigenvalues. There are substantial time

variation of the first three eigenvalues, all of which are at peak around the recent financial crisis, indicating

an increased level of comovement, which in this context is the definition of systemic risk. The idiosyncratic

factors become relatively less important and even more dominated by the common factors during the crisis.

The first eigenvalue accounts for on average 30-40% of the total variations of the 90 constituents, capturing

the extent of the market variation in the sample. The second and third components together account for an

additional 15%-20% of the total variation. Therefore, there exists significant amount of remaining idiosyncratic

variation, beyond what can be explained by a three-common-factor model. The average variation explained

by the remaining 87 components are around 0.4%-0.6%, which corresponds to the idiosyncratic contributions

relative to the first three principal components.

4While the constituents of the OEX Index change over time, we keep track of the changes to ensure that our choice of stocks

is always in line with the index constituents.
5Estimators that are robust to both noise and asynchronicity are available for integrated covariance estimation in Aı̈t-Sahalia,

Fan, and Xiu (2010), Christensen, Kinnebrock, and Podolskij (2010), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011),

and Shephard and Xiu (2012). Extending the current method to a noisy and asynchronous setting is theoretically interesting but

not empirically necessary for the present paper; it is left for future work.
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Next, we compare the cumulative returns of the first three cumulative principal components. The time

series plots are shown in Figure 7. The empirical correlations among the three components are -0.020, 0.005,

and -0.074, respectively, which agrees with the design that the components are orthogonal. The first principal

component accounts for most of the common variation, and it shares the time series features of the overall

market return. This is further reinforced by the fact that the loadings of all the stocks on the first principal

component, although time-varying, remain positive throughout the sample period, which is not the case for

the additional principal components. It is worth pointing out however that these principal components are

not constrained to be portfolio returns, as their weights at each point in time are nowhere constrained to add

up to one. This means that the first principal component cannot be taken directly to be the market portfolio,

or more generally identified with additional Fama-French or additional mimicking portfolios.

5.2 Biplots

Although PCA is by design not suited to identifying the underlying economic factors corresponding to the

principal components, the time series evidence in Figure 7 suggests that the first principal component captures

the features of the overall market return, as already noted. Can we extract more information about the

economic nature of the principal components? For this purpose, we can use our results to produce biplots (see

Gabriel (1971)) and see which assets line up together in the basis of the principal components. A biplot gives

the relative position of the d variables on a plot where two principal components are the axes. The length of a

vector from the origin pointing towards the position of a variable on the biplot tends to reflect the magnitude

of the variation of the variable. Moreover, vectors associated with similar variables tend to point towards the

same direction, hence a biplot can be used for classification of the assets. While it is possible to compute

biplots for the spot eigenvectors, the biplots for the integrated eigenvectors are more stable.

We report two representative snapshots of the biplots of the first two integrated eigenvectors in Figures

8 (March 7-11, 2005, preceding the crisis) and 9 (March 10-14, 2008, during the crisis, although not at its

most extreme), in order to interpret the second principal component. We identify differently in the figures

the vectors that correspond to financial stocks (identified using the Global Industrial Classification Standard

(GICS) codes). The Federal Reserve made several important announcement during the week of March 10

-14, 2008 to address heightened liquidity pressures of the financial system, including the creation of the Term

Securities Lending Facility, and the approval of a financing arrangement between J.P. Morgan Chase and Bear

Stearns.

We find that the financial sector is clearly separated from the rest of the stocks during March 10-14, 2008,

in sharp contrast with the biplot for the week of March 7 - 11, 2005, during which no such separation occurs.

This suggests that PCA based on low-frequency data is likely to overlook these patterns. Interestingly, we can

also see from the March 2008 biplot that the Lehman Brothers (LEH) stands out, having the largest loadings

on both components. The corresponding scree plots for these two weeks in Figures 10 and 11 both suggest

the presence of at least three factors, but the eigenvalues in March 10-14, 2008 are much larger in magnitude,

consistently with a higher systematic component to asset returns. For each week, the figures report 95%

confidence intervals for the first three eigenvalues computed based on the distribution given in Corollary 1.

6 Conclusions

This paper develops the tools necessary to implement PCA at high frequency, constructing and estimating

realized eigenvalues, eigenvectors and principal components. This development complements the classical

PCA theory in a number of ways. Compared to its low frequency counterpart, PCA becomes feasible over
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short windows of observation (of the order of one week), relatively large dimensions (90 in our application)

and further are free from the need to impose strong parametric assumptions on the distribution of the data,

applying instead to a broad class of semimartingales. The estimators perform well in simulations and reveal

that the joint dynamics of the S&P 100 stocks at high frequency are well explained by a three-factor model,

a result that is broadly consistent with the Fama-French factor model at low frequency, surprisingly so given

the large differences in time scale, sampling and returns horizon.

This paper represents a necessary first step to bring PCA tools to a high frequency setting. Although not

empirically relevant in the context of the analysis above of a portfolio of highly liquid stocks at the one-minute

frequency, the next steps in the development of the theory will likely include the incorporation of noise-robust

and asynchronicity-robust covariance estimation methods. We hope to pursue these extensions in future work.
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Appendix A Mathematical Proofs

Appendix A.1 Proof of Lemma 1

Proof. By the classical Weyl inequalities in e.g., Horn and Johnson (2013) and Tao (2012), we have |λj(A +

ε) − λj(A)| ≤ K ‖ε‖, for all j = 1, 2, . . . , d, where A, ε ∈ M+
d , and K is some constant. This establishes the

Lipchitz property.

Appendix A.2 Proof of Lemma 2

Proof. It is straightforward to show (by the implicit function theorem, see Magnus and Neudecker (1999)

Theorem 8.7) that any simple eigenvalue and its corresponding eigenvector, written as functions of A, λg(A)

and γg(A), are C∞. To calculate their derivatives, note that Aγg = λgγg, hence we have (∂jkA)γg+A(∂jkγg) =

(∂jkλg)γg +λg(∂jkγg). Pre-multiplying γᵀg on both sides yields ∂jkλg = γᵀg(∂jkA)γg = γgjγgk. Rewrite it into

(λgI−A)∂jkγg = (∂jkA)γg − (∂jkλg)γg, which leads to (λgI−A)+(λgI−A)∂jkγg = (λgI−A)+(∂jkA)γg. As

a result, ∂jkγg = (λgI−A)+Jjkγg.

In the case when all eigenvalues are simple, by direct calculation we have

∂jkγgh =
∑
p 6=g

1

λg − λp
γphγpjγgk,

where we use the fact that (γᵀ1 , γ
ᵀ
2 , . . . , γ

ᵀ
d)ᵀA(γ1, γ2, . . . , γd) = Diag(λ(A)). Further,

∂2
jk,lmγgh =−

∑
p 6=g

1

(λg − λp)2
(∂lmλg − ∂lmλp)γphγpjγgk +

∑
p 6=g

1

λg − λp
∂lm

(
γphγpjγgk

)
=−

∑
p 6=g

1

(λg − λp)2

(
γglγgmγphγpjγgk − γplγpmγphγpjγgk

)
+
∑
p 6=g

∑
q 6=p

1

(λg − λp)(λp − λq)
γqlγpmγqhγpjγgk

+
∑
p 6=g

∑
q 6=p

1

(λg − λp)(λp − λq)
γqlγpmγqjγphγgk

+
∑
p 6=g

∑
q 6=g

1

(λg − λp)(λg − λq)
γqkγqlγgmγphγpj ,

which concludes the proof.

Appendix A.3 Proof of Lemma 3

Proof. The proof is by induction. Consider, at first the following optimization problem:

max
γs

∫ u

0

γᵀscsγsds, s.t. γᵀsγs = 1, 0 ≤ s ≤ u ≤ t.

Using a sequence of Lagrange multipliers λs, the problem can be written as solving

csγs = λsγs, and γᵀsγs = 1, for any 0 ≤ s ≤ t.

Hence, the original problem is translated into eigenanalysis.
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Suppose the eigenvalues of cs are ordered as in λ1,s ≥ λ2,s ≥ . . . ≥ λd,s. Note that γᵀscsγs = λs, so that

λs = λ1,s, and γs = γ1,s is one of the corresponding eigenvectors (if λ1,s is not unique), and the maximal

variation is
∫ t

0
λ1,sds.

Suppose that we have found γ1,s, . . . , γk,s, for 1 ≤ k < d and 0 ≤ s ≤ t, the (k+ 1)th principal component

is defined by solving the following problem:

max
γs

∫ u

0

γᵀscsγsds, s.t. γᵀsγs = 1, and γᵀj,scsγs = 0, for 1 ≤ j ≤ k, 0 ≤ u ≤ t.

Using similar technique of Lagrange multipliers, λs, and ν1,s, . . . , νk,s, we find

csγs = λsγs +

k∑
j=1

νj,scsγj,s.

Multiplying on the left γᵀl,s, for some 1 ≤ l ≤ k, we can show that νl,scsγl,s = 0. Indeed,

0 = λl,sγ
ᵀ
l,sγs = γᵀl,scsγs = γᵀl,sλsγs +

k∑
j=1

νj,sγ
ᵀ
l,scsγj,s = νl,sλl,s.

Therefore, since l is an arbitrary number between 1 and k, we have csγs = λsγs. Hence, λs = λk+1,s,

γs = γk+1,s is one of the eigenvectors associated with the eigenvalue λk+1,s. This establishes the first part of

the theorem.

For any càdlàg and adapted process γs,[∫ u

0

γᵀs−dXs,

∫ u

0

γᵀs−dXs

]c
=

∫ t

0

γᵀscsγsds.

Hence the statement follows from the gth-step optimization problem. Note that the validity of the integrals

above is warranted by the continuity of λ given by Lemma 1.

Appendix A.4 Proof of Lemma 4

Proof. The first statement of the proof follows by immediate calculations from Theorem 1.1 in Lewis (1996b)

and Theorem 3.3 in Lewis and Sendov (2001). The second statement is discussed and proved in, e.g., Ball

(1984), Sylvester (1985), and Silhavý (2000). Finally, the last statement on convexity is proved in Davis (1957)

and Lewis (1996a).

Appendix A.5 Proof of Lemma 5

Proof. Obviously, for any 1 ≤ g1 < g2 < . . . < gr ≤ d, the set defined in (4), D(g1, g2, . . . , gr), is an open set in

R+
d /{0}. Define f(x) = |x̄gr |+

∑
i 6=j |x̄gi − x̄gj |, which is a continuous and convex function. It is differentiable

at x if and only if x ∈ D(g1, g2, . . . , gr). Therefore, by Lemma 4, f ◦ λ is convex, and it is differentiable at

A if and only if λ(A) ∈ D(g1, g2, . . . , gr), i.e., A ∈ M(g1, g2, . . . , gr). On the other hand, a convex function

is almost everywhere differentiable, see Rockafellar (1997), which implies that M(g1, g2, . . . , gr) is dense in

M++
d . Moreover,M(g1, g2, . . . , gr) is the pre-image of the open set R+/{0} under a continuous function h◦λ,

where h(x) =
∏
i 6=j |x̄gi − x̄gj ||x̄gr |. Therefore, it is open.
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Appendix A.6 Proof of Theorem 1

Proof. Note that

V (∆n, X;F ) = kn∆n

[t/(kn∆n)]∑
i=0

f
(
λ̂ikn∆n

)
= kn∆n

[t/(kn∆n)]∑
i=0

(f ◦ λ)(ĉikn∆n
).

By Assumption 2 and Lemma 4, f ◦ λ is a continuous vector-valued function. Moreover, for c ∈ M+
d ,

‖f ◦ λ(c)‖ ≤ K(1 + ‖λ(c)‖ζ) ≤ K(1 + ‖c‖ζ). Below we prove this theorem for any spectral function F that is

bounded by K(1 + ‖c‖ζ).
We start with a function F bounded by K everywhere. We extend the definition of ĉ to the entire interval

[0, t] by letting:

ĉs = ĉ(i−1)kn∆n
, for (i− 1)kn∆n ≤ s < ikn∆n.

Note that for any t > 0, we have

E

∥∥∥∥V (∆n, X;F )−
∫ t

0

F (cs)ds

∥∥∥∥
≤kn∆nE

∥∥F (ĉ[t/(kn∆n)]kn∆n
)
∥∥+

∫ [t/(kn∆n)]kn∆n

0

E ‖F (ĉs)− F (cs)‖ ds+

∫ t

[t/(kn∆n)]kn∆n

E ‖F (cs)‖ ds

≤Kkn∆n +

∫ [t/(kn∆n)]kn∆n

0

E ‖F (ĉs)− F (cs)‖ ds.

By the fact that ĉs − cs
p−→ 0, it follows that E ‖F (ĉs)− F (cs)‖ → 0, which is bounded uniformly in s and n

because F is bounded. Therefore, by the dominated convergence theorem, we obtain the desired convergence.

Next we show the convergence holds under the polynomial bound on F . Denote ψ to be a C∞ function on

R+ such that 1[1,∞)(x) ≤ ψ(x) ≤ 1[1/2,∞](x). Let ψε(c) = ψ(‖c‖ /ε), and ψ′ε(c) = 1−ψε(c). Since the function

F · ψ′ε is continuous and bounded, the above argument implies that V (∆n, X;F · ψ′ε)
p−→
∫ t

0
F · ψ′ε(cs)ds, for

any fixed ε. When ε is large enough, we have
∫ t

0
F · ψ′ε(cs)ds =

∫ t
0
F (cs)ds by localization, since cs is locally

bounded. On the other hand, F · ψε(c) ≤ K ‖c‖
ζ

1{‖c‖≥ε}, for ε > 1. So it remains to show that

lim
ε→∞

lim sup
n→∞

E

kn∆n

[t/(kn∆n)]∑
i=0

‖ĉikn∆n
‖ζ 1{‖ĉikn∆n‖>ε}

 = 0.

By (9.4.7) of Jacod and Protter (2011), there exists some sequence an going to 0, such that

E
(
‖ĉikn∆n

‖ζ 1{‖ĉikn∆n‖>ε}|Fikn∆n

)
≤ K

εζ
+Kan∆(1−ζ+$(2ζ−γ))

n ,

which establishes the desired result.

Appendix A.7 Proof of Proposition 1

Proof. We divide the proof into several steps. To start, we need some additional notations. Let X ′ and c′

denote the continuous parts of the processes X and c, respectively. Also, we introduce ĉ′ikn∆n
to denote the

estimator constructed similarly as in (5) with X replaced by X ′ and without truncation, namely

ĉ′ikn∆n
=

1

kn∆n

kn∑
j=1

(∆n
ikn+jX

′)(∆n
ikn+jX

′)ᵀ.
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In addition, λ̂
′
ikn∆n

corresponds to the vector of eigenvalues of ĉ′ikn∆n
, and

V ′(∆n, X;F ) = kn∆n

[t/(kn∆n)]∑
i=0

f
(
λ̂
′
ikn∆n

)
.

We also define

c̄ikn∆n =
1

kn∆n

∫ (i+1)kn∆n

ikn∆n

csds, βnikn = ĉ′ikn∆n
− cikn∆n , αnl = (∆n

l X)(∆n
l X)ᵀ − cl∆n∆n, and

ηni =

(
E

(
sup

i∆n≤u≤i∆n+kn∆n

|bi∆n+u − bi∆n
|2|Fi∆n

))1/2

.

We first collect some known estimates in the next lemma:

Lemma 6. Under the assumptions of Proposition 1, we have

E

(
sup

0≤u≤s
‖ct+u − ct‖q |Ft

)
≤ Ks1∧q/2, ‖E (ct+s − ct|Ft)‖ ≤ Ks, (A.1)

E
∥∥∥(∆n

i X)(∆n
i X)ᵀ1{‖∆n

i X‖≤un} − (∆n
i X
′)(∆n

i X
′)ᵀ
∥∥∥ ≤ Kan∆(2−r)$+1

n , for some an → 0, (A.2)

E
(∥∥ĉikn∆n

− ĉ′ikn∆n

∥∥q) ≤ Kan∆(2q−r)$+1−q
n , for some q ≥ 1, and an → 0, (A.3)

E
∥∥ĉ′ikn∆n

− c̄ikn∆n

∥∥p ≤ Kk−p/2n , for some p ≥ 1, (A.4)

E (‖αni ‖
q |Fi∆n

) ≤ K∆q
n, for some q ≥ 0, (A.5)

‖E (αni |Fi∆n
)‖ ≤ K∆3/2

n

(
∆1/2
n + ηni

)
, (A.6)∣∣∣E(αn,jki αn,lmi −

(
cjli∆n

ckmi∆n
+ cjmi∆n

ckli∆n

)
∆2
n|Fi∆n

)∣∣∣ ≤ K∆5/2
n , (A.7)∥∥E

(
βnikn |Fikn∆n

)∥∥ ≤ K∆n
1/2
(
kn∆1/2

n + ηni

)
, (A.8)

E
(∥∥βnikn∥∥q |Fikn∆n

)
≤ K

(
k−q/2n + kn∆n

)
, for some q ≥ 2, (A.9)

∆nE

[t/∆n]∑
i=1

ηni → 0. (A.10)

Proof of Lemma 6. These estimates are given by Lemma A.2 in Li and Xiu (2014), (4.3), (4.8), (4.10), (4.11),

(4.12), (4.18), Lemmas 4.2 and 4.3 of Jacod and Rosenbaum (2013), and Lemma 13.2.6 of Jacod and Protter

(2011).

Now we return to the proof of Proposition 1.

1) We show that we can restrict the domain of function f to some compact set, where both the estimates

{ĉikn∆n}i=0,1,2,...,[t/(kn∆n)] and the sample path of {cs}s∈[0,t] take values. By (A.4), we have for p ≥ 1,

E
∥∥ĉ′ikn∆n

− c̄ikn∆n

∥∥p ≤ Kk−p/2n .

Therefore, by the maximal inequality, we deduce, by picking p > 2/ς − 2,

E

∣∣∣∣∣ sup
0≤i≤[t/(kn∆n)]

∥∥ĉ′ikn∆n
− c̄ikn∆n

∥∥p∣∣∣∣∣ ≤ K∆−1
n k−p/2−1

n → 0,

therefore, sup0≤i≤[t/(kn∆n)]

∥∥ĉ′ikn∆n
− c̄ikn∆n

∥∥ = op(1). Moreover, by (A.2) we have

E

∣∣∣∣∣ sup
0≤i≤[t/(kn∆n)]

∥∥ĉikn∆n
− ĉ′ikn∆n

∥∥∣∣∣∣∣ ≤ 1

kn∆n

[t/∆n]−kn∑
i=0

E
∥∥∥(∆n

i X)(∆n
i X)ᵀ1{‖∆n

i X‖≤un} − (∆n
i X
′)(∆n

i X
′)ᵀ
∥∥∥
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≤Kan∆(2−γ)$−1+ς
n → 0.

As a result, we have as ∆n → 0,

sup
0≤i≤[t/(kn∆n)]

‖ĉikn∆n
− c̄ikn∆n

‖ p−→ 0. (A.11)

Note that by Assumption 3, for 0 ≤ s ≤ t, cs ∈ C ∩M∗(g1, g2, . . . , gr), where C is a convex and open set.

Therefore, {c̄ikn∆n}i=0,1,2,...,[t/(kn∆n)] ∈ C by convexity. For n large enough, {ĉikn∆n}i=0,1,2,...,[t/(kn∆n)] ∈
C, with probability approaching 1, by (A.11). Since C̄ ⊂ M(g1, g2, . . . , gr), we can restrict the domain

of f to the compact set λ(C̄) ⊂ D(g1, g2, . . . , gr), in which f is C∞ with bounded derivatives. Moreover,

because λgj (·), 1 ≤ j ≤ r are continuous functions, min1≤j≤r−1(λgj (·)− λgj+1
(·)) is hence continuous, so that

infc∈C{min1≤j≤r−1(λgj (c)− λgj+1(c))} ≥ ε > 0. It follows from Lemma 4 and Theorem 3.5 of Silhavý (2000)

that F (·) is C∞ with bounded derivatives on C.
2) Next, we have

‖V (∆n, X;F )− V ′(∆n, X;F )‖ ≤ kn∆n

[t/(kn∆n)]∑
i=0

∥∥F (ĉikn∆n
)− F (ĉ′ikn∆n

)
∥∥

≤ Kkn∆n

[t/(kn∆n)]∑
i=0

∥∥ĉikn∆n
− ĉ′ikn∆n

∥∥ .
By (A.3), we have

E
(∥∥ĉikn∆n

− ĉ′ikn∆n

∥∥) ≤ Kan∆(2−γ)$
n ,

where an is some sequence going to 0, as n→∞, which implies

V (∆n, X;F )− V ′(∆n, X;F ) = Op(an∆(2−r)$
n ). (A.12)

As a result, given the conditions on $, we have

kn (V (∆n, X;F )− V ′(∆n, X;F )) = op(1),

hence we can proceed with V ′ in the sequel.

3) Then we show for each 1 ≤ h ≤ d, we have

kn

(
V ′(∆n, X;Fh)− kn∆n

[t/(kn∆n)]∑
i=0

(
Fh(cikn∆n)

− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmFh(cikn∆n) (cjl,ikn∆nckm,ikn∆n + cjm,ikn∆nckl,ikn∆n)

))
= op(1).

where Fh is the hth entry of the vector-valued function F .

To prove it, we decompose the left hand side into 4 terms:

Rn1,h =k2
n∆n

[t/(kn∆n)]∑
i=0

(
Fh(cikn∆n

+ βnikn)− Fh(cikn∆n
)−

d∑
l,m=1

∂lmFh(cikn∆n
)βn,lmikn

− 1

2

d∑
j,k,l,m=1

∂2
jk,lmFh(cikn∆n

)βn,lmikn
βn,jkikn

)
, (A.13)
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Rn2,h =k2
n∆n

[t/(kn∆n)]∑
i=0

1

2

d∑
j,k,l,m=1

∂2
jk,lmFh(cikn∆n

)

(
βn,lmikn

βn,jkikn
− 1

kn
(cjl,ikn∆n

ckm,ikn∆n
+ cjm,ikn∆n

ckl,ikn∆n
)

)
,

(A.14)

Rn3,h =kn∆n

[t/(kn∆n)]∑
i=0

d∑
l,m=1

∂lmFh(cikn∆n)

kn∑
u=1

(clm,(ikn+u)∆n
− clm,ikn∆n), (A.15)

Rn4,h =kn

[t/(kn∆n)]∑
i=0

d∑
l,m=1

∂lmFh(cikn∆n)

kn∑
u=1

αn,lmikn+u, (A.16)

We first consider Rn1,h. By (A.9), we have

E(|Rn1,h|) ≤ Kk2
n∆n

[t/(kn∆n)]∑
i=0

E
∥∥βnikn∥∥3 ≤ Kk2

n∆n

[t/(kn∆n)]∑
i=0

(k−3/2
n + kn∆n)

≤ Kk2
n∆n +Kk−1/2

n → 0.

As to Rn2,h, we denote the term inside the summation of Rn2,h as νnikn . So we have

Rn2,h = k2
n∆n

[t/(kn∆n)]∑
i=0

(
νnikn − E(νnikn |Fikn∆n

) + E(νnikn |Fikn∆n
)
)
.

By (A.8), we have

|E(νnikn |Fikn∆n)| ≤ K
√

∆n.

On the other hand, by (A.9), we can derive

E
(
νnikn − E(νnikn |Fikn∆n)

)2 ≤ Kkn∆n.

Then Doob’s inequality implies that

E

sup
s≤t

∣∣∣∣∣∣
[s/(kn∆n)]∑

i=0

(
νnikn − E(νnikn |Fikn∆n

)
)∣∣∣∣∣∣
 ≤ Kt.

As a result,

E
(
|Rn2,h|

)
≤k2

n∆nE

sup
s≤t

∣∣∣∣∣∣
[s/(kn∆n)]∑

i=0

(
νnikn − E(νnikn |Fikn∆n

)
)∣∣∣∣∣∣
+ k2

n∆n

[t/(kn∆n)]∑
i=0

∣∣E(νnikn |Fikn∆n
)
∣∣

≤Kk2
n∆n +Kkn

√
∆n → 0.

The proof for E(|Rn3,h|) → 0 is similar. Denote the term inside the summand as ξnikn . By (A.1) and the

Cauchy-Schwarz inequality, we have

|E(ξnikn |Fikn∆n
)| ≤ Kk2

n∆n, E
(
|ξnikn |

2|Fikn∆n

)
≤ Kk3

n∆n.

By Doob’s inequality again,

E
(
|Rn3,h|

)
≤ kn∆n

[t/(kn∆n)]∑
i=0

E
(∣∣E (ξnikn |Fikn∆n

)∣∣)+ kn∆n

[t/(kn∆n)]∑
i=0

E
(
|ξnikn |

2
)1/2
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≤ Kk2
n∆n → 0.

For Rn4,h, it can be shown in the proof of Theorem 2 below that Rn4,h = Op(kn
√

∆n) = op(1).

4) Finally, it is sufficient to show that

kn

[t/(kn∆n)]∑
i=0

(∫ (i+1)kn∆n

ikn∆n

Fh(cikn∆n
)ds−

∫ (i+1)kn∆n

ikn∆n

Fh(cs)ds

)
−
∫ t

[t/(kn∆n)]kn∆n

Fh(cs)ds

 p−→ 0,

as the similar result holds if we replace Fh(cikn∆n
) by ∂2

jk,lmFh(cikn∆n
) (cjl,ikn∆n

ckm,ikn∆n
+ cjm,ikn∆n

ckl,ikn∆n
).

Since Fh is bounded, the second term is bounded by Kk2
n∆n → 0. As to the first term, we notice that

ζnikn =

∫ (i+1)kn∆n

ikn∆n

Fh(cikn∆n
)ds−

∫ (i+1)kn∆n

ikn∆n

Fh(cs)ds

is measurable with respect to F(i+1)kn∆n
, and that

|E
(
ζnikn |Fikn∆n

)
| ≤ K(kn∆n)2, E

(
|ζnikn |

2|Fikn∆n

)
≤ K(kn∆n)3,

so the same steps as in (2) and (3) yield the desired results.

Appendix A.8 Proof of Theorem 2

Proof. To start, we decompose

1√
∆n

Ṽ (∆n, X;F )− kn∆n

[t/(kn∆n)]∑
i=0

F (cikn∆n
)

 =
1

kn
√

∆n

(Rn1 +Rn2 +Rn3 +Rn4 +Rn5 +Rn6 ) , (A.17)

where Rni =
(
Rni,1, R

n
i,2, . . . , R

n
i,d

)ᵀ
, for i = 1, 2, 3, 4, and 5, with Rn1,h, Rn2,h, Rn3,h and Rn4,h given by equations

(A.13) - (A.16). In addition, Rn5,h and Rn6,h are given by

Rn5,h =
kn∆n

2

[t/(kn∆n)]∑
i=0

d∑
j,k,l,m=1

(
∂2
jk,lmFh(cikn∆n

) (cjl,ikn∆n
ckm,ikn∆n

+ cjm,ikn∆n
ckl,ikn∆n

)

−∂2
jk,lmFh(ĉ′ikn∆n

)
(
ĉ′jl,ikn∆n

ĉ′km,ikn∆n
+ ĉ′jm,ikn∆n

ĉ′kl,ikn∆n

))
.

Rn6,h =
kn∆n

2

[t/(kn∆n)]∑
i=0

d∑
j,k,l,m=1

(
∂2
jk,lmFh(ĉ′ikn∆n

)
(
ĉ′jl,ikn∆n

ĉ′km,ikn∆n
+ ĉ′jm,ikn∆n

ĉ′kl,ikn∆n

)
−∂2

jk,lmFh(ĉikn∆n) (ĉjl,ikn∆n ĉkm,ikn∆n + ĉjm,ikn∆n ĉkl,ikn∆n)
)

+ kn (V (∆n, X;F )− V ′(∆n, X;F )) .

We have shown in the proof of Proposition 1 that Rni = Op(k
2
n∆n), for i = 1, 2, 3. Therefore, these terms do

not contribute to the asymptotic variance of Ṽ ′(∆n, X;F ).

Next, we show that Rn5,h is also op(kn
√

∆n). By (A.9) and the mean-value theorem, we have

E|Rn5,h| ≤Kkn∆n

[t/(kn∆n)]∑
i=0

E
∥∥cikn∆n − ĉ′ikn∆n

∥∥ ≤ K(k−1/2
n + kn∆n) = op(kn

√
∆n).

As to Rn6,h, by (A.12) and the mean-value theorem, we have

E|Rn6,h| ≤Kkn∆n

[t/(kn∆n)]∑
i=0

E
∥∥ĉikn∆n

− ĉ′ikn∆n

∥∥ = Op(an∆(2−r)$
n ) = op(kn

√
∆n).
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Hence, $ ≥ 1−ς
2−γ >

1
4−2γ is sufficient to warrant the desired rate.

As a result, except for the term that is related to Rn4 , all the remainder terms on the right-hand side of

(A.17) vanish. We write Rn4 as

Rn4 = kn

[t/(kn∆n)]kn∑
i=1

d∑
l,m=1

ωn,lmi αn,lmi , where ωn,lmi = ∂lmF (c[(i−1)/kn]kn∆n
).

where ωn,lmi is a vector measurable with respect to F(i−1)∆n
, and ‖ωni ‖ ≤ K. To prove the stable convergence

result, we start with

1√
∆n

E

∥∥∥∥∥∥
[t/(kn∆n)]kn∑

i=0

ωn,lmi E
(
αn,lmi |Fi∆n

)∥∥∥∥∥∥ ≤ 1√
∆n

[t/(kn∆n)]kn∑
i=0

K∆3/2
n (

√
∆n + E (ηni ))→ 0,

where we use (A.6) and (A.10). Moreover, by (A.5), we have

1

∆2
n

E

[t/(kn∆n)]kn∑
i=0

‖ωni ‖
4

E
(
‖αni ‖

4 |Fi∆n

) ≤ K∆n → 0.

Also, similar to (4.18) in Jacod and Rosenbaum (2013), we have E
(
αn,lmi ∆n

i N |Fi∆n

)
= 0, for any N that is

an arbitrary bounded martingale orthogonal to W , which readily implies

1√
∆n

[t/(kn∆n)]kn∑
i=0

ωn,lmi E
(
αn,lmi ∆n

i N |Fi∆n

)
p−→ 0.

Finally, note that for any 1 ≤ p, q ≤ r, by (A.7),

1

∆n

[t/(kn∆n)]kn∑
i=0

|ωn,jki,p ωn,lmi,q |
∥∥∥E
(
αn,jki αn,lmi |Fi∆n

)
− (ci∆n,jlci∆n,km + ci∆n,jmci∆n,kl) ∆2

n

∥∥∥ ≤ K∆1/2
n ,

which implies

1

∆n

[t/(kn∆n)]kn∑
i=0

ωn,jki,p ωn,lmi,q E
(
αn,jki αn,lmi |Fi∆n

)

=
1

∆n

[t/(kn∆n)]kn∑
i=0

ωn,jki,p ωn,lmi,q (ci∆n,jlci∆n,km + ci∆n,jmci∆n,kl) ∆2
n

p−→
∫ t

0

∂jkFp(cs)∂lmFq(cs) (cs,jlcs,km + cs,jmcs,kl) .

Finally, by Theorem IX.7.28 of Jacod and Shiryaev (2003), we establish

1

kn
√

∆n

R4
n
L−s−→Wt,

where Wt is conditional Gaussian on an extension of the probably space, with a covariance matrix

E (Wp,tWq,t|F) =

d∑
j,k,l,m=1

∫ t

0

∂jkFp(cs)∂lmFq(cs) (cs,jlcs,km + cs,jmcs,kl) .
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Appendix A.9 Proof of Proposition 2

Proof. As we have seen from the above proof, we have for any c ∈ C,

‖∂jkFp(c)∂lmFq(c) (cjlckm + cjmckl)‖ ≤ K(1 + ‖c‖2),

which, combined with the same argument in the proof of Theorem 1, establishes the desired result.

Appendix A.10 Proof of Corollary 1

Proof. The first statement on consistency follows immediately from Theorem 1, as Assumption 2 holds with

ζ = 1. Next, we prove the central limit result. For any 1 ≤ p ≤ d, we define fλp as,

fλp (x̄) =
1

gp − gp−1

gp∑
j=gp−1+1

x̄j ,

hence we have

∂fλp (x̄) =
1

gp − gp−1

gp∑
v=gp−1+1

ev, ∂2fλp (x̄) = 0,

and fλ is C∞ and Lipchitz. By Lemma 4 we can derive

∂jkF
λ
p (cs) =

d∑
u=1

Ouj∂uf
λ
p (λ(cs))Ouk =

1

gp − gp−1

d∑
u=1

gp∑
v=gp−1+1

Ouje
v
uOuk =

1

gp − gp−1

gp∑
v=gp−1+1

OvjOvk.

Therefore, the asymptotic covariance matrix is given by∫ t

0

d∑
j,k,l,m=1

∂jkF
λ
p (cs)∂lmF

λ
q (cs) (cjl,sckm,s + cjm,sckl,s) ds

=
1

gp − gp−1

1

gq − gq−1

∫ t

0

d∑
j,k,l,m=1

gp∑
v=gp−1+1

gq∑
u=gq−1+1

OvjOvkOulOum (cjl,sckm,s + cjm,sckl,s) ds

=
2

(gp − gp−1)(gq − gq−1)

∫ t

0

d∑
l,m=1

gp∑
v=gp−1+1

gq∑
u=gq−1+1

OvlOvmOulOumλ
2
v,sds

=
2

(gp − gp−1)(gq − gq−1)

∫ t

0

gp∑
v=gp−1+1

gq∑
u=gq−1+1

δu,vλ
2
v,sds

=
2δp,q

(gp − gp−1)

∫ t

0

λ2
gp,sds. (A.18)

Next, we calculate the bias-correction term. Recall that the estimator is given by

Fλp (ĉikn∆n
) =

1

gp − gp−1

gp∑
v=gp−1+1

λ̂v,ikn∆n
,

where λ̂v,ikn∆n
is the corresponding eigenvalue of the sample covariance matrix ĉikn∆n

. Although ĉikn∆n
and

cikn∆n may have different eigenstructure, it is easy to verify that the functional forms of the second order

derivative of Fλp evaluated at both points turn out to be the same, so here we only provide the calculations

based on ĉikn∆n
. Since almost surely, sample eigenvalues are simple, it implies from Lemma 4 that

∂2
jk,lmF

λ
p (ĉikn∆n) =

d∑
u,v=1

Af
λ
p
uv(λ(ĉikn∆n))ÔulÔujÔvkÔvm
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=
1

gp − gp−1

gp∑
h=gp−1+1

d∑
u,v=1,u6=v

ehu − ehv
λ̂u,i∆n

− λ̂v,i∆n

ÔulÔujÔvkÔvm

=
1

gp − gp−1

gp∑
h=gp−1+1

d∑
u=1,u 6=h

1

λ̂h,ikn∆n
− λ̂u,ikn∆n

(
ÔulÔujÔhkÔhm + ÔhlÔhjÔukÔum

)
,

where Ô is the orthogonal matrix such that Ôĉikn∆nÔ
ᵀ = Diag(λ(ĉikn∆n)). The dependence of Ô on ikn∆n

is omitted for brevity.

To facilitate the implementation, we consider the matrix λ̂h,ikn∆n
I− ĉikn∆n

. Note that

Diag(λ̂h,ikn∆n − λ̂1,ikn∆n , λ̂h,ikn∆n − λ̂2,ikn∆n , . . . , λ̂h,ikn∆n − λ̂d,ikn∆n) = Ô(λ̂h,ikn∆nI− ĉikn∆n)Ôᵀ,

hence we have(
λ̂h,ikn∆n

I− ĉikn∆n

)+

= ÔᵀDiag

(
1

λ̂h,ikn∆n − λ̂1,ikn∆n

,
1

λ̂h,ikn∆n − λ̂2,ikn∆n

, . . . , 0, . . .
1

λ̂h,ikn∆n − λ̂d,ikn∆n

)
Ô.

As a result, we obtain

(
λ̂h,ikn∆nI− ĉikn∆n

)+

km
=

d∑
u=1,u6=p

1

λ̂h,ikn∆n
− λ̂u,ikn∆n

ÔukÔum,

Therefore, we have

∂2
jk,lmF

λ
p (ĉikn∆n

) =
1

gp − gp−1

gp∑
h=gp−1+1

Ôhk

(
λ̂h,ikn∆n

I− ĉikn∆n

)+

jl
Ôhm + Ôhj

(
λ̂h,ikn∆n

I− ĉikn∆n

)+

km
Ôhl.

Now we can calculate the following term, which is used for bias-correction:

d∑
j,k,l,m=1

∂2
jk,lmF

λ
p (ĉi∆n

) (ĉjl,i∆n
ĉkm,i∆n

+ ĉjm,i∆n
ĉkl,i∆n

)

=
1

gp − gp−1

gp∑
h=gp−1+1

d∑
j,k,l,m=1

(
Ôhk

(
λ̂h,ikn∆nI− ĉikn∆n

)+

jl
Ôhm + Ôhj

(
λ̂h,ikn∆nI− ĉikn∆n

)+

km
Ôhl

)
· (ĉjl,ikn∆n

ĉkm,ikn∆n
+ ĉjm,ikn∆n

ĉkl,ikn∆n
)

=
2

gp − gp−1

gp∑
h=gp−1+1

λ̂h,ikn∆n
Tr

((
λ̂h,ikn∆n

I− ĉikn∆n

)+

ĉikn∆n

)
. (A.19)

The last equality uses the following observation:6

(λ̂h,ikn∆nI− ĉikn∆n)+Ôᵀ
h,· = 0,

which concludes the proof of (ii). The proof of (iii) uses the same calculations as above. Note that we can

apply Theorem 2 with only Assumption 4, because the spectral function here only depends on λg.

6See page 160 of Magnus and Neudecker (1999).
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Appendix A.11 Proof of Proposition 3

Proof. By Lemma 5 and the uniform convergence of ĉikn∆n
− c̄ikn∆n

to 0 established above, we can restrict the

domain of γg(·) to the set C, in which it is C∞ with bounded derivatives. By Theorem 21 of Protter (2004),

we have

[t/(kn∆n)]−1∑
i=1

γᵀg,ikn∆n
(X(i+1)kn∆n

−Xikn∆n)
u.c.p
=⇒

∫ t

0

γg,s−dXs.

Therefore, it remains to show that

[t/(kn∆n)]−1∑
i=1

(
γ̂ᵀg,(i−1)kn∆n

− γᵀg,ikn∆n

)
(X(i+1)kn∆n

−Xikn∆n)
u.c.p
=⇒ 0.

Define a F(i+1)kn∆n
-measurable function:

ξikn =
(
γ̂ᵀg,(i−1)kn∆n

− γᵀg,ikn∆n

)
(X(i+1)kn∆n

−Xikn∆n
).

By standard estimates in (A.1) with c replaced by X, (A.3), and (A.9),

E|E
(
ξikn

∣∣Fikn∆n)| =E|γ̂g,(i−1)kn∆n
− γg,ikn∆n

||E
(
(X(i+1)kn∆n

−Xikn∆n)|Fikn∆n

)
|

≤KE|ĉ(i−1)kn∆n
− cikn∆n |(kn∆n)

≤K
(

(kn∆n)1/2 + an∆(2−γ)$
n +

√
k−1
n + kn∆n

)
(kn∆n)

Moreover, we have by the same estimates above,

E
(
|ξikn |

2|Fikn∆n

)
≤ (kn∆n + an∆(4−γ)$−1

n + k−1
n + kn∆n)kn∆n.

Finally, using Doob’s inequality, and measurability of ξikn , we obtain

E

 sup
0≤s≤t

|
[s/(kn∆n)]−1∑

i=1

ξikn |


≤

[t/(kn∆n)]−1∑
i=1

E|E
(
ξikn

∣∣Fikn∆n
)|+

[t/(kn∆n)]−1∑
i=1

E
(
|ξikn |

2|Fikn∆n

)1/2

≤K
(

(kn∆n)1/2 + an∆(2−γ)$
n +

√
k−1
n + kn∆n

)
+K(kn∆n + an∆(4−γ)$−1

n + k−1
n + kn∆n)1/2

→0,

because (4− γ)$ ≥ 1 under our assumptions on $ and ς, which establishes the proof.

Appendix A.12 Proof of Corollary 2

Proof. The (p, q) entry of the asymptotic covariance matrix is given by∫ t

0

d∑
j,k,l,m=1

∂jkγgp,s∂lmγgq,s (cjl,sckm,s + cjm,sckl,s) ds

=

∫ t

0

d∑
j,k,l,m=1

(λg,sI− cs)+
pj(λg,sI− cs)

+
qlγgk,sγgm,s (cjl,sckm,s + cjm,sckl,s) ds
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=

∫ t

0

d∑
j,l=1

(λg,sI− cs)+
pj(λg,sI− cs)

+
ql

(
λg,scjl + λ2

g,sγgl,sγgj,s
)
ds

=

∫ t

0

λg,s
(
(λg,sI− cs)+cs(λg,sI− cs)+

)
p,q
ds,

where we use (λg,sI − cs)+γg,s = 0, and
∑d
k=1 γgk,sckm,s = λg,sγgm,s. To calculate the asymptotic bias, we

note that the ĉs has only simple eigenvalues almost surely. Denote λ̂h and γ̂h as the corresponding eigenvalue

and eigenvector. We omit the dependence on time s to simplify the notations. By Lemma 2, we obtain

d∑
j,k,l,m=1

∂2
jk,lmγ̂gh(ĉjlĉkm + ĉjmĉkl)

=− 2
∑
p 6=g

λ̂pλ̂g

(λ̂g − λ̂p)2

d∑
l,m=1

γ̂2
glγ̂pmγ̂phγ̂gm +

∑
p 6=g

λ̂pλ̂g

(λ̂g − λ̂p)2

 d∑
l,m=1

γ̂2
plγ̂gmγ̂phγ̂pm +

d∑
l,m=1

γ̂2
pmγ̂glγ̂plγ̂ph


+
∑
p 6=g

∑
q 6=p

λ̂pλ̂g

(λ̂g − λ̂p)(λ̂p − λ̂q)

 d∑
l,m=1

γ̂qlγ̂plγ̂pmγ̂gmγ̂qh +

d∑
l,m=1

γ̂2
pmγ̂glγ̂qlγ̂qh


+
∑
p 6=g

∑
q 6=p

λ̂qλ̂g

(λ̂g − λ̂p)(λ̂p − λ̂q)

 d∑
l,m=1

γ̂2
qlγ̂gmγ̂phγ̂pm +

d∑
l,m=1

γ̂qmγ̂glγ̂qlγ̂pmγ̂ph


+
∑
p 6=g

∑
q 6=g

λ̂pλ̂q

(λ̂g − λ̂p)(λ̂g − λ̂q)

 d∑
l,m=1

γ̂pmγ̂
2
qlγ̂gmγ̂ph +

d∑
l,m=1

γ̂qmγ̂plγ̂qlγ̂gmγ̂ph


=−

∑
p 6=g

λ̂pλ̂g

(λ̂g − λ̂p)2
γ̂gh.

Since γg(·) is a C∞ function, it is straightforward using the proof of Theorem 2 that the desired CLT holds,

even though γg(·) is not a spectral function.

Appendix A.13 Proof of Propositions 4 and 5

Proof. This follows by applying the “delta” method, using Lemma 2 and Theorem 13.2.4 in Jacod and Protter

(2011).
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Appendix B Figures and Tables

κj θj ηj ρj µj κ̃j θ̃i,j ξ̃j
j = 1 3 0.05 0.3 -0.6 0.05 1 U [0.25, 1.75] 0.5
j = 2 4 0.04 0.4 -0.4 0.03 2 N (0, 0.52) 0.6
j = 3 5 0.03 0.3 -0.25 0.02 3 N (0, 0.52) 0.7

λF µF+/− λZ µZ+/− µσ
2

ρF12 ρF13 ρF23

1/t 4
√

∆ 2/t 6
√

∆
√

∆ 0.05 0.1 0.15
κ θ η
4 0.3 0.06

Table 1: Parameters in Monte Carlo Simulations

Note: In this table, we report the parameter values used in the simulations. The constant matrix θ̃i,j is generated
randomly from the described distribution, and is fixed throughout all replications. The dimension of Xt is 100, whereas
the dimension of Ft is 3. ∆ is the sampling frequency, and t is the length of the time window. The number of Monte
Carlo replications is 1,000.
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1 Week, 5 Seconds 1 Week, 1 Minute
# Stocks True Bias Stdev True Bias Stdev

5 0.4686 -0.0001 0.0075 0.4703 0.0007 0.0152
10 0.6489 0.0001 0.0110 0.6552 -0.0014 0.0223
15 0.8927 -0.0004 0.0149 0.8975 -0.0011 0.0296
20 1.3044 0.0003 0.0225 1.3148 -0.0018 0.0424
30 2.1003 -0.0002 0.0356 2.1134 -0.0033 0.0688
50 2.9863 0.0002 0.0514 3.0104 -0.0054 0.1002
100 6.6270 -0.0004 0.1141 6.6732 -0.0127 0.2179

1 Week, 5 Minutes 1 Month, 5 Minutes
5 0.4879 0.0107 0.0452 0.5642 0.0006 0.0247
10 0.6839 0.0084 0.0574 0.7143 -0.0024 0.0258
15 0.9397 0.0128 0.0724 1.0167 -0.0024 0.0382
20 1.3765 0.0130 0.1076 1.3882 -0.0041 0.0503
30 2.2157 0.0210 0.1670 2.2383 -0.0073 0.0806
50 3.1554 0.0267 0.2410 3.1518 -0.0125 0.1155
100 7.0000 0.0552 0.5314 6.9632 -0.0270 0.2451

Table 2: Simulation Results: First Eigenvalue Estimation

Note: In this table, we report the summary statistics of 1,000 Monte Carlo simulations for estimating the first integrated
eigenvalue. Column “True” corresponds to the average of the true integrated eigenvalue; Column “Bias” corresponds
to the mean of the estimation error; Column “Stdev” is the standard deviation of the estimation error.

1 Week, 5 Seconds 1 Week, 1 Minute
# Stocks True Bias Stdev True Bias Stdev

5 0.3145 0.00004 0.0051 0.3173 0.0003 0.0110
10 0.4268 -0.0001 0.0071 0.4289 0.0006 0.0146
15 0.5531 -0.0003 0.0086 0.5572 0.0004 0.0188
20 0.6517 -0.0008 0.0103 0.6556 -0.0006 0.0215
30 0.9186 -0.0015 0.0144 0.9251 -0.0017 0.0305
50 1.2993 -0.0017 0.0205 1.3080 -0.0026 0.0458
100 2.3273 -0.0041 0.0361 2.3441 -0.0065 0.0766

1 Week, 5 Minutes 1 Month, 5 Minutes
# Stocks True Bias Stdev True Bias Stdev

5 0.3255 0.0020 0.0269 0.3639 -0.0003 0.0189
10 0.4384 0.0028 0.0379 0.4469 -0.0003 0.0186
15 0.5751 0.0014 0.0427 0.6524 -0.0017 0.0257
20 0.6758 0.0046 0.0535 0.7779 -0.0021 0.0297
30 0.9586 0.0017 0.0725 1.1365 -0.0036 0.0438
50 1.3508 -0.0022 0.1046 1.5630 -0.0064 0.0683
100 2.4312 -0.0084 0.1787 2.9148 -0.0136 0.1113

Table 3: Simulation Results: Second Eigenvalue Estimation

Note: In this table, we report the summary statistics of 1000 Monte Carlo simulations for estimating the second
integrated eigenvalue. Column “True” corresponds to the average of the true integrated eigenvalue; Column “Bias”
corresponds to the mean of the estimation error; Column “Stdev” is the standard deviation of the estimation error.
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1 Week, 5 Seconds 1 Week, 1 Minute
# Stocks True Bias Stdev True Bias Stdev

5 0.1338 0.0001 0.0022 0.1345 0.0003 0.0044
10 0.2132 0.0001 0.0035 0.2149 0.0002 0.0070
15 0.2941 0.0002 0.0046 0.2954 0.0002 0.0093
20 0.3212 0.0001 0.0052 0.3242 0.0000 0.0105
30 0.4825 0.0005 0.0078 0.4853 0.0001 0.0153
50 0.6943 0.0001 0.0113 0.7016 -0.0005 0.0226
100 1.3808 0.0004 0.0221 1.3935 -0.0013 0.0438

1 Week, 5 Minutes 1 Month, 5 Minutes
# Stocks True Bias Stdev True Bias Stdev

5 0.1364 0.0041 0.0124 0.1404 0.0006 0.0054
10 0.2199 0.0033 0.0183 0.2367 -0.0001 0.0091
15 0.3018 0.0056 0.0264 0.3396 0.0009 0.0131
20 0.3324 0.0037 0.0294 0.3546 0.0003 0.0132
30 0.4971 0.0055 0.0409 0.5686 0.0006 0.0211
50 0.7216 0.0028 0.0577 0.8051 -0.0010 0.0306
100 1.4302 -0.0016 0.1119 1.6278 -0.0028 0.0612

Table 4: Simulation Results: Third Eigenvalue Estimation

Note: In this table, we report the summary statistics of 1,000 Monte Carlo simulations for estimating the third
integrated eigenvalue. Column “True” corresponds to the average of the true integrated eigenvalue; Column “Bias”
corresponds to the mean of the estimation error; Column “Stdev” is the standard deviation of the estimation error.

1 Week, 5 Seconds 1 Week, 1 Minute
# Stocks True Bias Stdev True Bias Stdev

5 0.0596 0.0002 0.0007 0.0597 0.0005 0.0015
10 0.0596 0.0001 0.0004 0.0597 0.0003 0.0008
15 0.0596 0.0001 0.0003 0.0597 0.0004 0.0006
20 0.0596 0.0001 0.0002 0.0597 0.0004 0.0005
30 0.0596 0.0001 0.0002 0.0597 0.0004 0.0004
50 0.0596 0.0001 0.0001 0.0597 0.0004 0.0003
100 0.0596 0.0001 0.0001 0.0597 0.0004 0.0002

1 Week, 5 Minutes 1 Month, 5 Minutes
# Stocks True Bias Stdev True Bias Stdev

5 0.0595 0.0026 0.0041 0.0595 0.0006 0.0017
10 0.0595 0.0029 0.0029 0.0595 0.0006 0.0009
15 0.0595 0.0027 0.0024 0.0595 0.0006 0.0007
20 0.0595 0.0028 0.0021 0.0595 0.0006 0.0006
30 0.0595 0.0030 0.0020 0.0595 0.0007 0.0005
50 0.0595 0.0029 0.0018 0.0595 0.0006 0.0004
100 0.0595 0.0031 0.0016 0.0595 0.0006 0.0003

Table 5: Simulation Results: Repeated Eigenvalue Estimation, Fourth and Beyond

Note: In this table, we report the summary statistics of 1,000 Monte Carlo simulations for estimating the repeated
integrated eigenvalues. Column “True” corresponds to the average of the true integrated eigenvalue; Column “Bias”
corresponds to the mean of the estimation error; Column “Stdev” is the standard deviation of the estimation error.
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1 Week, 5 Seconds 1 Week, 1 Minute
# Stocks True Bias Stdev True Bias Stdev

0.2457 -0.0002 0.0173 0.2475 0.0074 0.1559
0.8987 0.0028 0.0261 0.8963 0.0174 0.2135

5 0.0566 0.0013 0.0235 0.0536 -0.0018 0.1281
0.0633 0.0001 0.0119 0.0639 0.0037 0.0786
0.3110 0.0017 0.0202 0.3086 0.0042 0.0645
0.0506 0.0004 0.0049 0.0495 0.0029 0.0266
0.3444 0.0006 0.0087 0.3452 0.0080 0.0691
0.4632 0.0011 0.0129 0.4619 0.0121 0.0966
0.1422 0.0008 0.0137 0.1422 0.0094 0.0990

10 0.4166 0.0004 0.0220 0.4164 0.0045 0.1562
0.0864 0.0008 0.0158 0.0863 0.0089 0.1117
0.3460 0.0008 0.0088 0.3440 0.0101 0.0600
0.1268 0.0005 0.0076 0.1259 0.0066 0.0451
0.3409 0.0005 0.0174 0.3415 0.0046 0.1268
0.4262 0.0007 0.0112 0.4271 0.0099 0.0942

Table 6: Simulation Results: Eigenvector Estimation

Note: In this table, we report the summary statistics of 1,000 Monte Carlo simulations for estimating the integrated
eigenvector associated with the first eigenvalue. Column “True” corresponds to the average of the true integrated
vector; Column “Bias” corresponds to the mean of the estimation error; Column “Stdev” is the standard deviation of
the estimation error. The setup for these simulations is identical to that of Tables 2-5.

39



1 Week, 5 Seconds 1 Week, 1 Minute
# Stocks True Bias Stdev True Bias Stdev

0.2587 −4× 10−6 0.0026 0.2581 0.00004 0.0090
0.1557 3× 10−7 0.0015 0.1558 -0.0001 0.0054
0.2364 -0.00004 0.0015 0.2359 -0.00008 0.0053
0.0608 1× 10−6 0.0028 0.0608 0.00009 0.0096
0.1398 -0.00001 0.0019 0.1394 0.00002 0.0069
0.2471 −3× 10−6 0.0017 0.2476 -0.00001 0.0059
0.2250 0.00001 0.0014 0.2244 0.0001 0.0043
0.2642 0.00002 0.0027 0.2647 0.00008 0.0094
0.2004 0.00005 0.0015 0.2006 0.0002 0.0047
0.0446 -0.00004 0.0022 0.0447 0.0002 0.0075
0.2311 0.00005 0.0023 0.2312 0.00001 0.0080
0.2560 0.00002 0.0021 0.2565 -0.00002 0.0075
0.1979 -0.00005 0.0013 0.1979 0.00008 0.0043
0.2255 -0.00004 0.0019 0.2247 -0.0001 0.0066
0.2185 6× 10−7 0.0014 0.2186 -0.00007 0.0042

30 0.1262 -0.00006 0.0015 0.1263 0.0002 0.0051
0.1916 0.00002 0.0013 0.1917 -0.0001 0.0045
0.0661 -0.00004 0.0025 0.0661 0.0002 0.0088
0.2118 -0.00004 0.0020 0.2117 -0.00003 0.0070
0.0414 0.00006 0.0013 0.0414 0.00008 0.0045
0.1007 -0.00004 0.0025 0.1008 -0.00006 0.0086
0.0518 -0.00006 0.0017 0.0517 -0.00003 0.0058
0.0550 -0.00001 0.0022 0.0548 0.0002 0.0077
0.2345 -0.00005 0.0013 0.2349 -0.0002 0.0043
0.2003 0.00003 0.0014 0.2006 -0.0001 0.0047
0.1276 -0.00003 0.0025 0.1275 0.00008 0.0085
0.2813 0.00002 0.0033 0.2813 0.0003 0.0116
0.0319 -0.00005 0.0030 0.0319 -0.00001 0.0106
0.1417 0.00006 0.0022 0.1414 0.0002 0.0075
0.1233 -0.00001 0.0024 0.1235 0.0002 0.0085

Table 7: Simulation Results: Eigenvector Estimation

Note: In this table, we report the summary statistics of 1,000 Monte Carlo simulations for estimating the integrated
eigenvectors associated with the first eigenvalues. The column “True” corresponds to the average of the true integrated
vector; “Bias” corresponds to the mean of the estimation error; “Stdev” is the standard deviation of the estimation
error. The setup for these simulations is identical to that of Tables 2-5. To save space, we do not report the eigenvectors
in dimensions larger than 30.
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Figure 1: Finite Sample Distribution of the Standardized Statistics.

Note: In this figure, we report the histograms of the 1,000 simulation results for estimating the first four integrated
eigenvalues using 5-second returns for 30 stocks over one week. The purpose of this figure is to validate the asymptotic
theory, hence the use of a short 5-second sampling interval. The smallest 27 eigenvalues are identical so that the fourth
eigenvalue is repeated. The solid lines plot the standard normal density; the dashed histograms report the distribution
of the estimates before bias correction; the solid histograms report the distribution of the estimates after bias correction
is applied and is to be compared to the asymptotic standard normal. Because the fourth eigenvalue is small, the dashed
histogram on the fourth subplot is out of the x-axis range, to the right.
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Figure 2: Finite Sample Distribution of the Standardized Statistics.

Note: In this figure, we report the histograms of the integrated simple eigenvalues using weekly one-minute returns of
100 stocks, a setting that matches that of our empirical analysis below. Columns 1, 2, and 3 report the results with
r = 2, 3, and 4 common factors in the data generating process, respectively. The number of Monte Carlo replications
is 1,000.
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Figure 3: The Liquidity of S&P 100 Index Components

Note: In this figure, we provide quartiles of the average time between successive transactions, or sampling frequencies,
for the 100 stocks S&P 100 Index constituents between 2003 and 2012 . We exclude the first and the last 5 minutes
from the 6.5 regular trading hours in the calculation, during which trading intensities are unusually high. The y-axis
reports the corresponding average sampling frequencies in seconds, computed from the high frequency transactions in
the sample. From these transactions, we construct a synchronous one-minute sample using the latest tick recorded
within that minute. The 10 least liquid stocks in the index are included in this figure but excluded from the empirical
analysis that follows.
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Figure 4: Time Series of the Cumulative Returns of S&P 100 Index Components

Note: In this figure, we plot the time series of cumulative daily open-to-close returns of 158 S&P 100 Index Components
from 2003 to 2012. The thick black solid line plots the cumulative daily open-to-close S&P 100 Index returns. All
overnight returns are excluded. Companies that exited the index during the sample period, including bankruptcies,
are represented by a time series truncated at the time of delisting.
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Figure 5: The Scree Graph

Note: In this figure, we report the time series average over the entire sample of the estimated eigenvalues against their
order, or “scree graph”. These integrated eigenvalues are estimated assuming that all of them are simple.
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Figure 6: Time Series of Realized Eigenvalues

Note: In this figure, we plot the time series of the three largest realized eigenvalues, representing the percentage
variations explained by the corresponding principal components, using weekly 1-min returns of 90 most liquid S&P 100
Index constituents from 2003 to 2012. For comparison, we also plot the average of the remaining 87 eigenvalues.
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Figure 7: Time Series of Cumulative Realized Principal Components

Note: In this figure, we compare the cumulative returns of the first three principal components, using weekly 1-minute
returns of the S&P 100 Index constituents from 2003 to 2012.
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Figure 8: Biplot of the Integrated Eigenvector: Pre-crisis Week

Note: This biplot shows the integrated eigenvector estimated during the week March 7-11, 2005. Each dot and the
vector joining it and the origin represents a firm. The x and y coordinates of a firm denote its average loading on the
first and second principal components, respectively. The dots and lines associated with firms in the financial sector are
colored in red and dashed, while non-financial firms are colored in blue and drawn as solid lines. The figures shows
little difference between the two groups during that week.
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Figure 9: Biplot of the Integrated Eigenvector: Crisis Week

Note: This biplot shows the integrated eigenvector estimated during the week March 10-14, 2008. Each dot and the
vector joining it and the origin represents a firm. The x and y coordinates of a firm denote its average loading on the
first and second principal components, respectively. The dots and lines associated with firms in the financial sector
are colored in red and dashed, with the following singled out: American International Group (AIG), Bank of America
(BOA), Citigroup (C), Goldman Sachs (GS), J.P. Morgan Chase (JPM), and Lehman Brothers (LEH). Non-financial
firms are colored in blue and drawn as solid lines. The figure shows a sharp distinction between the two groups’
dependence on the second principal component during that week.

49



0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6
Week: 03/07/2005  03/11/2005

Figure 10: Scree Plot of the Integrated Eigenvalues: Pre-crisis Week

Note: This figure contains a scree plot of the integrated eigenvalues estimated during the week March 7-11, 2005.
The blue solid lines provide 95% confidence interval for the first three eigenvalues computed based on the results of
Corollary 1.
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Figure 11: Scree Plot of the Integrated Eigenvalues: Crisis Week

Note: This figure contains a scree plot of the integrated eigenvalues estimated during the week March 10-14, 2008.
The blue solid lines provide 95% confidence interval for the first three eigenvalues computed based on the results of
Corollary 1.
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