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This paper applies the standard rational expectations competitive storage model to the study 
of thirteen commodities. It explains the skewness, and the existence of rare but violent explosions 
in prices, coupled with a high degree of price autocorrelation in more normal times. A central 
feature of the model is the explicit recognition of the fact that it is impossible for the market as 
a whole to carry negative inventories, and this introduces an essential non-linearity which carries 
through into non-linearity of the predicted commodity price series. For most of the thirteen 
commodity prices, the behaviour of prices from one year to the next conforms to the predictions 
of the theory about conditional expectations and conditional variances. However, given the 
non-linearity both of the model and of the actual prices, such conformity is not enough to ensure 
that the theory yields a complete account of the data. In particular, the analysis does not yield 
a fully satisfactory explanation for the high autocorrelation observed in the data. 

INTRODUCTION 

This paper is concerned with the theory and empirical behaviour of commodity prices. 
The topic is of great practical importance, particularly for the formulation of economic 
policy in less-developed countries, many of whom depend heavily on the exports of a 
small number of primary commodities. Commodity prices are extremely volatile. Figure 
1 gives just one of many possible examples; it shows an index of the average annual 
dollar price of sugar from 1900 to 1987 deflated by the U.S. consumer price index. The 
series shows no obvious trend during this century, but there are several sharp peaks, most 
notably in 1920, in the late 1970's and early 1980's. Some of the price rises are very sharp 
indeed, and the price in 1975 was nearly ten times its value less than a decade before. 
For some commodities, there have been swings from trough to peak in just a few months. 
For countries whose export earnings and GNP are dependent on these commodities, such 
volatility poses major problems both of macroeconomic and microeconomic policy. An 
understanding of the stochastic processes governing these price movements is essential 
for macroeconomic management, for national consumption and saving policies, for 
agricultural pricing policies, and for the design of risk-sharing mechanisms between 
farmers, resource holders, and government. 

There exists a well-developed theory of the determination of commodity prices, 
which will be discussed in the next section. However, there is little or no research that 
asks whether or not that theory is capable of explaining the actual behaviour of prices, 
and it is the confrontation of theory and evidence that is our main task in this paper. 



2 REVIEW OF ECONOMIC STUDIES 

LO 

0 

(NJ 

0 0 

o I I 

? 1 9 910 1920 1930 1940 1950 1960 1970 1980 1990 

date 

FIGURE 1 

Annual sugar prices, 1900-1987 

Before considering the theory, it is useful to have firmly in mind some of the stylized 
facts about commodity prices. Table 1 summarizes some of the facts about thirteen 
primary commodities over the period, 1900-1987, facts that we shall need to refer to 
when we discuss the properties of the theoretical model. The sugar prices in Figure 1 
are among the most volatile, but the general features of this series are not atypical. 
Although we would not wish to claim that all of these prices are stationary, none exhibit 

TABLE 1 

Commodity price facts 1900-1987 

One-year Two-year Persistence Coeff. of Skewness Kurtosis 
a-c a-c variation Yi Y2 

bananas 0-91 0-82 0^52 0-17 0-15 -0 98 
cocoa 0-83 0-66 0-24 0 54 0.99 1 21 
coffee 0-80 0-62 0-11 0 45 1-66 3-82 
copper 0-84 0-64 0-22 0-38 1-02 0-86 
cotton 0-88 0-68 0-13 0 35 0 35 0 07 
jute 0-71 0 45 0 09 0-33 0-61 0-26 
maize 0-76 0 53 0-10 0-38 1-18 2 48 
palm oil 0 73 0-48 0 05 0-48 3-24 16-52 
rice 0-83 0-61 0-08 0-36 0 55 0 03 
sugar 0-62 0 39 0-06 0-60 1-49 3-08 
tea 0-78 0 59 0-28 0-26 0 04 0 04 
tin 0 90 0-76 0-18 0-42 1-66 3 05 
wheat 0-86 0-68 0.11 0-38 0-87 0-61 

Notes. One-year and two-year a-c are first- and second-order autocorrelation coefficients respectively. Per- 
sistence is the normalized spectral density at zero, interpreted as a measure of the degree to which shocks 
persist; it uses a Bartlett window with a window width of 40 years. The skewness measure Yi is ,u3/(,u2)"5 and 
the kurtosis measure Y2 is (tL4/,1 )-3, where /Lr is the rth (central) moment. 
Source. World Bank Commodities Division. The underlying data are index numbers of average prices for 
each year, deflated by the U.S. consumer price index. 
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any obvious trends, even over such a long period of time. All of the commodities have 
first-order autocorrelation coefficients in excess of 0f6, with ten out of the thirteen greater 
than 0f8. The second-order coefficients are lower, but still substantial. The persistence 
measures in the third column can be interpreted as the fraction of a current innovation 
that will persist into the indefinite future, see Cochrane (1988). Apart from bananas, all 
of these measures are less than 0 3, so that the general picture is one where, in spite of 
the volatility, prices tend to revert to their mean or to a deterministic trend. The coefficients 
of variation show that sugar is the most volatile, but that there is substantial year to year 
variability in most of these prices. Finally, the last two columns measure skewness and 
kurtosis, with measures that are designed to be zero for a normal distribution. In Figure 
1, there is substantial positive skewness for sugar, because there are few or no downward 
spikes to match the pronounced upward spikes. Similar skewness is found for several 
but not all of the commodities; none show negative skewness. Sugar also displays 
substantial kurtosis, with tails much thicker than those of the normal distribution, a 
feature that, once again, appears for several other commodities. 

Table 1 shows that commodity prices are highly autocorrelated, as well as displaying 
variability, skewness, and kurtosis. There are a number of strategies that have been used 
to account for these features. One is standard descriptive time-series modelling. Given 
the high and slowly declining pattern of autocorrelations, many analysts would start by 
differencing the series, and fitting a low-order ARMA process to the first-differences, 
although note that non-standard assumptions are required about the innovations to 
reproduce the skewness and kurtosis. In practice, for several of these commodity prices, 
it is hard to reject the most parsimonious model, which is that the time series are random 
walks, see Cuddington and Urzua (1988) and Gersovitz and Paxson (1990), although 
note that the persistence measures in Table 1 are much lower than the figure of unity 
which is implied by a random walk. But, from an economist's point of view, the random 
walk hypothesis seems veiy implausible, at least for commodities where the weather plays 
a major role in price fluctuations; a random walk requires that all fluctuations in price 
be permanent. Nor would an LDC government be wise to treat commodity booms as 
permanent, although there are occasions when some appear to have done so. 

A different, more theoretical modelling strategy is to begin with supply and demand, 
attributing fluctuations to supply shocks, magnified and distorted by inelastic and non- 
linear demand functions. Such an approach can produce skewness and kurtosis, even 
from symmetric and mesokurtic harvests. However, much of the work in this tradition, 
reviewed, for example, by Ghosh, Gilbert and Hughes Hallett (1987), assumes myopic 
demand and supply behaviour, and uses essentially atheoretical distributed lags to account 
for autocorrelation. Our own approach is to follow the supply and demand tradition, 
but with explicit modelling of the behaviour of competitive speculators who hold inven- 
tories of commodities in the expectation of making profits. Such models have been 
well-developed in the theoretical literature, and, as we shall see below, they provide a 
fairly natural way of accounting for many of the facts in the table. 

The paper proceeds as follows. In the next section, we restate the theory, together 
with a number of theoretical developments that are useful in interpreting the data. In 
particular, we set up the model in a way that allows for the standard functional forms 
that are used in applied work, and we develop a number of new comparative static results 
that are helpful in determining the properties of the model, and thus how it can be tailored 
to match reality. Section 2 attempts to do that matching. Since the model is complex, 
and there are few or no cases where there exist closed-form functional forms for commodity 
prices, direct full-information estimation would be computationally demanding and not 
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necessarily very informative about the sources of model failure. Instead, we first follow 
Williams and Wright (1991) by simulating the model, guided by the comparative static 
results of Section 1, in order to discover the relationship between the inputs into the 
model, demand functions, harvest distributions, and storage technology, and its output, 
the time-series behaviour of commodity prices. We also present the results of an 
econometric analysis of some of the implications of the model. Section 3 provides a brief 
summary and conclusions. 

We find that the standard rational expectations competitive storage model of com- 
modity prices is capable of explaining a number of the stylized facts, including skewness, 
and the existence of rare but violent explosions in prices, coupled with a high degree of 
price autocorrelation in more normal times. A central feature of the model is the explicit 
recognition of the fact that it is impossible for the market as a whole to carry negative 
inventories, and this introduces an essential non-linearity which carries through into 
non-linearity of the predicted commodity price series. For most of the thirteen commodity 
prices in Table 1, the behaviour of prices from one year to the next conforms to the 
predictions of the theory about conditional expectations and conditional variances. 
However, given the non-linearity both of the model and of the actual prices, such 
conformity is not enough to ensure that the theory yields a complete account of the data. 
In particular, our work so far does not yield a fully satisfactory explanation for the high 
autocorrelation coefficients observed in the table. 

1. THE THEORY OF PRODUCTION WITH COMPETITIVE STORAGE 

1.0. Introduction 

This section contains the basic theory used in the rest of the paper. The theory originates 
with the pioneering work of Gustafson (1958), who studied the properties of the optimal 
demand for commodity stocks, and with the work of Muth (1961), who introduced the 
assumption of rational expectations. Unlike Muth however, Gustafson insisted on the 
impossibility of carrying forward negative inventories-crops cannot be consumed before 
they are grown-and the resulting non-negativity constraint is an important feature of 
the more recent literature. Over the past twenty years, the basic model has been elaborated 
in several different directions. Samuelson (1971) proved the optimality of competitive 
storage, and showed that the theory generates a non-linear first-order Markov process 
for prices, a point that we shall elaborate at some length below. Other important 
contributions are those of Danthine (1977), Schechtman and Escudero (1977), Kohn 
(1978), Newbery and Stiglitz (1981, 1982), Sheinkman and Schechtman (1983), Salant 
(1983), Wright and Williams (1982, 1984), Williams and Wright (1991), and Hart and 
Kreps (1986). 

We begin by reviewing the basic model, and by stating and proving Theorem 1 on 
the existence of a stationary rational expectations equilibrium. We repeat this more or 
less standard material partly in order to make the paper self-contained, but also because 
our approach is flexible enough to handle the frequently made assumption that demand 
functions are linear, something that is not true of the proofs currently available in the 
literature. We then state and discuss the implications of the theorem for the behaviour 
of the price, and prove Theorem 2, which provides conditions under which the price 
follows a renewal process. Finally, Theorem 3 provides comparative static results that 
are useful for the empirical analysis, and which do not seem to have appeared previously 
in the literature. 
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1.1. Prices and inventories 

Time is discrete. In period t, the price of the commodity relative to some unspecified 
numeraire is p,. For clarity of exposition, we distinguish two categories of agents, 
producer-consumers whose excess demand for the commodity depends only on the current 
price Pt, and inventory holders, or speculators, who carry forward the commodity from 
one period to the next. 

Start from the case where there are no inventories or inventory holders. Write D(p,) 
for the deterministic demand function, and z, for the amount which is randomly but 
inelastically supplied; we shall frequently refer to z, as the harvest. Equilibrium price is 
given by the equality D(p,) = z,. Note that it is also possible to allow demand to be 
stochastic in which case z, is interpreted as the difference between the harvest and the 
stochastic part of the demand function. An instantaneous supply response can also be 
accounted for by interpreting D(p,) as a non-stochastic excess demand function. Denote 
the inverse demand function P(z,). We also assume that z, has compact support, with 
lower bound z and upper bound z. In the simplest case, which is also the one studied 
in most of the paper, we take the harvest to be i.i.d. over time. Further, we require 
oo> P(z)> 0, so that, when the harvest takes its lowest possible value, price is positive 
and finite; no matter how bad the harvest, there is always a finite price that clears the 
market. We collect the assumptions of this paragraph into: 

Assumption 1. The random variables z, (the harvests), are i.i.d., and have compact 
support with lower bound z and upper bound z. D(p), defined on the interval (po, Pi), 
is continuous and strictly decreasing, and D(p) tends to + so as p tends to po. The inverse 
demand function P(z) satisfies oo> P(z) >0. 

For analytical tractability, it is sometimes assumed that D(p) is linear, e.g. Gustafson 
(1958), Newbery and Stiglitz (1981, 1982), examples which we shall follow in part of 
Section 2 below. To encompass this case, we allow po to be -oo, and Pi to be +oo. 

In the absence of inventories, and under the assumption that harvests are i.i.d., so 
will the prices p, = P(z,) be i.i.d. The introduction of inventories means that this will no 
longer be true. Suppose that inventory holders have access to a simple constant returns 
storage technology: one unit of commodity stored at t yields (1-8) units at t +1. The 
model can be extended without difficulty to the case where there are also fixed storage 
costs per unit in terms of the numeraire commodity. We assume that inventory holders 
are risk-neutral and can borrow and lend from a perfect capital market where the rate 
of interest on the numeraire is r. Write /8 = 1/(1 + r), and assume that there is a real cost 
to holding inventories, whether in deterioration or in interest charges, i.e. 

Assumption 2. Inventories are costly: 8 (1 -8) = (1 - 8)/ (1 + r) < 1. 

Write Etpt+l for the expected value of Pt+i, conditional on the available information at 
time t. An inventory holder who carried an inventory It into the next period expects a 
profit of [/3(1 - 8)Etpt+, -pt]It, so that profit maximization yields: 

It=O if ,3(1-8)Etpt+1<pt (1) 

Iti_-O if ,X3(1-3)Etpt+1 =pt. 

Inventories are zero if there is an expected loss from holding them, while if there is an 
expected profit from holding one unit when It=0, speculators will demand positive 



6 REVIEW OF ECONOMIC STUDIES 

inventories, bidding up the price until current and expected future prices are equal, after 
due allowance for carrying costs. Note that our treatment ignores any (non-linear) 
convenience yield to holding commodity stocks. 

In equilibrium, supply, including inventories from the previous period, must equal 
demand, including demand for inventories to carry forward into the next period, so that, 

z, + (1 - 6)It_j - It = D(pt). (2) 

Hence, combining (1) and (2), we have 

pt = max [,l3(1 - )E,p,+1, P{z, + (1 -)I,t}]. (3) 

Given price expectations, (3) determines the equilibrium price at date t, and (2) gives 
the corresponding level of inventories that will be carried forward from t to t + 1. 

To complete the model, it is necessary to define the information that is available to 
agents at time t, and which is used by them to form their expectations. We make the 
standard assumption that the agents know the "amount on hand", zt + (1 - jt_1, the 
current harvest together with any inventories from the previous period. This is the state 
variable in the system and we denote it by xt, i.e. 

xt = z, + (1-)I,1* (4) 

Since It-, is non-negative, xt lies in the interval X = [z, oo). 
We are then led to the following: 

Definition. A stationary rational expectations equilibrium (SREE) is a price function 
f: X -* R which describes the current price p, as a function of the state x, and satisfies 
for all x, 

pt =f(x,) = max [/3(1 - 8)Etf{z,+, + (1 -8)I,}, P(x,)], (5) 

where 

It = xt - p-I(Pt) =t - x,-P-i{f (x,)}. (6) 

Under the assumptions made, and in particular the assumption that the x,'s are i.i.d., 
f(x) is the solution to the functional equation 

f(x) = max [,3(1 - 8)Ef{z + (1 - 8)(x - P-1{f(x)})}, P(x)], (7) 

where the expectation is taken with respect to the random variable z. The existence of 
the price function, as well as some of its important properties are given by the following: 

Theorem 1. Under Assumptions I and 2, there is a unique SREE f in the class of 
non-negative continuous non-increasing functions. Furthermore, let p 3(1 -8)Ef(z). 
Then, 

f(x)> P(x) for P(x) <p* 

f (x) = P(x) for P(x) ' p* (8) 

f is strictly decreasing whenever it is strictly positive. The equilibrium level of inventories, 
x - P-1{f (x)}, is strictly increasing whenever P(x) <p*. 
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Proof. See Appendix. 11 

The relationship between f(x) and P(x) is illustrated in Figure 2 for the case where 
P(x) = 10/x, the harvest is normally distributed (with truncation at five standard devi- 
ations), r is 3% and 8 is 5%. Methods for calculating these functions will be described 
in the next section. 

The implications of the theorem for the price process are worth describing in some 
detail since they are important for assessing the empirical evidence. There are two 
possibilities or regimes depending on whether or not there are positive inventories: 

(i) If p, _p*, It = 0, Pt = P(xt) is the price at which current (use) demand is equated 
to current supply (including leftover inventories), and Pt+i is independent of Pt 
and depends only on zt+1, so that 

Pt+I=f(Zt+I), Pt p*. (9.1) 

(ii) If pt <p*, I = x-P-P{f (xt)} >0, then total demand is more than the demand 
for current consumption, pt = 3 (1 - 8)Etpt,I is larger than P(xt) and 

Pt+I = [f3(1-8)I Vpt + 7mt+I, Pt <P * (9.2) 

where 7t+ =f(xt+) -pt/l,(1 -8) =f[zt1 + (1 - 6){x, - P-lf(xt)}] -pt/l3(l -8) 
is an innovation, i.e. Et(rt+i,)=0. The cutoff p* is equal to 8(l -8)E{f(z)}, 
the current price at which, with no inventory demand, a unit held into the next 
period would make zero expected profit. The autoregression function of 
Pt, E(p,?11pt), is therefore given by 

E (pt+l Ipt) =min (p*, pt)l [,8(I - 5)]. (10) 

0 
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FIGURE 2 

Prices with and without storage 
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It is also useful for empirical purposes to be able to characterize the conditional variance 
of prices, V(p,+11 p,). We have not been able to derive any expression corresponding to 
(10), but in the Appendix, Lemma 4, we prove that, given convexity of P(x), 

a V(pt+l I1p)/apt-0 (11) 

At higher levels of prices, there are fewer inventories on hand before the next period's 
harvest, so that next period's price will be more volatile, although once Pt is above p*, 
there are no inventories, and the conditional variance is constant. Like the autoregression 
(10), the conditional variance function rises with p until p = p*, after which it is constant. 

What are the long-run dynamics of prices? A priori, there are three possibilities: the 
price might stay in one or other of the regimes forever, or it might oscillate between the 
two. If the distribution of z is very concentrated, if the price function P(x) is not very 
convex, or if storage and interest costs are high, so that almost surely P(z) ' 
l3(1 - 8)E{P(z)}, then storage will never be profitable, the price stays above p*, and (9.1) 
always prevails. On the other hand, if 8 were negative, so that inventories are "productive", 
and one unit today yields (1 - 8)> 1 tomorrow, the level of inventories may increase 
without limit, with the price tending to zero. The case of interest is, of course, the third 
one, where the price follows a renewal process. When prices are low, inventories are 
positive, but the depreciation rate 8 > 0 ensures that in finite time there will be a stockout, 
and the process will revert to regime (9.1). The long-run invariant stationary distribution 
of prices oscillates between the two regimes. 

Theorem 2. Assume that 8> Oand P(z) <,/3(1 - 8)EP(z). Then the limit distribution 
of inventories has a compact support, and the price follows a renewal process. 

Proof. See Appendix. 11 

Remark. The existence of an invariant distribution has been thoroughly investigated 
in the literature. Following the line initiated by Schechtman and Escudero (1977), 
Theorem 2 can be extended to the case where 8 = 0, provided that po is non-negative. 
When 8 <0, there are cases where the level of inventories tends to infinity, see again 
Schechtman and Escudero. 

Our final theorem concerns comparative statics, and in particular the effects on the 
equilibrium of the convexity of the price function P(x). 

Theorem 3. (Comparative statics): the equilibrium price function f, the associated 
cut-offprice p* and the inventory demand I(x) = x - P {f (x)} are increasing in the discount 
factor /3. They decrease when there is a first-order stochastic increase in the distribution of 
supply shocks. Moreover, if P(x) is convex, f(x) is convex, and both f(x) and I(x) increase 
when the distribution of supply shocks is modified through a mean-preserving spread. 

Proof. See Appendix. 11 

Remark. A large part of the previous literature takes an approach which is dual to 
ours, whereby P(x) is interpreted as the derivative of the instantaneous utility of an 
infinite-horizon consumer with intertemporally separable tastes and discount factor /3, 
see e.g. Danthine (1977), Schechtman and Escudero (1977), Scheinkman and Schechtman 
(1983). As already noted, our more flexible approach to the domain of definition of the 
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demand functions allows for the case of linear demands. More importantly, as in Hart 
and Kreps (1986), the existence of the policy function f(x) can be studied without 
reference to the limiting distribution of the state variable in situations where the optimal 
intertemporal utility level of the representative consumer would be unbounded. Finally, 
note that in the presence of risk-averse speculators, the equilibrium no longer corresponds 
to a representative consumer problem, so that such cases could only be approached, as 
in this paper, by directly modelling the formation of prices in the market. 

2. MATCHING THE THEORY AND THE DATA 

2.1. Simulation of the theoretical model 

The first step in assessing the empirical usefulness of the theory in Section 1, is to gain 
a better understanding of its implications for the behaviour of prices. While the theorems 
characterize several important aspects of price dynamics, and how they respond to changes 
in harvests, demands, and storage costs, a precise characterization requires knowledge 
of the equilibrium price function. Given this, we can check the correspondence between 
the data in Table 1 and the time-series properties of the associated stationary price 
distribution. 

The equilibrium price function is the stationary rational expectations equilibrium 
characterized by equation (7). Unfortunately, as has been recognized since the work of 
Gustafson (1958), there is no simple analytic form for the equilibrium price function, so 
that it is necessary to resort to numerical approximation. The proof of Theorem 1 in the 
Appendix studies the mapping T which associates with a function fs the function f,? 
defined by 

fs+ (x) = max [,l3(1 - 8)Efz[z + (1 - 8)(x - P {fs+1(x)}], P(x)], (12) 

and shows that, given a choice of some suitable fo, for example fo = P, the sequence fo, 

fi = Tfo,... + = Tf, converges to the SREE f By Theorem 2, we know that for 8>0, 
the invariant distribution of the state variable x is bounded, so that we can calculate 
these successive approximations on a grid over the range of x. In practice, this is an 
inconveniently slow algorithm, since it requires, at each iteration, a set of subsidiary 
iterations to solve for the next function, which is itself going to be modified at the next 
step. We have found that removing the subsidiary iterations does not prevent convergence, 
so that our algorithm is given by (12), but with the f, I(x) on the right-hand side replaced 
by fj(x). All of the results reported here use a grid of 100 points over the range of x, 
although on some occasions it was necessary to run trials to discover the range. Starting 
from P(x), at each iteration the new function was calculated at each point on the grid, 
using numerical integration for the expectation in (10), and linearly interpolating between 
the grid points for values of x not on the grid. Convergence typically required between 
five and two hundred iterations, depending on the specification, with each iteration 
requiring about a minute on a 386-based machine using GAUSS; much of the computation 
time is spent on the numerical integration. 

Other authors, e.g. Newbery and Stiglitz (1982), and Williams and Wright (1991) 
use piecewise linear or polynomial approximations for the segment of f(x) over which 
inventories are held. Such techniques may well be faster than those employed here, but 
given the moderate costs of our calculations, we did not experiment with these alternatives. 
See Williams and Wright (1991, Chapter 3) for a comparative evaluation of the relative 
merits of the various algorithms, and Taylor and Uhlig (1990) and the accompanying 
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papers for a more general survey of computational techniques for evaluating policy 
functions. 

Once the equilibrium price function is known, and an initial level of x, given, a series 
of prices can be simulated by randomly drawing a series of harvests zt, and calculating 
prices according to 

Pt =f(x'); xt+i = (1 -)[xtP 1f (xt)] + Zt+1* (13) 

Before calculating statistics, it is necessary to check that the results do indeed come from 
the invariant distribution. We try to ensure this by setting initial inventories to zero, so 
that the first value of x is known to come from the invariant distribution. Invariance is 
checked by splitting the simulated time-series into two, and using a two-sample Wilcoxon 
statistic to test that the two half-series come from the same distribution. 

While simulation is essential to obtain a visual impression of the implications of the 
theory for the time-series behaviour of the prices, the non-linearity of the model means 
that it is sometimes necessary to generate very large samples in order to obtain accurate 
estimates of the invariant distribution. An alternative procedure is to use the policy 
function f (x) to calculate the invariant distribution directly. Since the distribution of 
harvests z is known, F(z), say equation (13) implies that the invariant distribution of x, 
G(x) must satisfy: 

G(x) = { F{x - (1 - 8)[s - P-tf (s)]}dG(s) (14) 

In practice, it is easier not to use (14) for the calculations. Instead, recall that f(x) is 
calculated over a grid of 100 points, xx1, i= 1, . . . , 100, so that if these points are a 
distance K apart, we can define a transition matrix T, by 

tij = pr{xt+I = xxi I xt = xxj} 

= pr{xxi + K/2 (1-8)[XXj-P f(xxj)] + Z XXi.-K/2}. (15) 
This matrix T can be calculated directly from the distribution function F(z) once the 
SREE f(x) is known. The eigenvector of T corresponding to the unit eigenvalue then 
gives the masses in the invariant distribution on the points of the grid. These masses are 
also the masses corresponding to the points on a price grid pp =f (xx), and this invariant 
distribution of prices can be used, together with the transition probabilities, to calculate 
autocorrelations, measures of skewness and kurtosis, and the other statistics reported 
below. 

In selecting specifications for examination, we are guided by the theorems, and by 
the stylized facts in Table 1. In a world without inventories, positive skewness of prices 
could be generated even from symmetric harvests, provided the demand function is 
convex. The inverse demand function with inventories is more convex than that without, 
see Figure 2, so that it is of interest to discover, with a linear demand function and 
symmetric harvests, how much skewness in the price distribution can be delivered by the 
competitive storage model. Given i.i.d. harvests, and no storage, prices would also be 
i.i.d., so that to account for the high positive autocorrelation in the data, the model must 
be one in which stockouts are rare. Theorem 3 tells us that, at a given level of the 
carry-over, stockouts will be less probable the wider the spread in the harvest distribution 
if the inverse demand function is convex. While this does not necessarily imply that 
stockouts will be rarer with more convex demands, or with more uncertain harvests, the 
parameters that determine convexity and uncertainty are natural candidates to consider 
in designing the experiments. We have also found it useful to control for what would 
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be the distribution of prices if there were no storage; it is the spread of the pre-storage 
distribution of prices that determines the opportunities for speculators to profitably 
arbitrage commodity stocks between periods. Since the relationship between harvest 
variability and price variability depends on the slope of the demand function, the 
probability of stockouts can be kept low by keeping high the dispersion of pre-storage 
prices, either by ensuring high variability of the harvest or by choosing inelastic demand 
functions. 

Table 2 shows the results of five specifications, all with convex demand functions. 
In the first two cases, the demands are linear, and in the last three cases, iso-elastic and 
strictly convex; for the linear demands, the harvest is assumed to be normal, while for 
the iso-elastic case, harvests are drawn from a lognormal distribution. Even though, in 
theory, these distributions have an unbounded support, in practice we truncate the 
distributions at five standard deviations from the mean, so that the theorems of the 
previous section can be directly applied. For both linear and iso-elastic models, we 
consider two cases, corresponding to coefficients of variations in the no-storage price 
distribution of 0 10, the low-variance case, and 0-50, the high-variance case. For the 
linear model, we hold the distribution of harvests constant over the low- and high-variance 
cases, but change the slope and intercept of the demand function so as to quintuple the 
coefficient of variation while holding constant the value of price when the harvest takes 
its mean value of 100. The second case corresponds exactly to one of the cases previously 
simulated by Williams and Wright (1991), and the fact that the results correspond provides 
a useful check on our different computational procedures, theirs based on simulation and 
ours, on calculation of the invariant distribution. For an iso-elastic demand function, 

TABLE 2 

Distributions of simulated prices 

Demand P(x) = a + bx P(x) = x-P 
Shocks z is N(100, o- = 10) In z is N(0, o-2) 

Parameters r = 0056 r = 0 05 r = 0-056 r = 0-056 r = 0056 
8 =0-05 8=0 8=0 05 8=0 05 8=0 05 
a=200 a=600 p=l p=1 p=5 
b=-l b=-5 cJ=0 10 =050 o-=O010 

Coeff of variation(1) 0.10 0 50 0-10 0 53 0 53 
Probability of 

stockouts 0-82 0-16 0-82 0-24 0-24 
First-order a.c.(2) 0-08 0-48 0-08 0-33 0-29 
Second-order a.c.(2) 0 01 0-31 0 01 0-16 0 14 
Third-order a.c.(2) 0 00 0-22 0 00 0 09 0 08 
Skewness y (3) 0-43 1 99 0-61 3-41 3-15 
Kurtosis y 3) -0-29 5'50 0-17 24-22 16-43 
Wilcoxon two-sample pooling 0 59 1 27 1-43 -0 05 0.19 

test(4) 1-44 -3-27 -0 40 0.05 0 29 
2-30 -3-27 -0-76 2-33 -2-57 
0-16 -1 08 -0.05 -0-20 -0 30 

-1-08 4-37 -0 55 033 -1-07 

Notes. (1) Coefficient of variation of the price distribution in the absence of inventories. 
(2) Autocorrelations of prices. 
(3) Yi =,s31/ 2) , 22 ( -4/I )-3, where /Ar is the r-th central moment 
(4) Test statistics as defined, e.g. in Kendall and Stuart (1973), pp. 510-516). To obtain each number, two 
independent simulations of 2000 periods are calculated for the same model; the (non-parametric) Wilcoxon 
statistic then tests whether these two realizations come from the same population. The statistic has an N(0, 1) 
distribution under the null. 
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P(x) = x-P, with the log harvest distributed as N(O, a.2), the coefficient of variation of 
the no-storage price distribution is approximately pa, so that, in the low-variance case, 
we choose p = 1 and a- = 0- 10, while for high variance, we choose the two pairs of (1, 0- 5) 
and (5, 0-10) for the couple (p, o-). 

For the low-variance cases, where the coefficient of variation is 0-10, there is little 
incentive to store, and inventories are carried forward in only one year in five, with little 
difference between the linear and iso-elastic models. As a result, storage does little to 
smooth the price series, although enough to generate small positive first-order autocorrela- 
tions. There is some positive skewness, even in these low variances cases, but little 
evidence of induced leptokurtosis. 

When we move to the high-variance case, the situation is quite different. In the linear 
case, stocks are carried forward 84% of the time, there is a great deal of skewness and 
kurtosis, well within the range of the figures in Table 1, and although the autocorrelations 
are far from being as large as those in Table 1, at 0-48, 0-31, and 0-22, they are substantial. 
Clearly, with enough variance in the pre-storage distribution, even linear demand functions 
are capable of generating skewness, kurtosis, and autocorrelation. The iso-elastic case 
generates rather similar results, and it is clear from the last two columns of Table 2 that 
it makes relatively little difference whether the source of variability is uncertain harvests 
or inelastic demand, In either case, stocks are usually held, although stockouts, with 
probabilities of 24% for both cases, are a good deal more common than in the linear 
case. Autocorrelation is also substantial, but again lower than for linear demands. By 
contrast, the iso-elastic specification generates more skewness and kurtosis, presumably 
because the strict convexity of the P(x) function ensures much sharper spiking of prices 
when there are stockouts and supply is short. 

The mechanisms that generate the asymmetries in the price distribution can be seen 
clearly in Figures 3 and 4, which show the invariant distributions with and without storage 

LO 
0 
0. 

with storage linear demand 
a=200, b=-1 

o- X f-< A=l00, U=10 
\ 6=0.05, r=(5/0.9)% 

0 I 

C)0 / * 

o without 
? L storage/ 

o 0 

? 60 70 80 90 100 110 120 130 140 
Current price 

FIGURE 3 

Prices with and without storage: linear case 
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with storageA t r \ p* isoelastic demand 
P(x)=ax-P 

(0 s \a=1, /,=0 
p=1, a=0.5 
6=5Z, r=(5/0.9)7. 

00 

/ ~~~~without storage 

o / 
0 

0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Current price 

FIGURE 4 
Prices with and without storage: iso-elastic case 

for the first and fourth columns of Table 1. Inventory holders buy when the price is low, 
thereby "thinning out" the left tail of the distribution. When prices are high, more 
precisely when prices are higher than p*, they sell any inventories that they hold. This 
also tends to reduce the right tail of the distribution, since what would otherwise be high 
prices are reduced by the held over inventories. Of course, if stockouts are common, and 
inventories typically low or zero, as in Figure 3, there will be little or no effect on the 
right tail. When stockouts are rare, as in Figure 4, the thinning effect is much more 
marked. Even in this case, however, there will still be years when there is a bad harvest 
and when inventories have already been exhausted, so that prices have to reflect the full 
extent of the shortfall. Particularly when the inverse demand is convex, such situations 
can produce prices that are extremely high relative to normal, and show up as sharp 
spikes on time-series plots. Note that these spikes are no higher than the highest prices 
that would occur without storage; indeed Theorem 1 immediately implies that with or 
without storage, there are maximum prices and that they are identical. What produces 
the appearance of a spike is that these high prices become relatively rare, because there 
are usually inventories to act as buffers. The upper tail of the distribution in Figure 4 is 
thin, but there is positive density all the way up to the maximum. 

It is also instructive to look at the behaviour of prices in a time-series plot, such as 
Figure 5, which corresponds to an iso-elastic model with a standard deviation of 0-1 for 
the logarithm of the harvest, but with inelastic demand and a value for p of 8. This 
simulation, even more than those corresponding to any of the cases in Table 2, shows 
clearly the occasional very sharp spikes, together with the more normal "doldrums" type 
behaviour when prices are low, something that is a direct consequence of the behaviour 
of the conditional variance (11) when the underlying demand function is convex. There 
are marked resemblances between the behaviour in Figure 5 and the actual behaviour of 
several commodity prices, see Figure 1 for the case of sugar. 
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isoelastic demand, P(x)=ax-P, a= 1, u=0 

LO - p=8, u=0.1, 6=5%, r=(5/0.9)% 

LO 

o0 I . 1 
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0 20 40 60 80 100 120 140 160 180 200 
time 

FIGURE 5 
200 period simulation of prices 

Note finally the Wilcoxon tests in Table 2, which fail for three out of the five cases 
for the high-variance linear model, and in two of the simulations for the iso-elastic case. 
By Theorem 2, we know that the price distributions are stationary, and we are comparing 
samples of 2000 observations, so that it is somewhat puzzling to discover that the samples 
are in some way different. However, the high-variance linear case is one in which stockouts 
are rare, and where the simulated price series shows rare but sharp spikes, spikes that 
occur when there is a bad harvest and when there are no inventories. Such spikes are a 
good deal rarer than stockouts, which themselves occur only 16% of the time. In 
consequence, two successive simulations, even of 2000 observations, can look very different 
from one another, and certainly different enough to cause a rejection by the pooling test. 
The implication is that, when stockouts are rare, 2000 observations are insufficient to 
establish the properties of the series. But stockouts must be rare in practice to generate 
the high degree of autocorrelation that we actually observe. And if 2000 observations 
are too few, inference in real life situations is going to be extremely difficult. 

2.2. Estimation 

In this paper, we confine ourselves to the analysis of the price data, and make no attempt 
to incorporate data on levels of commodity stocks. Use of stock data, where available, 
would in general permit more powerful tests of the model than those reported below. 
We also recognize that the stripped-down model of this paper is unlikely to adequately 
capture the many special features of individual commodity markets. However, the storage 
and speculative behaviour that is the focus of our model is almost certainly present in 
these markets, and it is an important task to see how far the model can take us in 
interpreting the evidence. 

We focus on equation (10), i.e. 
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At this point, we prefer not to embark on an attempt to estimate the model by maximum 
likelihood or other full information techniques. These techniques require calculation of 
the equilibrium price function in order to evaluate whatever criterion is being maximized 
in the estimation procedure. In consequence, each iteration of the estimation procedure 
will itself require the many further iterations required to compute the SREE. Even so, 
computational expense is not the most serious issue. The competitive storage model has 
many free parameters, from the demand function, the distribution of harvests, and the 
storage technology, and it is dubious whether all of these are identifiable from the 
distribution of prices alone. 

We estimate (11) using a generalized methods of moments (GMM) technique. Let 
y = 1/{f,(1 - 8)} and write 0 = (y, p*) for the parameters to be estimated. Define the 
series u, by 

ut = Pt - y min (pt-l, p*). (17) 

Under the truth of the model, the time series ut is stationary, and although heteroskedastic, 
it is a series of innovations, so that each ut is uncorrelated with previous values, as well 
as with prices dated t - 1 and earlier. Hence, we define the (T x 4) matrix of instruments 
W with typical row given by 

wt = (9 Pt-1 Pt-2,5 Pt-3)- (18) 

Let u be the (Tx 1) vector of ut's. The GMM estimtes 0= ($, p*) of the model are the 
values of the parameters that minimize u' W( W' W)-1 W'u as a function of the parameters; 
note that because of the non-differentiability in (10), this criterion is not differentiable. 
We minimized the criterion using a Newton-type algorithm, where the gradient is 
2u' W( W' W)-1 W'au/aO which is almost everywhere differentiable, and the second deriva- 
tive is replaced by the expression 4(au'/&O) W( W' W)-1 W'(&U/l0'), to which it is 
asymptotically equivalent. The arguments in Laroque and Salanie (1990), there applied 
to the canonical disequilibrium model, also apply here, and 0 is consistent and asymptoti- 
cally normal. Given that the model predicts heteroskedasticity, we use the consistent 
estimate of the variance covariance matrix fl defined by: 

-1 A,~~~~~ 
W(W'W)1 WI W(W'W) WIDW(W'W) W' 

x < ( - WI( WI W)-1 WI') (19) 

where D is the (Tx T) diagonal matrix whose t-th diagonal element is equal to u^,2, i.e. 
the squared value of u, evaluated at the GMM estimates. If the basic model is true, all 
the instruments are orthogonal to the innovations, and we may test the over-identifying 
restrictions in the usual way, by computing 

OIT = u' W( W'DWf1 W'u^, (20) 

which, under the null, is asymptotically distributed as x2 with two degrees of freedom. 
While the over-identifying test is a valuable diagnostic of model adequacy in general, it 
is here specifically motivated by tne fact that, in the simulations reported in Table 2, we 
had some difficulty in reproducing the high autocorrelations in the actual data. If the 
model (11) also conflicts with the autocorrelations in the data, the residuals are likely to 
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be correlated with the additional lags of price, and the OID test will fail. For the same 
reasons, we compute and report the Durbin-Watson statistics associated with u'. 

Before applying these procedures to the actual data, it seemed wise to check their 
properties on artificial data, and particularly to make sure that the estimates are well- 
behaved in the ideal case when the data are generated by the model. Quite apart from 
the general issues of the accuracy of asymptotic approximation, this model, like disequili- 
brium econometric models in general, has regions where the gradient is zero, but which 
do not contain the minima that we seek. In particular, when p* is greater than max pJ, 
the gradient with respect to p* is zero. For these preliminary experiments, we chose the 
model underlying the second column of Table 2, the high-variance linear demand case. 
Table 2 shows that the probability of a stockout is only 16%, so that we can expect only 
16% of the price observtions to lie above the cut-off, something that is likely to make it 
difficult to obtain accurate estimates of p*. We drew 500 samples of 100 observations 
each, using the previously calculated equilibrium price function, and for each of the 
samples calculated the GMM estimates, the standard errors from (14), the Durbin-Watson 
test, and the over-identifying test statistic. 

The main results are summarized in Table 3. The GMM technique performs very 
well under these ideal conditions. The means of the empirical distributions of the two 
parameters are close to their true values, and the averages of the robust standard errors 
compare well with the dispersion of the empirical estimates. For the cut-off price p*, the 
average of the calculated standard errors (13-0) is higher than the standard deviation of 
the empirical distribution (8-8), a problem that is probably associated with the non- 
differentiability of the criterion function with respect to this parameter. However, the 
estimator of 01 = [,3(1-8)I ' performs well in all respects, and a normal distribution 
with the true mean and standard deviation equal to the average of the calculated standard 
errors is almost exactly equal to the density of the empirical estimates. Note that, while 
the Durbin-Watson statistic behaves as predicted by theory, both the mean and the 
standard deviation of the overidentifying test are larger than the values of 2 predicted 
by the theory. As a consequence, the null of orthogonality would be rejected too frequently 
on these data; 9-8% of the time using a test with a nominal size of 5%, although at 1%, 
the actual and nominal sizes are identical. 

TABLE 3 

Monte Carlo GMM estimation of commodity price model 

Parameter Theoretical asymptotic Average value from Empirical Average estimated 
or statistic value or mean 500 replications dispersion standard error 

y 1-050 1-055 0-022 0-023 
p* 114-2 112-6 8-79 13-00 
OID 2-00 2-64 2 25 
D.W. 2-00 1 99 0 14 

The GMM procedures therefore seem well suited to the problem at hand, and we 
apply them to the deflated commodity price described in Table 1. The results are presented 
in Table 4, which, together with the estimates of the parmeters, their standard errors, the 
overidentifying test statistic, and the Durbin-Watson statistic, shows the fraction of 
observations on each series that are above the estimated cutoff, and where, if the model 
is correct, stockouts are occurring. As is to be expected given the high autocorrelation 
in the data, the fraction of stockouts is quite small for all of these commodities. For four 
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TABLE 4 

GMM estimates of commodity price models 

01= [,B(1 - 8)]- S.E. p* S.E. Stockouts OID D.W. 

bananas 1 004 0-02 0-694 0 07 0-16 1-17 1-88 
cocoa 1-025 0-14 0 345 0-25 0-08 2 31 1-63 
coffee 1-040 0 07 0-378 0-11 0-10 2-54 1-45 
copper 1-015 0 05 0-792 0 43 0 07 5-35 1-58 
cotton 1-013 0 05 0 939 0 30 0.08 10 9 1-21 
jute 1-046 0 04 0-763 0.10 0.19 8-17 1-74 
maize 1-015 0.08 1-076 0 74 0-06 0-81 1-79 
palm oil 0 995 0-14 1-426 2-81 0.01 2-26 1-84 
rice 1-012 0-06 0-927 0 34 0-08 6-37 1-43 
sugar 1 090 0-14 1-029 0-28 0-23 4 50 1-90 
tea 1.009 0 04 0-637 0-15 0-16 0-65 1-77 
tin 1-013 0 07 0 449 0-23 0.05 2-71 1-62 
wheat 1-005 0 07 1-103 0 47 0-08 5-80 1-36 

Notes. The parameters are those given in equation (9). The column labelled stockouts shows the fraction of 
observations above the estimated cutoff p*; the units of p* and its standard error are those of the underlying 
price index numbers, and have no direct interpretation. OID is the overidentifying test statistic, and D.W. is 
the Durbin-Watson test. 

commodities, palm oil, tin, maize, and copper, the fraction of stockouts is 7% or less, so 
that the parameter p* is being identified by six points or less. The standard errors for 
these commodities are correspondingly large, particularly in the extreme case of palm 
oil where a single high spike in the series drives the estimation procedure to what may 
well be a spurious maximum. 

With the exception of palm oil, where the coefficient is 0995, all the slope coefficients 
are estimated to be slightly larger than one although none are significantly different from 
one. While discount rates are notoriously hard to estimate, and while it is satisfactory 
that 12 out of the 13 coefficients are greater than unity, the implied estimates of r +8, 
are all implausibly small, the largest being 9% for sugar. Although the standard errors 
are consistent with much larger values, it is disappointing that none of the estimates in 
the table are significantly larger than unity, particularly given the encouraging results 
from the Monte Carlo experiments. Contrary to our expectations, the OID tests do not 
contain a great deal of evidence of residual autocorrelation. The 5% critical value of a 
x2 with two degrees of freedom is 5.89, and for only three of the commodities, cotton, 
jute, and rice, are the test statistics greater than this value, which, in the light of the 
Monte Carlo evidence, is likely to be too low. For cotton and rice, the Durbin-Watson 
statistics are also low, although for the other commodities, the Durbin-Watson and the 
over-identifying test statistics do not always agree. At the suggestion of a referee, we 
also considered adding lagged price, Pt-i, to the right-hand side of (15). However, it is 
clear that, for large enough p*, such a model is not identified, and in practice, we found 
the two variables so collinear as to prevent useful estimation. 

At first sight, the results in Table 4 may look consistent with the hypothesis, discussed 
in the introduction, that these prices follow random walks. The coefficients on the lagged 
prices are insignificantly different from unity, and the cut-off parameters, which (in 
addition to heteroskedasticity) are what separate the current model from a random walk, 
are not well-determined. However, this model becomes a martingale, not when the cut-off 
parameter is zero, but when it becomes very large, or, in practice, larger than the largest 
sample observation. Even in a simple random walk, the presence of a finite cut-off 
radically alters the behaviour of the series. Indeed, the artificial time series underlying 



18 REVIEW OF ECONOMIC STUDIES 

the Monte Carlo experiments in Table 3 mostly generate slope coefficients greater than, 
but close to one, and several do not have very well-determined cut-off parameters. But 
these series have first-order autocorrelations that are so low that they would not be readily 
mistaken for random walks. Conversely, it would be hard to have random walks produce 
the results in Table 4. Attempts to fit (14) by GMM to real random walks frequently led 
to computational breakdown as the cut-off became larger than the largest observation 
and identification failed. Table 4 is therefore legitimate evidence in favour of the 
competitive storage model and against the random walk alternative. 

However, it is still far from clear that the competitive storage model gives a fully 
adequate account of the data. Indeed, there are many stochastic processes that satisfy 
the autoregression (14), but which could not be generated from the commodity price 
model. For example, the model 

Pt?I = [/3(1 -8)1 min (pt, p*) + (21) 

with Et i.i.d. N(0, oJ2), and with /3(1 - c) corresponding to the second column of Table 
2, generates a time series that bears little resemblance to prices simulated from the model, 
even though the latter satisfy (10). The higher-order moments of the series are also 
important, in particular, the conditional variance V(pt,? I Pt), which, by (11) is increasing 
in pt if P(x) is convex. When prices are low, next period's price is expected to be close 
by, and thus typically also low, which helps explain the typically long periods of low 
prices when very little seems to happen. 

For each commodity, we checked for heteroskedasticity by calculating Lagrange 
multiplier tests by regressing the squared residuals, normalized by their average, on the 
lagged prices. The R2-statistics of these regressions, multiplied by the sample size, are 
distributed as x2 under the null of homoskedasticity. Not surprisingly, the statistics for 
all commodities are very large, and there is no doubt of the existence of heteroskedasticity. 
In order to learn more about its shape, we also regressed the logarithm of the absolute 
value of ut on the logarithm of lagged price Pt-i, and again, in all cases, we found a 
strong positive relationship, with a coefficient that in most cases is larger than unity, and 
which scatter diagrams typically reveal to be close to linearity. We found no obvious 
evidence that the conditional variance is constant when price is above the cut-off, but as 
already noted, there are typically rather few such points, so that the phenomenon, even 
if present, would be hard to detect. While the competitive storage model is perhaps not 
the only way of explaining these findings, the positive heteroskedasticity is predicted by 
the model, and is strongly evident in the data. 

These results are encouraging; apart from the cases already noted, the actual com- 
modity prices display conditional means and conditional variances that conform to the 
predictions of the theory of competitive storage. If the model were linear, this would be 
enough, but since it is not, there is no guarantee that other important characteristics of 
the model are matched in the data. In particular, although the model (21), with the 
correct form of heteroskedasticity, seems to fit the data for most of the commodities, it 
may again be because there are processes satisfying (21), and with the correct conditional 
heteroskedasticity, but which could not have been generated by the competitive model. 
Indeed, the models displayed in Table 2 all predict conditional skewness and kurtosis. 
These higher-order properties may or may not match the actual data, and with a non-linear 
time-series model, failure to match higher-order moments may be linked to a failure to 
match autocorrelations. 

We do not press these issues further in this paper. Further progress will require the 
use of full-information techniques; these require more computational development than 
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we have yet undertaken, and we feel that this and the development of adequate diagnostics 
for the results of such estimation is a major project in its own right. 

3. SUMMARY AND CONCLUSIONS 

This paper has made a first attempt to explain commodity prices in terms of a simple 
theory based on competitive storage. We have used the simplest possible form of the 
theory, with random harvests that are independent and identically distributed over time, 
and that do not respond to current or expected future prices. We have also assumed that 
neither consumers nor speculators have advance information about harvests, and know 
only the amount on hand immediately after the harvest. There is only one market each 
season, held immediately after the harvest, in which a price is set for that season. Such 
a simplified model is clearly unrealistic, more so for some commodities than others, but 
it serves to focus attention on the role that storage can play in transferring commodities 
from relatively plentiful times to relatively scarce times, and on the effects on the behaviour 
of price. It is the natural starting point for a more sophisticated analysis, for which the 
basic insights are a pre-requisite. 

The simple model also delivers a number of predictions, about autoregression 
functions, and about conditional variances, predictions that bear up reasonably well 
against the annual commodity price data for the thirteen commodities analysed here. 
Simulations of the theoretical model are also capable of replicating many of the features 
of the actual data. Because the variance of next period's price is a non-decreasing function 
of current price, prices spend long periods in the "doldrums", showing little movement 
but high autocorrelation from year to year. However, once a high price is established, 
there exists the possibility of further high prices, and the theoretical results replicate the 
occasional extreme spikes that are characteristic of actual commodity prices. Simulated 
prices can also replicate the skewness and kurtosis that is displayed by many actual prices. 

Whether autocorrelation patterns also conform to the theory remains an open ques- 
tion. While speculative storage generates price autocorrelation over and above what 
would exist without storage, we do not know whether there are plausible theoretical 
specifications that generate the degree of autocorrelation observed in the actual time-series. 
The theoretical work in this paper tells us a good deal about the conditions needed to 
generate autocorrelation, but we have not been able to generate models that reproduce 
the autocorrelation in most of the actual commodity prices. It is possible that we have 
not looked sufficiently hard or cleverly, but it also possible that high autocorrelation 
reflects phenomena not discussed here, such as autocorelation in harvests, as would be 
expected for many tree crops, or the smoothing of price that is a plausible consequence 
of consumers and speculators having advance information about the harvest. Such 
questions remain for further analysis; unfortunately, it is an understanding of autocorrela- 
tion that is perhaps the most vital for the conduct of policy. 

APPENDIX 

The proof of Theorem 1 proceeds through a series of lemmata. First, we collect and state formally the assumptions 
of the text: 

Assumption A. 1 

(i) 0 <a r(Ii-ou)n<d1. 
(ii) The real random variable z has a compact support with lower bound z and upper bound z. 
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(iii) The function P-1: (po, pl)) -- is continuous, strictly decreasing, and satisfies: 

lim P-1(p)=+ao 
P Po 

z belongs to the range of P-1 and oo> P(z) > 0 

To solve the functional equation (7), imagine that the equilibrium at date t+ 1 is expected to be given 
by a function g of the state variable x at that date. Then the equilibrium at date t is a function f that satisfies: 

f (x) = max [,3(1 - 8)Eg{z + (1- 8)(x - P-(f(x))}, P(x)]. (A.1) 

A stationary rational expectations equilibrium (SREE) is a function g such that f= g. 
Recall that the state variable (the amount on hand) takes its values in a set X = {x in $8, x _ z} so that g 

and f are defined on X Let Y = {(p, x) I x in X, P(x) _ p < Pl}. It is useful to introduce the function G: Y -e S, 

defined by: 

G(q, x) =,3(1 -8)Eg{z+ (1 -8)(x-P-1(q))}. (A.2) 

G(q, x) is the expected discounted present value of tomorrow's price given that today's amount on hand is x 
and today's price is q. For a SREE today's price must be consistent with today's x, and the function linking 
them must be the same today as tommorrow, so that G can be used to rewrite (A.1) as 

f (x) = max [G(f(x), x), P(x)]. (A.3) 

We shall denote by T the operator that assigns to a function g the function f that is the solution of (A.1). 
Correspondingly, for (A.3) we also write TG to denote f as the solution of (A.3). 

Lemma 1. Assume that g: X - (po, pl) is continuous non-increasing. Then the corresponding function 
G: Y -- Rs4 is continuous and non-increasing in both its arguments. Furthermore: 

G{P(x), x} = ,3(1- 8)Eg(z), 

lim G(q, x)/3(1 -8)pI <pl. 
q- p 

Proof. Trivial. 

Lemma 2. Assume that G satisfies the properties of Lemma 1. Then: 

(i) There is a unique function f = TG which is the solution of (A.3). f: X e (po, Pl) is continuous, non- 
increasing and: 

f(x) = P(x) whenever P(x) _ ,3(1 - 8)Eg(z) 

f(x) = G{f(x), x} whenever P(x)<,8(1 -8)Eg(z). 

(ii) Furthermore, G1(q, x) _ G2(q, x) for all (q, x) implies TGI _ TG2. 

Proof. For given x in X, f(x) is equal to the solution in unknown q of: 

max [G(q, x)-q, P(x) - q] = 0. 

It follows that q ?-P(x). By Lemma 1, the function G(q, x) - q is continuous strictly decreasing in q, and varies 
between 8 (1 - 8)Eg(z) - P(x) and some negative number when q varies between P(x) and Pi. It therefore 
has a unique zero when P(x) ' /3(1- 8)Eg(z), and is always negative when P(x)> >,(1- 8)Eg(z). This proves 
the uniqueness of the solution. Continuity and monotonicty follow from the continuity and monotonicity of 
{G(q, x) - q}. Finally, if GI - G2, GI(q,, x) - q, = 0 implies G2(q1, x) - q1 _ 0, and the root q2 of G2(q2, x) - q2 = 

0 belongs to [P(x), q,], which shows that TG,_ TG2 

Lemma 3 (upper range of the price function): 

(i) Iff is a SREE, andf non-increasing in x, then f(z) = P(z). 

(ii) If g satisfies the assumptions of Lemma 1 and g(z) = P(z), then Tg(z) = P(z). 
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Proof. Since f is non-increasing: 

Ef{z + (1 - 8)(x - P(f (x))} _ Ef(z) _f (z). 

so that, taking x =.z, 

/3(1 - 8)Ef{z + ( 1-8)(z - P-f (z))} _ (1-8)f (z). 

Evaluating (A. 1) at x =.z, and using the previous inequality, we have 

f(z) ' max [,3(1 - 8)f (z), P(z)]. 

If ,8(1 - 6)f(z) _ P(z),f(z) '-,/(1 - 8)f(;), which can onlybe true iff(z) <0. But, by Lemma 2, P(z) '-f(z) <<0, 

contracting Assumption A.1 (iii). Hence, P(z) _ /,8(1 - 8)f (z), and f (z) ' P(z). But, by Lemma 2, the reverse 
weak inequality holds, so that f(z) = P(z), which is (i). A closely parallel argument establishes (ii). 

Proof of Theorem 1. We sketch the argument which is a standard one. 

(i) Consider two functions g, and g2 satisfying the assumptions of Lemma 1, such that there exists a 
positive scalar a with g2(x) ' g1(x) ' g2(x) + a for all x in X. Then 

Tg2? Tgl ' Tg2+/3(1-8)a. 

This follows from Lemma 2(ii), and the fact that, by (A.1): 

T(g2+a)'/3(1-8)a+max[/8(1-8)Eg2{z+(1-8)(x-P-1(f(x))}, P(x)] 

' Tg2+, (1 -58)a. 

(ii) Let G be the space of non-negative functions defined on X that satisfy the assumptions of Lemma 
1, and such that g(z) = P(z). By Lemmata 2 and 3, T maps G into itself. Furthermore, for any two g, and g2 
in G, 

d (gj, g2) = SUPx.X1Ig1(x) -g2(X)1 

is well-defined (less than or equal to P(z)), so that letting a = d(gl, g2) in (i) above, we have immediately that 

d(Tgl, Tg2) _j (1-8)d(gl, g2), 

so that T is a contraction mapping. Take any g0 in G and let g, = Tgo,..., g, = Tg,_,..... We have d(g,-1, g,) 
t'-I(I- 8)'-ld(go, gl). The sequence of continuous functions g, converges uniformly, so that the limit f(x) 

of g,(x) for each x in X defines a continuous function on X. Since d(f Tf ) = 0, this is the desired equilibrium. 
The equilibrium is unique. Otherwise, if f1 andf2 were two distinct equilibria with d(fi ,f2) > 0, then d(fi ,f2) = 

d( Tf1, Tf2) _ /(1 - 8))d(fi,jf2) which is a contradiction. Lemma 2(i) gives p* = ,( 1- 8)Ef (z) and (8) follows. 
(iii) f is strictly decreasing whenever it is strictly positive, and x -P-P{f(x)} is strictly increasing when 

f (x) > P(x). 
We know that f is non-increasing on X. Let [x', x") be the first interval on which f is constant, i.e. such 

that f is strictly decreasing on [z, x'], and let k be the value of f on this interval. Since P is strictly decreasing, 
it follows from (A.1) that for all x in [x', x"): 

f(x) = k = (1 - 8)Ef{z + (1 - 8)(x - P-'(k))I- 

The right-hand side of the above expression is constant, and since f is monotone non-increasing, we must have 
f{z+(1-8)(x-P-1(k))} constant on [x', x"), and, by the choice of [x', x"), less than or equal to k. It follows 
that k (i - 8)k, so that k = 0. 

Finally, when f(x) > P(x), letting I(x) = x - P-1{f (x)}, we have: 

f(x) = 3(1 -58)Ef{z + (1- 8)I(x)}. 

Since f(x) is non-increasing, I(x) is non-decreasing. Iff is strictly decreasing on some interval, I(x) strictly 
increases. If f (x) = 0, I(x) = x - P-'(0) is also strictly increasing. 11 

Proof of Theorem 2. The evolution of inventories is described by the stochastic difference equation: 

I, = (1 -8)II1 -X(p,)+z,, 

Since p, _ P(z) by Lemma 3 and Theorem 1, X(p,) _ z, so that 
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which, since 0 < 8 < 1, implies that, in the long run, O _ I 0 (z - z)/ 8. Suppose now that IO is strictly positive, 
which is guaranteed for some date by P() <,8(1 - 8)EP(z), which precludes I, = 0 for all t. We show that, 
with probability 1, the inventory level I, will be equal to zero in finite time, so that the price level follows a 
renewal process. If not, with some positive probability, we should have p, < p* for all t. Then X(p,) _ X(p*) 
for all t. Given JO = IO, define J, by: 

J, = (I - 10JI-1 - X(p*) + z,. 

We have J, - I, for all t, and J, has the same limiting distribution as {z - X(p*)}/8. But 

p*= ,/(1-8)Ef(z) _ /3(1-8)f (z) = /3(1 -8)P(Z) < P(), 

since f is non-increasing, and by Lemma 3, so that, inverting, X(p*) > z. Hence, 

Pr[(z-X( p*))/8 ? 0] > 0. 

Hence, by standard arguments, the probability that J,(and thus I,) stays strictly positive for all t is equal to 
zero. 11 

Proof of Theorem 3. 
(i) f is convex when P is convex 

Suppose that when g is convex, we can show that Tg is also convex. Then, if in the argument in part 
(ii) of the proof of Theorem 1 above, we take go convex, g, is convex for all t, and thus so is f Hence, all that 
is required to prove f convex is that g convex implies Tg convex. First note that g convex and non-increasing, 
and P convex decreasing imply that G is a convex function in the couple (q, x). This follows from two 
well-known properties of convex functions: if P is convex decreasing, P-1 is convex; if g is convex decreasing 
and h is concave, then g o h is convex. By construction see (A.2), G is therefore convex in (q, x). Recall from 
Lemma 2 that Tg is obtained as the solution in q of the equation: 

H(q, x) = max [G(q, x) - q, P(x) - q] = 0. 

H(q, x) is the maximum of two convex functions, and is therefore convex in (q, x). Take any two x', x" in X 
and A in [0, 1]. Let q'= Tg(x') and q"= Tg(x"). We have: 

H(q', x') = H(q", x") = O, 

and therefore: 

H(Aq'+ (1-A)q", Ax'+ (1-A)x") _ 0. 

Since H is decreasing in q, the desired result follows. 
(ii) All the comparative statics properties follow from essentially the same argument, which is sketched 

here for the case of a mean preserving spread in the distribution of shocks. Let G, be the initial function 
defined by (A.2) and G2 that obtained after the change in distribution. If g is convex, G2 _ G, and by Lemma 
2(ii), TG2 - TGI. Then apply the argument of (i) above, starting from the same convex go, to get the desired 
result. || 

Finally, we prove (11), which follows from the following lemma: 

Lemma 4. Assume f: X -e St is convex decreasing, and z a random variable with bounded support in X. 
Then, for all I '-O, V[f(z + (1 - 8)I)] is a decreasing function of I. 

Proof. By definition: 

V[f(z + ( 1-_8))] = Ef2 -(Ef )2. 

Since f is convex, it is continuously differentiable almost everywhere, and we can write: 

(1- 8)-a V[f(z + (1- 8)I)]I/I = 2[Eff'- EfEf'] = 2E(f- Ef)f'. 

Let a be the certainty equivalent of z + (1 - 8)I defined byf (a) = Ef, and, for brevity, write s for (1 - 8)L Now: 

E(f- Ef)f' = J [f(z + s) - Ef ]f '(z + s)dF(z) + J [f(z + s) - Ef ]f '(z + s)dF(z). 
z+s:-a z+s'a-a 

For z+s a, f(z+s)-Ef and f'(z+s)<f'(a), by convexity, so that: 

[f(z + s) - Ef]f'(z + s) -f'(a)[f(z + s) - Ef]. 
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Similarly, for z + s> a, f(z + s)'- Ef and f'(z + s) >f'(a), so that 

[f(z + s) - Ef]f'(z + s) _f'(a)[f'(a)[f (z + s) - Ef]. 

It follows that: 

E(f-Ef)f''f'(a)E(f--Ef)=O. 
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